static bool writeBMP(const Common::UString &filename, const byte *data, int width, int height) { if ((width <= 0) || (height <= 0) || !data) return false; Common::DumpFile file; if (!file.open(filename)) return false; // The pitch of the output has to be divisible by 4, so // we output zeroes to make the pitch that far. int extraDataSize = width & 3; int imageSize = height * (width + extraDataSize) * 3; // Main bitmap header file.writeByte('B'); file.writeByte('M'); file.writeUint32LE(14 + 40 + imageSize); // Size file.writeUint32LE(0); // reserved file.writeUint32LE(14 + 40); // Image offset after both headers // v3 header file.writeUint32LE(40); file.writeUint32LE(width); file.writeUint32LE(height); file.writeUint16LE(1); file.writeUint16LE(24); file.writeUint32LE(0); file.writeUint32LE(imageSize); file.writeUint32LE(72); file.writeUint32LE(72); file.writeUint32LE(0); file.writeUint32LE(0); if (extraDataSize != 0) { // Dump, making sure the pitch is correct while (height--) { file.write(data, width * 3); // Ensure we're on a 4-byte boundary for (int i = 0; i < extraDataSize; i++) file.writeByte(0); data += width * 3; } } else { // Dump directly (can do all at once here because the data // is already good for BMP output) file.write(data, width * height * 3); } if (!file.flush() || file.err()) return false; file.close(); return true; }
bool Console::cmdRawToWav(int argc, const char **argv) { if (argc != 3) { debugPrintf("Use %s <rawFilePath> <wavFileName> to dump a .RAW file to .WAV\n", argv[0]); return true; } Common::File file; if (!_engine->getSearchManager()->openFile(file, argv[1])) { warning("File not found: %s", argv[1]); return true; } Audio::AudioStream *audioStream = makeRawZorkStream(argv[1], _engine); Common::DumpFile output; output.open(argv[2]); output.writeUint32BE(MKTAG('R', 'I', 'F', 'F')); output.writeUint32LE(file.size() * 2 + 36); output.writeUint32BE(MKTAG('W', 'A', 'V', 'E')); output.writeUint32BE(MKTAG('f', 'm', 't', ' ')); output.writeUint32LE(16); output.writeUint16LE(1); uint16 numChannels; if (audioStream->isStereo()) { numChannels = 2; output.writeUint16LE(2); } else { numChannels = 1; output.writeUint16LE(1); } output.writeUint32LE(audioStream->getRate()); output.writeUint32LE(audioStream->getRate() * numChannels * 2); output.writeUint16LE(numChannels * 2); output.writeUint16LE(16); output.writeUint32BE(MKTAG('d', 'a', 't', 'a')); output.writeUint32LE(file.size() * 2); int16 *buffer = new int16[file.size()]; audioStream->readBuffer(buffer, file.size()); #ifndef SCUMM_LITTLE_ENDIAN for (int i = 0; i < file.size(); ++i) buffer[i] = TO_LE_16(buffer[i]); #endif output.write(buffer, file.size() * 2); delete[] buffer; return true; }
void OpenGLGraphicsManager::saveScreenshot(const Common::String &filename) const { const uint width = _outputScreenWidth; const uint height = _outputScreenHeight; // A line of a BMP image must have a size divisible by 4. // We calculate the padding bytes needed here. // Since we use a 3 byte per pixel mode, we can use width % 4 here, since // it is equal to 4 - (width * 3) % 4. (4 - (width * Bpp) % 4, is the // usual way of computing the padding bytes required). const uint linePaddingSize = width % 4; const uint lineSize = width * 3 + linePaddingSize; // Allocate memory for screenshot uint8 *pixels = new uint8[lineSize * height]; // Get pixel data from OpenGL buffer GLCALL(glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels)); // BMP stores as BGR. Since we can't assume that GL_BGR is supported we // will swap the components from the RGB we read to BGR on our own. for (uint y = height; y-- > 0;) { uint8 *line = pixels + y * lineSize; for (uint x = width; x > 0; --x, line += 3) { SWAP(line[0], line[2]); } } // Open file Common::DumpFile out; out.open(filename); // Write BMP header out.writeByte('B'); out.writeByte('M'); out.writeUint32LE(height * lineSize + 54); out.writeUint32LE(0); out.writeUint32LE(54); out.writeUint32LE(40); out.writeUint32LE(width); out.writeUint32LE(height); out.writeUint16LE(1); out.writeUint16LE(24); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); // Write pixel data to BMP out.write(pixels, lineSize * height); // Free allocated memory delete[] pixels; }
bool Console::cmdDumpImage(int argc, const char **argv) { if (argc != 2) { debugPrintf("Use %s <TGA/TGZ name> to dump a Z-Vision TGA/TGZ image into a regular BMP image\n", argv[0]); return true; } Common::String fileName = argv[1]; if (!fileName.hasSuffix(".tga")) { debugPrintf("%s is not an image file", argv[1]); } Common::File f; if (!_engine->getSearchManager()->openFile(f, argv[1])) { warning("File not found: %s", argv[1]); return true; } Graphics::Surface surface; _engine->getRenderManager()->readImageToSurface(argv[1], surface, false); // Open file Common::DumpFile out; fileName.setChar('b', fileName.size() - 3); fileName.setChar('m', fileName.size() - 2); fileName.setChar('p', fileName.size() - 1); out.open(fileName); // Write BMP header out.writeByte('B'); out.writeByte('M'); out.writeUint32LE(surface.h * surface.pitch + 54); out.writeUint32LE(0); out.writeUint32LE(54); out.writeUint32LE(40); out.writeUint32LE(surface.w); out.writeUint32LE(surface.h); out.writeUint16LE(1); out.writeUint16LE(16); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); // Write pixel data to BMP out.write(surface.getPixels(), surface.pitch * surface.h); out.flush(); out.close(); surface.free(); return true; }
void convertRawToWav(const Common::String &inputFile, ZVision *engine, const Common::String &outputFile) { Common::File file; if (!file.open(inputFile)) return; Audio::AudioStream *audioStream = makeRawZorkStream(inputFile, engine); Common::DumpFile output; output.open(outputFile); output.writeUint32BE(MKTAG('R', 'I', 'F', 'F')); output.writeUint32LE(file.size() * 2 + 36); output.writeUint32BE(MKTAG('W', 'A', 'V', 'E')); output.writeUint32BE(MKTAG('f', 'm', 't', ' ')); output.writeUint32LE(16); output.writeUint16LE(1); uint16 numChannels; if (audioStream->isStereo()) { numChannels = 2; output.writeUint16LE(2); } else { numChannels = 1; output.writeUint16LE(1); } output.writeUint32LE(audioStream->getRate()); output.writeUint32LE(audioStream->getRate() * numChannels * 2); output.writeUint16LE(numChannels * 2); output.writeUint16LE(16); output.writeUint32BE(MKTAG('d', 'a', 't', 'a')); output.writeUint32LE(file.size() * 2); int16 *buffer = new int16[file.size()]; audioStream->readBuffer(buffer, file.size()); output.write(buffer, file.size() * 2); delete[] buffer; }
bool OpenGLGraphicsManager::getGLPixelFormat(const Graphics::PixelFormat &pixelFormat, GLenum &glIntFormat, GLenum &glFormat, GLenum &glType) const { #ifdef SCUMM_LITTLE_ENDIAN if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888 #else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888 #endif glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_BYTE; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 11, 5, 0, 0)) { // RGB565 glIntFormat = GL_RGB; glFormat = GL_RGB; glType = GL_UNSIGNED_SHORT_5_6_5; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 11, 6, 1, 0)) { // RGBA5551 glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_SHORT_5_5_5_1; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 12, 8, 4, 0)) { // RGBA4444 glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_SHORT_4_4_4_4; return true; #ifndef USE_GLES #ifdef SCUMM_LITTLE_ENDIAN } else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888 glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_INT_8_8_8_8; return true; #endif } else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 0, 10, 5, 0, 0)) { // RGB555 // GL_BGRA does not exist in every GLES implementation so should not be configured if // USE_GLES is set. glIntFormat = GL_RGB; glFormat = GL_BGRA; glType = GL_UNSIGNED_SHORT_1_5_5_5_REV; return true; } else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 16, 8, 0, 24)) { // ARGB8888 glIntFormat = GL_RGBA; glFormat = GL_BGRA; glType = GL_UNSIGNED_INT_8_8_8_8_REV; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 8, 4, 0, 12)) { // ARGB4444 glIntFormat = GL_RGBA; glFormat = GL_BGRA; glType = GL_UNSIGNED_SHORT_4_4_4_4_REV; return true; #ifdef SCUMM_BIG_ENDIAN } else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888 glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_INT_8_8_8_8_REV; return true; #endif } else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 8, 16, 24, 0)) { // BGRA8888 glIntFormat = GL_RGBA; glFormat = GL_BGRA; glType = GL_UNSIGNED_INT_8_8_8_8; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 0, 5, 11, 0)) { // BGR565 glIntFormat = GL_RGB; glFormat = GL_BGR; glType = GL_UNSIGNED_SHORT_5_6_5; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 1, 6, 11, 0)) { // BGRA5551 glIntFormat = GL_RGBA; glFormat = GL_BGRA; glType = GL_UNSIGNED_SHORT_5_5_5_1; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 0, 4, 8, 12)) { // ABGR4444 glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_SHORT_4_4_4_4_REV; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 4, 8, 12, 0)) { // BGRA4444 glIntFormat = GL_RGBA; glFormat = GL_BGRA; glType = GL_UNSIGNED_SHORT_4_4_4_4; return true; #endif } else { return false; } } frac_t OpenGLGraphicsManager::getDesiredGameScreenAspect() const { const uint width = _currentState.gameWidth; const uint height = _currentState.gameHeight; if (_currentState.aspectRatioCorrection) { // In case we enable aspect ratio correction we force a 4/3 ratio. // But just for 320x200 and 640x400 games, since other games do not need // this. if ((width == 320 && height == 200) || (width == 640 && height == 400)) { return intToFrac(4) / 3; } } return intToFrac(width) / height; } void OpenGLGraphicsManager::recalculateDisplayArea() { if (!_gameScreen || _outputScreenHeight == 0) { return; } const frac_t outputAspect = intToFrac(_outputScreenWidth) / _outputScreenHeight; const frac_t desiredAspect = getDesiredGameScreenAspect(); _displayWidth = _outputScreenWidth; _displayHeight = _outputScreenHeight; // Adjust one dimension for mantaining the aspect ratio. if (outputAspect < desiredAspect) { _displayHeight = intToFrac(_displayWidth) / desiredAspect; } else if (outputAspect > desiredAspect) { _displayWidth = fracToInt(_displayHeight * desiredAspect); } // We center the screen in the middle for now. _displayX = (_outputScreenWidth - _displayWidth ) / 2; _displayY = (_outputScreenHeight - _displayHeight) / 2; } void OpenGLGraphicsManager::updateCursorPalette() { if (!_cursor || !_cursor->hasPalette()) { return; } if (_cursorPaletteEnabled) { _cursor->setPalette(0, 256, _cursorPalette); } else { _cursor->setPalette(0, 256, _gamePalette); } // We remove all alpha bits from the palette entry of the color key. // This makes sure its properly handled as color key. const Graphics::PixelFormat &hardwareFormat = _cursor->getHardwareFormat(); const uint32 aMask = (0xFF >> hardwareFormat.aLoss) << hardwareFormat.aShift; if (hardwareFormat.bytesPerPixel == 2) { uint16 *palette = (uint16 *)_cursor->getPalette() + _cursorKeyColor; *palette &= ~aMask; } else if (hardwareFormat.bytesPerPixel == 4) { uint32 *palette = (uint32 *)_cursor->getPalette() + _cursorKeyColor; *palette &= ~aMask; } else { warning("OpenGLGraphicsManager::updateCursorPalette: Unsupported pixel depth %d", hardwareFormat.bytesPerPixel); } } void OpenGLGraphicsManager::recalculateCursorScaling() { if (!_cursor || !_gameScreen) { return; } // By default we use the unscaled versions. _cursorHotspotXScaled = _cursorHotspotX; _cursorHotspotYScaled = _cursorHotspotY; _cursorWidthScaled = _cursor->getWidth(); _cursorHeightScaled = _cursor->getHeight(); // In case scaling is actually enabled we will scale the cursor according // to the game screen. if (!_cursorDontScale) { const frac_t screenScaleFactorX = intToFrac(_displayWidth) / _gameScreen->getWidth(); const frac_t screenScaleFactorY = intToFrac(_displayHeight) / _gameScreen->getHeight(); _cursorHotspotXScaled = fracToInt(_cursorHotspotXScaled * screenScaleFactorX); _cursorWidthScaled = fracToInt(_cursorWidthScaled * screenScaleFactorX); _cursorHotspotYScaled = fracToInt(_cursorHotspotYScaled * screenScaleFactorY); _cursorHeightScaled = fracToInt(_cursorHeightScaled * screenScaleFactorY); } } #ifdef USE_OSD const Graphics::Font *OpenGLGraphicsManager::getFontOSD() { return FontMan.getFontByUsage(Graphics::FontManager::kLocalizedFont); } #endif void OpenGLGraphicsManager::saveScreenshot(const Common::String &filename) const { const uint width = _outputScreenWidth; const uint height = _outputScreenHeight; // A line of a BMP image must have a size divisible by 4. // We calculate the padding bytes needed here. // Since we use a 3 byte per pixel mode, we can use width % 4 here, since // it is equal to 4 - (width * 3) % 4. (4 - (width * Bpp) % 4, is the // usual way of computing the padding bytes required). const uint linePaddingSize = width % 4; const uint lineSize = width * 3 + linePaddingSize; // Allocate memory for screenshot uint8 *pixels = new uint8[lineSize * height]; // Get pixel data from OpenGL buffer GLCALL(glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels)); // BMP stores as BGR. Since we can't assume that GL_BGR is supported we // will swap the components from the RGB we read to BGR on our own. for (uint y = height; y-- > 0;) { uint8 *line = pixels + y * lineSize; for (uint x = width; x > 0; --x, line += 3) { SWAP(line[0], line[2]); } } // Open file Common::DumpFile out; out.open(filename); // Write BMP header out.writeByte('B'); out.writeByte('M'); out.writeUint32LE(height * lineSize + 54); out.writeUint32LE(0); out.writeUint32LE(54); out.writeUint32LE(40); out.writeUint32LE(width); out.writeUint32LE(height); out.writeUint16LE(1); out.writeUint16LE(24); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); // Write pixel data to BMP out.write(pixels, lineSize * height); // Free allocated memory delete[] pixels; } } // End of namespace OpenGL
bool OpenGLGraphicsManager::getGLPixelFormat(const Graphics::PixelFormat &pixelFormat, GLenum &glIntFormat, GLenum &glFormat, GLenum &glType) const { #ifdef SCUMM_LITTLE_ENDIAN if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888 #else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888 #endif glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_BYTE; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 11, 5, 0, 0)) { // RGB565 glIntFormat = GL_RGB; glFormat = GL_RGB; glType = GL_UNSIGNED_SHORT_5_6_5; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 11, 6, 1, 0)) { // RGBA5551 glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_SHORT_5_5_5_1; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 12, 8, 4, 0)) { // RGBA4444 glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_SHORT_4_4_4_4; return true; #if !USE_FORCED_GLES && !USE_FORCED_GLES2 // The formats below are not supported by every GLES implementation. // Thus, we do not mark them as supported when a GLES context is setup. } else if (isGLESContext()) { return false; #ifdef SCUMM_LITTLE_ENDIAN } else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888 glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_INT_8_8_8_8; return true; #endif } else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 0, 10, 5, 0, 0)) { // RGB555 glIntFormat = GL_RGB; glFormat = GL_BGRA; glType = GL_UNSIGNED_SHORT_1_5_5_5_REV; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 8, 4, 0, 12)) { // ARGB4444 glIntFormat = GL_RGBA; glFormat = GL_BGRA; glType = GL_UNSIGNED_SHORT_4_4_4_4_REV; return true; #ifdef SCUMM_BIG_ENDIAN } else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888 glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_INT_8_8_8_8_REV; return true; #endif } else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 8, 16, 24, 0)) { // BGRA8888 glIntFormat = GL_RGBA; glFormat = GL_BGRA; glType = GL_UNSIGNED_INT_8_8_8_8; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 0, 5, 11, 0)) { // BGR565 glIntFormat = GL_RGB; glFormat = GL_RGB; glType = GL_UNSIGNED_SHORT_5_6_5_REV; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 1, 6, 11, 0)) { // BGRA5551 glIntFormat = GL_RGBA; glFormat = GL_BGRA; glType = GL_UNSIGNED_SHORT_5_5_5_1; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 0, 4, 8, 12)) { // ABGR4444 glIntFormat = GL_RGBA; glFormat = GL_RGBA; glType = GL_UNSIGNED_SHORT_4_4_4_4_REV; return true; } else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 4, 8, 12, 0)) { // BGRA4444 glIntFormat = GL_RGBA; glFormat = GL_BGRA; glType = GL_UNSIGNED_SHORT_4_4_4_4; return true; #endif // !USE_FORCED_GLES && !USE_FORCED_GLES2 } else { return false; } } frac_t OpenGLGraphicsManager::getDesiredGameScreenAspect() const { const uint width = _currentState.gameWidth; const uint height = _currentState.gameHeight; if (_currentState.aspectRatioCorrection) { // In case we enable aspect ratio correction we force a 4/3 ratio. // But just for 320x200 and 640x400 games, since other games do not need // this. if ((width == 320 && height == 200) || (width == 640 && height == 400)) { return intToFrac(4) / 3; } } return intToFrac(width) / height; } void OpenGLGraphicsManager::recalculateDisplayArea() { if (!_gameScreen || _outputScreenHeight == 0) { return; } const frac_t outputAspect = intToFrac(_outputScreenWidth) / _outputScreenHeight; const frac_t desiredAspect = getDesiredGameScreenAspect(); _displayWidth = _outputScreenWidth; _displayHeight = _outputScreenHeight; // Adjust one dimension for mantaining the aspect ratio. if (outputAspect < desiredAspect) { _displayHeight = intToFrac(_displayWidth) / desiredAspect; } else if (outputAspect > desiredAspect) { _displayWidth = fracToInt(_displayHeight * desiredAspect); } // We center the screen in the middle for now. _displayX = (_outputScreenWidth - _displayWidth ) / 2; _displayY = (_outputScreenHeight - _displayHeight) / 2; // Setup drawing limitation for game graphics. // This invovles some trickery because OpenGL's viewport coordinate system // is upside down compared to ours. _backBuffer.setScissorBox(_displayX, _outputScreenHeight - _displayHeight - _displayY, _displayWidth, _displayHeight); // Clear the whole screen for the first three frames to remove leftovers. _scissorOverride = 3; // Update the cursor position to adjust for new display area. setMousePosition(_cursorX, _cursorY); // Force a redraw to assure screen is properly redrawn. _forceRedraw = true; } void OpenGLGraphicsManager::updateCursorPalette() { if (!_cursor || !_cursor->hasPalette()) { return; } if (_cursorPaletteEnabled) { _cursor->setPalette(0, 256, _cursorPalette); } else { _cursor->setPalette(0, 256, _gamePalette); } _cursor->setColorKey(_cursorKeyColor); } void OpenGLGraphicsManager::recalculateCursorScaling() { if (!_cursor || !_gameScreen) { return; } // By default we use the unscaled versions. _cursorHotspotXScaled = _cursorHotspotX; _cursorHotspotYScaled = _cursorHotspotY; _cursorWidthScaled = _cursor->getWidth(); _cursorHeightScaled = _cursor->getHeight(); // In case scaling is actually enabled we will scale the cursor according // to the game screen. if (!_cursorDontScale) { const frac_t screenScaleFactorX = intToFrac(_displayWidth) / _gameScreen->getWidth(); const frac_t screenScaleFactorY = intToFrac(_displayHeight) / _gameScreen->getHeight(); _cursorHotspotXScaled = fracToInt(_cursorHotspotXScaled * screenScaleFactorX); _cursorWidthScaled = fracToInt(_cursorWidthScaled * screenScaleFactorX); _cursorHotspotYScaled = fracToInt(_cursorHotspotYScaled * screenScaleFactorY); _cursorHeightScaled = fracToInt(_cursorHeightScaled * screenScaleFactorY); } } #ifdef USE_OSD const Graphics::Font *OpenGLGraphicsManager::getFontOSD() { return FontMan.getFontByUsage(Graphics::FontManager::kLocalizedFont); } #endif void OpenGLGraphicsManager::saveScreenshot(const Common::String &filename) const { const uint width = _outputScreenWidth; const uint height = _outputScreenHeight; // A line of a BMP image must have a size divisible by 4. // We calculate the padding bytes needed here. // Since we use a 3 byte per pixel mode, we can use width % 4 here, since // it is equal to 4 - (width * 3) % 4. (4 - (width * Bpp) % 4, is the // usual way of computing the padding bytes required). const uint linePaddingSize = width % 4; const uint lineSize = width * 3 + linePaddingSize; // Allocate memory for screenshot uint8 *pixels = new uint8[lineSize * height]; // Get pixel data from OpenGL buffer GL_CALL(glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels)); // BMP stores as BGR. Since we can't assume that GL_BGR is supported we // will swap the components from the RGB we read to BGR on our own. for (uint y = height; y-- > 0;) { uint8 *line = pixels + y * lineSize; for (uint x = width; x > 0; --x, line += 3) { SWAP(line[0], line[2]); } } // Open file Common::DumpFile out; out.open(filename); // Write BMP header out.writeByte('B'); out.writeByte('M'); out.writeUint32LE(height * lineSize + 54); out.writeUint32LE(0); out.writeUint32LE(54); out.writeUint32LE(40); out.writeUint32LE(width); out.writeUint32LE(height); out.writeUint16LE(1); out.writeUint16LE(24); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); out.writeUint32LE(0); // Write pixel data to BMP out.write(pixels, lineSize * height); // Free allocated memory delete[] pixels; } } // End of namespace OpenGL