Esempio n. 1
0
bool ClangASTImporter::RequireCompleteType(clang::QualType type) {
  if (type.isNull())
    return false;

  if (const TagType *tag_type = type->getAs<TagType>()) {
    TagDecl *tag_decl = tag_type->getDecl();

    if (tag_decl->getDefinition() || tag_decl->isBeingDefined())
      return true;

    return CompleteTagDecl(tag_decl);
  }
  if (const ObjCObjectType *objc_object_type = type->getAs<ObjCObjectType>()) {
    if (ObjCInterfaceDecl *objc_interface_decl =
            objc_object_type->getInterface())
      return CompleteObjCInterfaceDecl(objc_interface_decl);
    else
      return false;
  }
  if (const ArrayType *array_type = type->getAsArrayTypeUnsafe()) {
    return RequireCompleteType(array_type->getElementType());
  }
  if (const AtomicType *atomic_type = type->getAs<AtomicType>()) {
    return RequireCompleteType(atomic_type->getPointeeType());
  }

  return true;
}
Esempio n. 2
0
/**
 * Reports mismatch between buffer type and mpi datatype.
 * @param callExpr
 */
void MPIBugReporter::reportTypeMismatch(
    const CallExpr *callExpr, const std::pair<size_t, size_t> &idxPair,
    clang::QualType bufferType, std::string mpiType) const {
    auto adc = analysisManager_.getAnalysisDeclContext(currentFunctionDecl_);
    PathDiagnosticLocation location = PathDiagnosticLocation::createBegin(
        callExpr, bugReporter_.getSourceManager(), adc);

    // deref buffer type
    while (bufferType->isPointerType()) {
        bufferType = bufferType->getPointeeType();
    }
    // remove qualifiers
    bufferType = bufferType.getUnqualifiedType();

    SourceRange callRange = callExpr->getCallee()->getSourceRange();
    std::string bugType{"type mismatch"};
    std::string errorText{"Buffer type '" + bufferType.getAsString() +
                          +"' and specified MPI type '" + mpiType +
                          "' do not match. "};

    llvm::SmallVector<SourceRange, 3> sourceRanges;
    sourceRanges.push_back(callRange);
    sourceRanges.push_back(callExpr->getArg(idxPair.first)->getSourceRange());
    sourceRanges.push_back(callExpr->getArg(idxPair.second)->getSourceRange());

    bugReporter_.EmitBasicReport(adc->getDecl(), &checkerBase_, bugType,
                                 MPIError, errorText, location, sourceRanges);
}
Esempio n. 3
0
static void StreamArr(llvm::raw_ostream& o, const void* V, clang::QualType Ty,
                      cling::Interpreter& interp) {
  clang::ASTContext& C = interp.getCI()->getASTContext();
  const clang::ArrayType* ArrTy = Ty->getAsArrayTypeUnsafe();
  clang::QualType ElementTy = ArrTy->getElementType();
  if (ElementTy->isCharType())
    StreamCharPtr(o, (const char*)V);
  else if (Ty->isConstantArrayType()) {
    // Stream a constant array by streaming up to 5 elements.
    const clang::ConstantArrayType* CArrTy
      = C.getAsConstantArrayType(Ty);
    const llvm::APInt& APSize = CArrTy->getSize();
    size_t ElBytes = C.getTypeSize(ElementTy) / C.getCharWidth();
    size_t Size = (size_t)APSize.getZExtValue();
    o << "{ ";
    for (size_t i = 0; i < Size; ++i) {
      // Handle the case of constant size array of pointers. Eg. const char*[]
      if (ElementTy->isPointerType())
        StreamValue(o, *(const char* const *)V + i * ElBytes, ElementTy, interp);
      else
        StreamValue(o, (const char*)V + i * ElBytes, ElementTy, interp);

      if (i + 1 < Size) {
        if (i == 4) {
          o << "...";
          break;
        }
        else o << ", ";
      }
    }
    o << " }";
  } else
    StreamPtr(o, V);
}
Esempio n. 4
0
bool WebCLRestrictor::handleParmVarDecl(clang::ParmVarDecl *decl)
{ 
    const clang::TypeSourceInfo *info = decl->getTypeSourceInfo();
    if (!info) {
        error(decl->getSourceRange().getBegin(), "Invalid parameter type.\n");
        return true;
    }

    clang::SourceLocation typeLocation = info->getTypeLoc().getBeginLoc();

    const clang::QualType qualType = info->getType();
    const clang::Type *type = qualType.getTypePtrOrNull();
    if (!info) {
        error(typeLocation, "Invalid parameter type.\n");
        return true;
    }
    const clang::DeclContext *context = decl->getParentFunctionOrMethod();
    if (!context) {
        error(typeLocation, "Invalid parameter context.\n");
        return true;
    }
    clang::FunctionDecl *function = clang::FunctionDecl::castFromDeclContext(context);
    if (!function) {
        error(typeLocation, "Invalid parameter context.\n");
        return true;
    }

    checkStructureParameter(function, typeLocation, type);
    check3dImageParameter(function, typeLocation, type);
    checkUnsupportedBuiltinParameter(function, typeLocation, qualType);
    return true;
}
Esempio n. 5
0
// A loose type equality check that disregards all sugar, qualification, looks
// through pointers, etc.
static bool roughlyEqual(clang::QualType left, clang::QualType right) {
  auto leftPointee = left->getPointeeType();
  if (leftPointee != clang::QualType())
    left = leftPointee;
  auto rightPointee = right->getPointeeType();
  if (rightPointee != clang::QualType())
    right = rightPointee;
  return left->getUnqualifiedDesugaredType() ==
         right->getUnqualifiedDesugaredType();
}
// updates S.Ok; and, depending on Kind, possibly S.FnAccumulatorOk or S.FnOutConverterOk
void RSExportReduce::checkVoidReturn(StateOfAnalyzeTranslationUnit &S,
                                     FnIdent Kind, clang::FunctionDecl *Fn) {
  slangAssert(Fn);
  const clang::QualType ReturnTy = Fn->getReturnType().getCanonicalType();
  if (!ReturnTy->isVoidType()) {
    S.RSC.ReportError(Fn->getLocation(),
                      "%0 must return void not '%1'")
        << S.DiagnosticDescription(getKey(Kind), Fn->getName()) << ReturnTy.getAsString();
    notOk(S, Kind);
  }
}
Esempio n. 7
0
bool IsStructuralType(const clang::QualType& type, const clang::ASTContext *context) {
	// If it is struct, check if all fields are of structural type
	if (type.getCanonicalType().getTypePtr()->isStructureType()) {
		clang::RecordDecl* struct_decl = type.getCanonicalType().getTypePtr()->getAsStructureType()->getDecl();
		for (const auto* field : struct_decl->fields()) {
			if (!IsStructuralType(field->getType(),context))
				return false;
		}
		return true;
	} else { // Else check if it is of integral type
		return type.getCanonicalType().getTypePtr()->isBuiltinType();
	}
}
 bool TraverseType(clang::QualType type)
 {
     if (type.isNull())
     {
         return PARENT::TraverseType(type);
     }
     auto node = std::make_unique<GenericAstNode>();
     //node->myType = d;
     node->name = type->getTypeClassName();
     auto nodePtr = node.get();
     myStack.back()->attach(std::move(node));
     myStack.push_back(nodePtr);
     auto res = PARENT::TraverseType(type);
     myStack.pop_back();
     return res;
 }
Esempio n. 9
0
 Value::Value(clang::QualType clangTy, Interpreter& Interp):
   m_StorageType(determineStorageType(clangTy)),
   m_Type(clangTy.getAsOpaquePtr()),
   m_Interpreter(&Interp) {
   if (needsManagedAllocation())
     ManagedAllocate();
 }
Esempio n. 10
0
int TypeUtils::sizeOfPointer(const clang::CompilerInstance &ci, clang::QualType qt)
{
    if (!qt.getTypePtrOrNull())
        return -1;
    // HACK: What's a better way of getting the size of a pointer ?
    auto &astContext = ci.getASTContext();
    return astContext.getTypeSize(astContext.getPointerType(qt));
}
Esempio n. 11
0
CompilerType::CompilerType(clang::ASTContext *ast, clang::QualType qual_type)
    : m_type(qual_type.getAsOpaquePtr()),
      m_type_system(ClangASTContext::GetASTContext(ast)) {
#ifdef LLDB_CONFIGURATION_DEBUG
  if (m_type)
    assert(m_type_system != nullptr);
#endif
}
Esempio n. 12
0
bool MocNg::ShouldRegisterMetaType(clang::QualType T)
{
    if (T->isVoidType() || (T->isReferenceType() && !T.getNonReferenceType().isConstQualified()))
        return false;

    if (registered_meta_type.count(T->getCanonicalTypeUnqualified().getTypePtr()))
        return true;

    T = T.getNonReferenceType();

    if (T->isPointerType()) {
        // registering pointer to forward declared type fails.
        const clang::CXXRecordDecl* Pointee = T->getPointeeCXXRecordDecl();
        if (Pointee && !Pointee->hasDefinition())
            return false;
        return true;
    }

    const clang::ClassTemplateSpecializationDecl* TD = llvm::dyn_cast_or_null<clang::ClassTemplateSpecializationDecl>(T->getAsCXXRecordDecl());
    if (TD) {
        if (!TD->hasDefinition())
            return false;
        for (uint I = 0; I < TD->getTemplateArgs().size(); ++I) {
            const auto &Arg = TD->getTemplateArgs().get(I);
            if (Arg.getKind() == clang::TemplateArgument::Type) {
                if (!ShouldRegisterMetaType(Arg.getAsType()))
                    return false;
            }
        }
    }
    return true;
}
Esempio n. 13
0
static void StreamObj(llvm::raw_ostream& o, const void* V, clang::QualType Ty) {
  if (clang::CXXRecordDecl* CXXRD = Ty->getAsCXXRecordDecl()) {
    std::string QualName = CXXRD->getQualifiedNameAsString();
    if (QualName == "cling::Value"){
      StreamClingValue(o, (const cling::Value*)V);
      return;
    }
  } // if CXXRecordDecl

  // TODO: Print the object members.
  o << "@" << V;
}
Esempio n. 14
0
   void ValuePrinterInfo::Init(clang::QualType Ty) {
    assert(!Ty.isNull() && "Type must be valid!");
    assert(m_Context && "ASTContext cannot be null!");

    assert(sizeof(m_Type) >= sizeof(clang::QualType) && "m_Type too small!");
    m_Type = *reinterpret_cast<void**>(&Ty);

    // 1. Get the flags
    if (Ty.isLocalConstQualified() || Ty.isConstant(*m_Context)){
      m_Flags |= VPI_Const;
    }

    if (Ty->isPointerType()) {
      // treat arrary-to-pointer decay as array:
      QualType PQT = Ty->getPointeeType();
      const Type* PTT = PQT.getTypePtr();
      if (!PTT || !PTT->isArrayType()) {
        m_Flags |= VPI_Ptr;
        if (const RecordType* RT = dyn_cast<RecordType>(Ty.getTypePtr()))
          if (RecordDecl* RD = RT->getDecl()) {
            CXXRecordDecl* CRD = dyn_cast<CXXRecordDecl>(RD);
            if (CRD && CRD->isPolymorphic())
              m_Flags |= VPI_Polymorphic;
          }
      }
    }
  }
Esempio n. 15
0
std::string GetTypeAsString(const clang::QualType &type) {
	std::stringstream stream;
	std::string name = type.getAsString();
    // If it is an anonymous structure, print all the fields recursively
    if (name.substr(0,11) == "struct (ano") {
        stream << "struct { ";
		clang::RecordDecl* struct_decl = type.getTypePtr()->getAsStructureType()->getDecl();
		// Print the types of all the fields
        for (const auto* field : struct_decl->fields()) {
			std::string type = GetTypeAsString(field->getType().getCanonicalType());
			std::string name = field->getName();
            stream << type;
            stream << " " << name << "; ";
        }
        stream << "}";
	} else if (type.getTypePtr()->isBooleanType()) {
		return "bool";
	} else {
        stream << type.getAsString(); //just print the type
    }
	return stream.str();
}
Esempio n. 16
0
static StringRef getTypeName(clang::QualType qt) {
  if (auto typedefTy = qt->getAs<clang::TypedefType>()) {
    // Check for a CF type name (drop the "Ref")
    auto cfName = getCFTypeName(typedefTy->getDecl()->getCanonicalDecl());
    if (cfName != StringRef())
      return cfName;
  }

  auto identInfo = qt.getBaseTypeIdentifier();
  if (identInfo)
    return identInfo->getName();

  // Otherwise, no name
  return {};
}
Esempio n. 17
0
// GET VECTOR TYPE FROM STRING
rapidjson::Value SuperastCPP::createVectorValue(const clang::QualType qualType) {
  assert(isSTLVectorType(qualType));

  //rapidjson::Value vectorValue(rapidjson::kObjectType);
  //vectorValue.AddMember("id", currentId++, allocator);
  const std::string& typeName = qualType.getAsString();

  std::size_t actPos = 0;
  bool finished = false;
  unsigned depth = 0;
  std::string innerMostType;
  while (!finished) {
    // find next vector or comma
    std::size_t vectorPos = typeName.find(VECTOR_TYPE, actPos);
    std::size_t commaPos = typeName.find(",", actPos);

    std::string type = "vector";
    if (commaPos < vectorPos) {
      finished = true;
      innerMostType = typeName.substr(actPos, commaPos-actPos);
      auto it = VECTOR_TYPE_MAPPING.find(type);
      if (it != VECTOR_TYPE_MAPPING.end()) innerMostType = it->second;
    }
    else {
      actPos = vectorPos + VECTOR_TYPE.size();
      ++depth;
    }
  }

  rapidjson::Value actTypeValue(rapidjson::kObjectType);
  addId(actTypeValue);
  actTypeValue.AddMember("name", 
                         rapidjson::Value().SetString(innerMostType.c_str(),
                                                      innerMostType.size(),
                                                      allocator),
                         allocator);

  for (unsigned i = 0; i < depth; ++i) {
    rapidjson::Value aux(rapidjson::kObjectType);
    addId(aux);
    aux.AddMember("name", "vector", allocator);
    aux.AddMember("data-type", actTypeValue, allocator);
    actTypeValue = aux;
  }
  
  return actTypeValue;
}
// updates S.Ok; and, depending on Kind, possibly S.FnAccumulatorOk or S.FnOutConverterOk
void RSExportReduce::checkPointeeConstQualified(StateOfAnalyzeTranslationUnit &S,
                                                FnIdent Kind, const llvm::StringRef &Name,
                                                const clang::ParmVarDecl *Param, bool ExpectedQualification) {
  const clang::QualType ParamQType = Param->getType();
  slangAssert(ParamQType->isPointerType());
  const clang::QualType PointeeQType = ParamQType->getPointeeType();
  if (PointeeQType.isConstQualified() != ExpectedQualification) {
    S.RSC.ReportError(Param->getLocation(),
                      "%0 parameter '%1' (type '%2') must%3 point to const-qualified type")
        << S.DiagnosticDescription(getKey(Kind), Name)
        << Param->getName() << ParamQType.getAsString()
        << (ExpectedQualification ? "" : " not");
    notOk(S, Kind);
  }
}
Esempio n. 19
0
 Value::EStorageType Value::determineStorageType(clang::QualType QT) {
   const clang::Type* desugCanon = QT.getCanonicalType().getTypePtr();
   if (desugCanon->isSignedIntegerOrEnumerationType())
     return kSignedIntegerOrEnumerationType;
   else if (desugCanon->isUnsignedIntegerOrEnumerationType())
     return kUnsignedIntegerOrEnumerationType;
   else if (desugCanon->isRealFloatingType()) {
     const clang::BuiltinType* BT = desugCanon->getAs<clang::BuiltinType>();
     if (BT->getKind() == clang::BuiltinType::Double)
       return kDoubleType;
     else if (BT->getKind() == clang::BuiltinType::Float)
       return kFloatType;
     else if (BT->getKind() == clang::BuiltinType::LongDouble)
       return kLongDoubleType;
   } else if (desugCanon->isPointerType() || desugCanon->isObjectType()
              || desugCanon->isReferenceType()) {
     if (desugCanon->isRecordType() || desugCanon->isConstantArrayType()
         || desugCanon->isMemberPointerType())
       return kManagedAllocation;
     return kPointerType;
   }
   return kUnsupportedType;
 }
void RSExportReduce::analyzeResultType(StateOfAnalyzeTranslationUnit &S) {
  if (!(S.FnAccumulatorOk && S.FnOutConverterOk)) {
    // No idea what the result type is
    slangAssert(!S.Ok);
    return;
  }

  struct ResultInfoType {
    const clang::QualType QType;
    clang::VarDecl *const Decl;
    const char *FnKey;
    const std::string &FnName;
    std::function<std::string ()> UnlessOutConverter;
  } ResultInfo =
        S.FnOutConverter
        ? ResultInfoType({ S.FnOutConverterParamFirstTy, S.FnOutConverterParamFirst,
                           KeyOutConverter, mNameOutConverter,
                           []() { return std::string(""); }})
        : ResultInfoType({ S.FnAccumulatorParamFirstTy,  S.FnAccumulatorParamFirst,
                           KeyAccumulator,  mNameAccumulator,
                           []() { return std::string(" unless ") + KeyOutConverter + " is provided"; }});
  const clang::QualType PointeeQType = ResultInfo.QType->getPointeeType();

  if (PointeeQType->isPointerType()) {
    S.RSC.ReportError(ResultInfo.Decl->getLocation(),
                      "%0 parameter '%1' (type '%2') must not point to a pointer%3")
        << S.DiagnosticDescription(ResultInfo.FnKey, ResultInfo.FnName)
        << ResultInfo.Decl->getName() << ResultInfo.QType.getAsString()
        << ResultInfo.UnlessOutConverter();
  } else if (PointeeQType->isIncompleteType()) {
    S.RSC.ReportError(ResultInfo.Decl->getLocation(),
                      "%0 parameter '%1' (type '%2') must not point to an incomplete type%3")
        << S.DiagnosticDescription(ResultInfo.FnKey, ResultInfo.FnName)
        << ResultInfo.Decl->getName() << ResultInfo.QType.getAsString()
        << ResultInfo.UnlessOutConverter();
  } else if (HasRSObjectType(PointeeQType.getTypePtr())) {
    S.RSC.ReportError(ResultInfo.Decl->getLocation(),
                      "%0 parameter '%1' (type '%2') must not point to data containing an object type%3")
        << S.DiagnosticDescription(ResultInfo.FnKey, ResultInfo.FnName)
        << ResultInfo.Decl->getName() << ResultInfo.QType.getAsString()
        << ResultInfo.UnlessOutConverter();
  } else if (RSExportType::ValidateType(&S.RSC, S.ASTC, PointeeQType,
                                        ResultInfo.Decl, ResultInfo.Decl->getLocStart(),
                                        S.RSC.getTargetAPI(),
                                        false /* IsFilterscript */,
                                        true /* IsExtern */)) {
    // TODO: Better diagnostics on validation or creation failure?
    if ((mResultType = RSExportType::Create(&S.RSC, PointeeQType.getTypePtr(),
                                            NotLegacyKernelArgument, ResultInfo.Decl)) != nullptr) {
      const RSExportType *CheckType = mResultType;
      const char *ArrayErrorPhrase = "";
      if (mResultType->getClass() == RSExportType::ExportClassConstantArray) {
        CheckType = static_cast<const RSExportConstantArrayType *>(mResultType)->getElementType();
        ArrayErrorPhrase = "n array of";
      }
      switch (CheckType->getClass()) {
        case RSExportType::ExportClassMatrix:
          // Not supported for now -- what does a matrix result type mean?
          S.RSC.ReportError(ResultInfo.Decl->getLocation(),
                            "%0 parameter '%1' (type '%2') must not point to a%3 matrix type%4")
              << S.DiagnosticDescription(ResultInfo.FnKey, ResultInfo.FnName)
              << ResultInfo.Decl->getName() << ResultInfo.QType.getAsString()
              << ArrayErrorPhrase
              << ResultInfo.UnlessOutConverter();
          mResultType = nullptr;
          break;
        default:
          // All's well
          break;
      }
    }
  }

  if (mResultType)
    S.RSC.insertExportReduceResultType(mResultType);
  else
    S.Ok = false;
}
insieme::core::TypePtr VariableLengthArrayExtension::Visit(const clang::QualType& type, insieme::frontend::conversion::Converter& converter) {
    // we iterate trough the dimensions of the array from left to right. There is no hint
    // in the C standard how this should be handled and therefore the normal operator precedence is used.
    if(const clang::VariableArrayType* arrType = llvm::dyn_cast<clang::VariableArrayType>(type.getTypePtr())) {
        // check if we already converted this decl
        if(::containsKey(arrayTypeMap, arrType)) return arrayTypeMap[arrType];

        // only consider variable array types
        // create a decl stmt e.g., decl uint v1 = i;
        core::IRBuilder builder = converter.getIRBuilder();
        auto index = converter.convertExpr(arrType->getSizeExpr());
        // cast needed from rhs type to int<inf>?!
        if(index->getType() != builder.getLangBasic().getUIntInf()) {
            index = builder.numericCast(index, builder.getLangBasic().getUIntInf());
        }
        auto decl = builder.declarationStmt(builder.getLangBasic().getUIntInf(), index);
        sizes.push_back(decl);

        // convert the element type (in nested array case this is again a variable array type)
        core::TypePtr elementType = converter.convertType(arrType->getElementType());
        core::TypePtr arrayType = builder.arrayType(elementType, decl->getVariable());

        // add type to map
        arrayTypeMap[arrType] = arrayType;
        return arrayType;
    }
    return nullptr;
}
Esempio n. 22
0
ASTDumper::ASTDumper (clang::QualType type)
{
    m_dump = type.getAsString();
}
Esempio n. 23
0
static void StreamValue(llvm::raw_ostream& o, const void* V,
                        clang::QualType Ty, cling::Interpreter& Interp) {
  clang::ASTContext& C = Interp.getCI()->getASTContext();
  if (const clang::BuiltinType *BT
           = llvm::dyn_cast<clang::BuiltinType>(Ty.getCanonicalType())) {
    switch (BT->getKind()) {
    case clang::BuiltinType::Bool:
      if (*(const bool*)V)
        o << "true";
      else
        o << "false";
      break;
    case clang::BuiltinType::Char_U: // intentional fall through
    case clang::BuiltinType::UChar: // intentional fall through
    case clang::BuiltinType::Char_S: // intentional fall through
    case clang::BuiltinType::SChar:
      StreamChar(o, *(const char*)V); break;
    case clang::BuiltinType::Short:
      o << *(const short*)V; break;
    case clang::BuiltinType::UShort:
      o << *(const unsigned short*)V; break;
    case clang::BuiltinType::Int:
      o << *(const int*)V; break;
    case clang::BuiltinType::UInt:
      o << *(const unsigned int*)V; break;
    case clang::BuiltinType::Long:
      o << *(const long*)V; break;
    case clang::BuiltinType::ULong:
      o << *(const unsigned long*)V; break;
    case clang::BuiltinType::LongLong:
      o << *(const long long*)V; break;
    case clang::BuiltinType::ULongLong:
      o << *(const unsigned long long*)V; break;
    case clang::BuiltinType::Float:
      o << *(const float*)V; break;
    case clang::BuiltinType::Double:
      o << *(const double*)V; break;
    case clang::BuiltinType::LongDouble: {
      std::stringstream ssLD;
      ssLD << *(const long double*)V;
      o << ssLD.str() << 'L'; break;
    }
    default:
      StreamObj(o, V, Ty);
    }
  }
  else if (Ty.getAsString().compare("std::string") == 0) {
    StreamObj(o, V, Ty);
    o << " "; // force a space
    o <<"c_str: ";
    StreamCharPtr(o, ((const char*) (*(const std::string*)V).c_str()));
  }
  else if (Ty->isEnumeralType()) {
    clang::EnumDecl* ED = Ty->getAs<clang::EnumType>()->getDecl();
    uint64_t value = *(const uint64_t*)V;
    bool IsFirst = true;
    llvm::APSInt ValAsAPSInt = C.MakeIntValue(value, Ty);
    for (clang::EnumDecl::enumerator_iterator I = ED->enumerator_begin(),
           E = ED->enumerator_end(); I != E; ++I) {
      if (I->getInitVal() == ValAsAPSInt) {
        if (!IsFirst) {
          o << " ? ";
        }
        o << "(" << I->getQualifiedNameAsString() << ")";
        IsFirst = false;
      }
    }
    o << " : (int) " << ValAsAPSInt.toString(/*Radix = */10);
  }
  else if (Ty->isReferenceType())
    StreamRef(o, (const void**)&V, Ty, Interp);
  else if (Ty->isPointerType()) {
    clang::QualType PointeeTy = Ty->getPointeeType();
    if (PointeeTy->isCharType())
      StreamCharPtr(o, (const char*)V);
    else if (PointeeTy->isFunctionProtoType())
      StreamFunction(o, V, PointeeTy, Interp);
    else
      StreamPtr(o, V);
  }
  else if (Ty->isArrayType())
    StreamArr(o, V, Ty, Interp);
  else if (Ty->isFunctionType())
    StreamFunction(o, V, Ty, Interp);
  else
    StreamObj(o, V, Ty);
}
const std::string WebCLConfiguration::getNameOfType(clang::QualType type) const
{
    return type.getUnqualifiedType().getAsString();
}
// Process "void combinename(compType *accum, const compType *val)"
void RSExportReduce::analyzeCombiner(StateOfAnalyzeTranslationUnit &S) {
  if (S.FnCombiner) {
    // Must return void
    checkVoidReturn(S, FN_IDENT_COMBINER, S.FnCombiner);

    // Must have exactly two parameters, of same type as first accumulator parameter

    if (S.FnCombiner->getNumParams() != 2) {
      S.RSC.ReportError(S.FnCombiner->getLocation(),
                        "%0 must take exactly 2 parameters (found %1)")
          << S.DiagnosticDescription(KeyCombiner, mNameCombiner)
          << S.FnCombiner->getNumParams();
      S.Ok = false;
      return;
    }

    if (S.FnAccumulatorParamFirstTy.isNull() || !S.FnAccumulatorParamFirstTy->isPointerType()) {
      // We're already in an error situation.  We could compare
      // against the initializer parameter type instead of the first
      // accumulator parameter type (we'd have to check for the
      // availability of a parameter type there, too), but it does not
      // seem worth the effort.
      //
      // Likewise, we could compare the two combiner parameter types
      // against each other.
      slangAssert(!S.Ok);
      return;
    }

    for (int ParamIdx = 0; ParamIdx < 2; ++ParamIdx) {
      const clang::ParmVarDecl *const FnCombinerParam = S.FnCombiner->getParamDecl(ParamIdx);
      const clang::QualType FnCombinerParamTy = FnCombinerParam->getType().getCanonicalType();
      if (!FnCombinerParamTy->isPointerType() ||
          !S.FnCombiner->getASTContext().hasSameUnqualifiedType(
              S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
              FnCombinerParamTy->getPointeeType().getCanonicalType())) {
        // <combiner> parameter '<baz>' (type '<tbaz>')
        //   and accumulator <goo>() parameter '<gaz>' (type '<tgaz>') must be pointers to the same type
        S.RSC.ReportError(S.FnCombiner->getLocation(),
                          "%0 parameter '%1' (type '%2') and %3 %4() parameter '%5' (type '%6')"
                          " must be pointers to the same type")
            << S.DiagnosticDescription(KeyCombiner, mNameCombiner)
            << FnCombinerParam->getName() << FnCombinerParamTy.getAsString()
            << KeyAccumulator << mNameAccumulator
            << S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
        S.Ok = false;
      } else {
        // Check const-qualification
        checkPointeeConstQualified(S, FN_IDENT_COMBINER, mNameCombiner, FnCombinerParam, ParamIdx==1);
      }
    }

    return;
  }

  // Ensure accumulator properties permit omission of combiner.

  if (!S.FnAccumulatorOk) {
    // Couldn't fully analyze accumulator, so cannot see whether it permits omission of combiner.
    return;
  }

  if (mAccumulatorIns.size() != 1 ||
      S.FnAccumulatorIndexOfFirstSpecialParameter != S.FnAccumulator->getNumParams())
  {
    S.RSC.ReportError(S.FnAccumulator->getLocation(),
                      "%0 must have exactly 1 input"
                      " and no special parameters in order for the %1 to be omitted")
        << S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
        << KeyCombiner;
    S.Ok = false;
    return;
  }

  const clang::ParmVarDecl *const FnAccumulatorParamInput = S.FnAccumulator->getParamDecl(1);
  const clang::QualType FnAccumulatorParamInputTy = FnAccumulatorParamInput->getType().getCanonicalType();
  if (!S.FnAccumulator->getASTContext().hasSameUnqualifiedType(
          S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
          FnAccumulatorParamInputTy.getCanonicalType())) {
    S.RSC.ReportError(S.FnAccumulator->getLocation(),
                      "%0 parameter '%1' (type '%2')"
                      " must be pointer to the type of parameter '%3' (type '%4')"
                      " in order for the %5 to be omitted")
        << S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
        << S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString()
        << FnAccumulatorParamInput->getName() << FnAccumulatorParamInputTy.getAsString()
        << KeyCombiner;
    S.Ok = false;
  }
}
const std::string WebCLConfiguration::getNameOfAddressSpace(clang::QualType type) const
{
    return getNameOfAddressSpace(type.getAddressSpace());
}
// Process "void outconvertname(resultType *result, const compType *accum)"
void RSExportReduce::analyzeOutConverter(StateOfAnalyzeTranslationUnit &S) {
  if (!S.FnOutConverter) // outconverter is always optional
    return;

  // Must return void
  checkVoidReturn(S, FN_IDENT_OUT_CONVERTER, S.FnOutConverter);

  // Must have exactly two parameters
  if (S.FnOutConverter->getNumParams() != 2) {
    S.RSC.ReportError(S.FnOutConverter->getLocation(),
                      "%0 must take exactly 2 parameters (found %1)")
        << S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
        << S.FnOutConverter->getNumParams();
    S.Ok = S.FnOutConverterOk = false;
    return;
  }

  // Parameters must not be special and must be of pointer type;
  // and second parameter must match first accumulator parameter
  for (int ParamIdx = 0; ParamIdx < 2; ++ParamIdx) {
    clang::ParmVarDecl *const FnOutConverterParam = S.FnOutConverter->getParamDecl(ParamIdx);

    if (isSpecialKernelParameter(FnOutConverterParam->getName())) {
      S.RSC.ReportError(S.FnOutConverter->getLocation(),
                        "%0 cannot take special parameter '%1'")
          << S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
          << FnOutConverterParam->getName();
      S.Ok = S.FnOutConverterOk = false;
      continue;
    }

    const clang::QualType FnOutConverterParamTy = FnOutConverterParam->getType().getCanonicalType();

    if (!FnOutConverterParamTy->isPointerType()) {
      S.RSC.ReportError(S.FnOutConverter->getLocation(),
                        "%0 parameter '%1' must be of pointer type not '%2'")
          << S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
          << FnOutConverterParam->getName() << FnOutConverterParamTy.getAsString();
      S.Ok = S.FnOutConverterOk = false;
      continue;
    }

    // Check const-qualification
    checkPointeeConstQualified(S, FN_IDENT_OUT_CONVERTER, mNameOutConverter, FnOutConverterParam, ParamIdx==1);

    if (ParamIdx == 0) {
      S.FnOutConverterParamFirst = FnOutConverterParam;
      S.FnOutConverterParamFirstTy = FnOutConverterParamTy;
      continue;
    }

    if (S.FnAccumulatorParamFirstTy.isNull() || !S.FnAccumulatorParamFirstTy->isPointerType()) {
      // We're already in an error situation.  We could compare
      // against the initializer parameter type instead of the first
      // accumulator parameter type (we'd have to check for the
      // availability of a parameter type there, too), but it does not
      // seem worth the effort.
      slangAssert(!S.Ok);
      continue;
    }

    if (!S.FnOutConverter->getASTContext().hasSameUnqualifiedType(
            S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
            FnOutConverterParamTy->getPointeeType().getCanonicalType())) {
      // <outconverter> parameter '<baz>' (type '<tbaz>')
      //   and accumulator <goo>() parameter '<gaz>' (type '<tgaz>') must be pointers to the same type
      S.RSC.ReportError(S.FnOutConverter->getLocation(),
                        "%0 parameter '%1' (type '%2') and %3 %4() parameter '%5' (type '%6')"
                        " must be pointers to the same type")
          << S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
          << FnOutConverterParam->getName() << FnOutConverterParamTy.getAsString()
          << KeyAccumulator << mNameAccumulator
          << S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
      S.Ok = S.FnOutConverterOk = false;
    }
  }
}
std::string UWrapperGeneratorVB6Declare::ClangTypeToVB6(const clang::QualType& type, bool* success, bool canHaveRef, bool* isRef /*= 0*/)
{
    if (isRef)
        *isRef = false;

    if (type->isFunctionPointerType()) {
        return "Long";
    }
    else if (type->getTypeClass() == clang::Type::Builtin) {
        const clang::BuiltinType* builtInType = type->getAs<clang::BuiltinType>();
        return ClangBuiltinTypeToVB6(builtInType, success);
    }
    else if (type->getTypeClass() == clang::Type::Pointer) {
        const clang::PointerType* pointerType = type->getAs<clang::PointerType>();
        const clang::QualType& pointeeType = pointerType->getPointeeType();
        if (pointeeType->getTypeClass() == clang::Type::Builtin) {
            const clang::BuiltinType* pointeeTypeBuiltin = pointeeType->getAs<clang::BuiltinType>();
            switch (pointeeTypeBuiltin->getKind()) {
            case clang::BuiltinType::SChar:
            case clang::BuiltinType::Char_S:
            case clang::BuiltinType::UChar:
            case clang::BuiltinType::Char_U: return "String"; //char* --> String
            case clang::BuiltinType::Void: return "Long"; // void* --> Long
            default:
                if (m_ptrToLong)
                    return "Long";

                if (canHaveRef) {
                    if (isRef)
                        *isRef = true;
                    return ClangBuiltinTypeToVB6(pointeeTypeBuiltin, success);
                }
            }
        }
        if (m_ptrToLong)
            return "Long";

        std::string conv = ClangTypeToVB6(pointeeType, success, false);
        if (canHaveRef) {
            if (isRef)
                *isRef = true;
            return conv;
        }
        return "Long";
    }
    else if (type->getTypeClass() == clang::Type::Typedef) {
        return ClangTypeToVB6(type->getAs<clang::TypedefType>()->desugar(), success, canHaveRef, isRef);
    }
    else if (type->getTypeClass() == clang::Type::Elaborated) {
        return ClangTypeToVB6(type->getAs<clang::ElaboratedType>()->desugar(), success, canHaveRef, isRef);
    }
    else if (type->getTypeClass() == clang::Type::Paren) {
        return ClangTypeToVB6(type->getAs<clang::ParenType>()->desugar(), success, canHaveRef, isRef);
    }
    else if (type->getTypeClass() == clang::Type::Enum) {
        const clang::EnumType* enumType = type->getAs<clang::EnumType>();
        if (m_collectedEnums.find(enumType->getDecl()) != m_collectedEnums.end()) {
            return clang::QualType(enumType, 0).getAsString();
        }
    }
    else if (type->getTypeClass() == clang::Type::Record) {
        const clang::RecordType* recType = type->getAs<clang::RecordType>();
        if (m_collectedRecords.find(recType->getDecl()) != m_collectedRecords.end())
            return recType->getDecl()->getNameAsString();
    }
    if (success)
        *success = false;

    
    std::cout << type->getTypeClassName() << std::endl;
    type->dump();
    

    return "<Unsupported>";
}
// Process "bool haltername(const compType *accum)"
void RSExportReduce::analyzeHalter(StateOfAnalyzeTranslationUnit &S) {
  if (!S.FnHalter) // halter is always optional
    return;

  // Must return bool
  const clang::QualType ReturnTy = S.FnHalter->getReturnType().getCanonicalType();
  if (!ReturnTy->isBooleanType()) {
    S.RSC.ReportError(S.FnHalter->getLocation(),
                    "%0 must return bool not '%1'")
        << S.DiagnosticDescription(KeyHalter, mNameHalter) << ReturnTy.getAsString();
    S.Ok = false;
  }

  // Must have exactly one parameter
  if (S.FnHalter->getNumParams() != 1) {
    S.RSC.ReportError(S.FnHalter->getLocation(),
                      "%0 must take exactly 1 parameter (found %1)")
        << S.DiagnosticDescription(KeyHalter, mNameHalter)
        << S.FnHalter->getNumParams();
    S.Ok = false;
    return;
  }

  // Parameter must not be a special parameter
  const clang::ParmVarDecl *const FnHalterParam = S.FnHalter->getParamDecl(0);
  if (isSpecialKernelParameter(FnHalterParam->getName())) {
    S.RSC.ReportError(S.FnHalter->getLocation(),
                      "%0 cannot take special parameter '%1'")
        << S.DiagnosticDescription(KeyHalter, mNameHalter)
        << FnHalterParam->getName();
    S.Ok = false;
    return;
  }

  // Parameter must be same type as first accumulator parameter

  if (S.FnAccumulatorParamFirstTy.isNull() || !S.FnAccumulatorParamFirstTy->isPointerType()) {
    // We're already in an error situation.  We could compare against
    // the initializer parameter type or the first combiner parameter
    // type instead of the first accumulator parameter type (we'd have
    // to check for the availability of a parameter type there, too),
    // but it does not seem worth the effort.
    slangAssert(!S.Ok);
    return;
  }

  const clang::QualType FnHalterParamTy = FnHalterParam->getType().getCanonicalType();
  if (!FnHalterParamTy->isPointerType() ||
      !S.FnHalter->getASTContext().hasSameUnqualifiedType(
          S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
          FnHalterParamTy->getPointeeType().getCanonicalType())) {
    // <halter> parameter '<baz>' (type '<tbaz>')
    //   and accumulator <goo>() parameter '<gaz>' (type '<tgaz>') must be pointers to the same type
    S.RSC.ReportError(S.FnHalter->getLocation(),
                      "%0 parameter '%1' (type '%2') and %3 %4() parameter '%5' (type '%6')"
                      " must be pointers to the same type")
        << S.DiagnosticDescription(KeyHalter, mNameHalter)
        << FnHalterParam->getName() << FnHalterParamTy.getAsString()
        << KeyAccumulator << mNameAccumulator
        << S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
    S.Ok = false;
    return;
  }

  // Parameter must point to const-qualified
  checkPointeeConstQualified(S, FN_IDENT_HALTER, mNameHalter, FnHalterParam, true);
}
Esempio n. 30
0
void
CompilerType::SetCompilerType (clang::ASTContext *ast, clang::QualType qual_type)
{
    m_type_system = ClangASTContext::GetASTContext(ast);
    m_type = qual_type.getAsOpaquePtr();
}