void PropertyCurvatureList::transformGeometry(const Base::Matrix4D &mat) { // The principal direction is only a vector with unit length, so we only need to rotate it // (no translations or scaling) // Extract scale factors (assumes an orthogonal rotation matrix) // Use the fact that the length of the row vectors of R are all equal to 1 // And that scaling is applied after rotating double s[3]; s[0] = sqrt(mat[0][0] * mat[0][0] + mat[0][1] * mat[0][1] + mat[0][2] * mat[0][2]); s[1] = sqrt(mat[1][0] * mat[1][0] + mat[1][1] * mat[1][1] + mat[1][2] * mat[1][2]); s[2] = sqrt(mat[2][0] * mat[2][0] + mat[2][1] * mat[2][1] + mat[2][2] * mat[2][2]); // Set up the rotation matrix: zero the translations and make the scale factors = 1 Base::Matrix4D rot; rot.setToUnity(); for (unsigned short i = 0; i < 3; i++) { for (unsigned short j = 0; j < 3; j++) { rot[i][j] = mat[i][j] / s[i]; } } aboutToSetValue(); // Rotate the principal directions for (int ii=0; ii<getSize(); ii++) { CurvatureInfo ci = operator[](ii); ci.cMaxCurvDir = rot * ci.cMaxCurvDir; ci.cMinCurvDir = rot * ci.cMinCurvDir; _lValueList[ii] = ci; } hasSetValue(); }
void PropertyNormalList::transformGeometry(const Base::Matrix4D &mat) { // A normal vector is only a direction with unit length, so we only need to rotate it // (no translations or scaling) // Extract scale factors (assumes an orthogonal rotation matrix) // Use the fact that the length of the row vectors of R are all equal to 1 // And that scaling is applied after rotating double s[3]; s[0] = sqrt(mat[0][0] * mat[0][0] + mat[0][1] * mat[0][1] + mat[0][2] * mat[0][2]); s[1] = sqrt(mat[1][0] * mat[1][0] + mat[1][1] * mat[1][1] + mat[1][2] * mat[1][2]); s[2] = sqrt(mat[2][0] * mat[2][0] + mat[2][1] * mat[2][1] + mat[2][2] * mat[2][2]); // Set up the rotation matrix: zero the translations and make the scale factors = 1 Base::Matrix4D rot; rot.setToUnity(); for (unsigned short i = 0; i < 3; i++) { for (unsigned short j = 0; j < 3; j++) { rot[i][j] = mat[i][j] / s[i]; } } aboutToSetValue(); // Rotate the normal vectors for (int ii=0; ii<getSize(); ii++) { set1Value(ii, rot * operator[](ii)); } hasSetValue(); }
Base::Matrix4D AbstractPolygonTriangulator::GetTransformToFitPlane() const { PlaneFit planeFit; for (std::vector<Base::Vector3f>::const_iterator it = _points.begin(); it!=_points.end(); ++it) planeFit.AddPoint(*it); if (planeFit.Fit() == FLOAT_MAX) throw Base::Exception("Plane fit failed"); Base::Vector3f bs = planeFit.GetBase(); Base::Vector3f ex = planeFit.GetDirU(); Base::Vector3f ey = planeFit.GetDirV(); Base::Vector3f ez = planeFit.GetNormal(); // build the matrix for the inverse transformation Base::Matrix4D rInverse; rInverse.setToUnity(); rInverse[0][0] = ex.x; rInverse[0][1] = ey.x; rInverse[0][2] = ez.x; rInverse[0][3] = bs.x; rInverse[1][0] = ex.y; rInverse[1][1] = ey.y; rInverse[1][2] = ez.y; rInverse[1][3] = bs.y; rInverse[2][0] = ex.z; rInverse[2][1] = ey.z; rInverse[2][2] = ez.z; rInverse[2][3] = bs.z; return rInverse; }
void PropertyNormalList::transformGeometry(const Base::Matrix4D &mat) { // A normal vector is only a direction with unit length, so we only need to rotate it // (no translations or scaling) // Extract scale factors (assumes an orthogonal rotation matrix) // Use the fact that the length of the row vectors of R are all equal to 1 // And that scaling is applied after rotating double s[3]; s[0] = sqrt(mat[0][0] * mat[0][0] + mat[0][1] * mat[0][1] + mat[0][2] * mat[0][2]); s[1] = sqrt(mat[1][0] * mat[1][0] + mat[1][1] * mat[1][1] + mat[1][2] * mat[1][2]); s[2] = sqrt(mat[2][0] * mat[2][0] + mat[2][1] * mat[2][1] + mat[2][2] * mat[2][2]); // Set up the rotation matrix: zero the translations and make the scale factors = 1 Base::Matrix4D rot; rot.setToUnity(); for (unsigned short i = 0; i < 3; i++) { for (unsigned short j = 0; j < 3; j++) { rot[i][j] = mat[i][j] / s[i]; } } aboutToSetValue(); // Rotate the normal vectors #ifdef _WIN32 Concurrency::parallel_for_each(_lValueList.begin(), _lValueList.end(), [rot](Base::Vector3f& value) { value = rot * value; }); #else QtConcurrent::blockingMap(_lValueList, [rot](Base::Vector3f& value) { rot.multVec(value, value); }); #endif hasSetValue(); }