Esempio n. 1
0
  ExitCodes common_main_(FeatureGroupingAlgorithm * algorithm,
                         bool labeled = false)
  {
    //-------------------------------------------------------------
    // parameter handling
    //-------------------------------------------------------------
    StringList ins;
    if (labeled) ins.push_back(getStringOption_("in"));
    else ins = getStringList_("in");
    String out = getStringOption_("out");

    //-------------------------------------------------------------
    // check for valid input
    //-------------------------------------------------------------
    // check if all input files have the correct type
    FileTypes::Type file_type = FileHandler::getType(ins[0]);
    for (Size i = 0; i < ins.size(); ++i)
    {
      if (FileHandler::getType(ins[i]) != file_type)
      {
        writeLog_("Error: All input files must be of the same type!");
        return ILLEGAL_PARAMETERS;
      }
    }

    //-------------------------------------------------------------
    // set up algorithm
    //-------------------------------------------------------------
    Param algorithm_param = getParam_().copy("algorithm:", true);
    writeDebug_("Used algorithm parameters", algorithm_param, 3);
    algorithm->setParameters(algorithm_param);

    //-------------------------------------------------------------
    // perform grouping
    //-------------------------------------------------------------
    // load input
    ConsensusMap out_map;
    StringList ms_run_locations;
    if (file_type == FileTypes::FEATUREXML)
    {
      vector<ConsensusMap > maps(ins.size());
      FeatureXMLFile f;
      FeatureFileOptions param = f.getOptions();
      // to save memory don't load convex hulls and subordinates
      param.setLoadSubordinates(false);
      param.setLoadConvexHull(false);
      f.setOptions(param);

      Size progress = 0;
      setLogType(ProgressLogger::CMD);
      startProgress(0, ins.size(), "reading input");
      for (Size i = 0; i < ins.size(); ++i)
      {
        FeatureMap tmp;
        f.load(ins[i], tmp);
        out_map.getFileDescriptions()[i].filename = ins[i];
        out_map.getFileDescriptions()[i].size = tmp.size();
        out_map.getFileDescriptions()[i].unique_id = tmp.getUniqueId();

        // copy over information on the primary MS run
        const StringList& ms_runs = tmp.getPrimaryMSRunPath();
        ms_run_locations.insert(ms_run_locations.end(), ms_runs.begin(), ms_runs.end());

        // to save memory, remove convex hulls, subordinates:
        for (FeatureMap::Iterator it = tmp.begin(); it != tmp.end();
             ++it)
        {
          it->getSubordinates().clear();
          it->getConvexHulls().clear();
          it->clearMetaInfo();
        }

        MapConversion::convert(i, tmp, maps[i]);

        maps[i].updateRanges();

        setProgress(progress++);
      }
      endProgress();

      // exception for "labeled" algorithms: copy file descriptions
      if (labeled)
      {
        out_map.getFileDescriptions()[1] = out_map.getFileDescriptions()[0];
        out_map.getFileDescriptions()[0].label = "light";
        out_map.getFileDescriptions()[1].label = "heavy";
      }

      // group
      algorithm->group(maps, out_map);
    }
    else
    {
      vector<ConsensusMap> maps(ins.size());
      ConsensusXMLFile f;
      for (Size i = 0; i < ins.size(); ++i)
      {
        f.load(ins[i], maps[i]);
        maps[i].updateRanges();
        // copy over information on the primary MS run
        const StringList& ms_runs = maps[i].getPrimaryMSRunPath();
        ms_run_locations.insert(ms_run_locations.end(), ms_runs.begin(), ms_runs.end());
      }
      // group
      algorithm->group(maps, out_map);

      // set file descriptions:
      bool keep_subelements = getFlag_("keep_subelements");
      if (!keep_subelements)
      {
        for (Size i = 0; i < ins.size(); ++i)
        {
          out_map.getFileDescriptions()[i].filename = ins[i];
          out_map.getFileDescriptions()[i].size = maps[i].size();
          out_map.getFileDescriptions()[i].unique_id = maps[i].getUniqueId();
        }
      }
      else
      {
        // components of the output map are not the input maps themselves, but
        // the components of the input maps:
        algorithm->transferSubelements(maps, out_map);
      }
    }

    // assign unique ids
    out_map.applyMemberFunction(&UniqueIdInterface::setUniqueId);

    // annotate output with data processing info
    addDataProcessing_(out_map,
                       getProcessingInfo_(DataProcessing::FEATURE_GROUPING));

    // set primary MS runs
    out_map.setPrimaryMSRunPath(ms_run_locations);

    // write output
    ConsensusXMLFile().store(out, out_map);

    // some statistics
    map<Size, UInt> num_consfeat_of_size;
    for (ConsensusMap::const_iterator cmit = out_map.begin();
         cmit != out_map.end(); ++cmit)
    {
      ++num_consfeat_of_size[cmit->size()];
    }

    LOG_INFO << "Number of consensus features:" << endl;
    for (map<Size, UInt>::reverse_iterator i = num_consfeat_of_size.rbegin();
         i != num_consfeat_of_size.rend(); ++i)
    {
      LOG_INFO << "  of size " << setw(2) << i->first << ": " << setw(6) 
               << i->second << endl;
    }
    LOG_INFO << "  total:      " << setw(6) << out_map.size() << endl;

    return EXECUTION_OK;
  }
Esempio n. 2
0
  void LabeledPairFinder::run(const vector<ConsensusMap>& input_maps, ConsensusMap& result_map)
  {
    if (input_maps.size() != 1)
      throw Exception::IllegalArgument(__FILE__, __LINE__, __PRETTY_FUNCTION__, "exactly one input map required");
    if (result_map.getFileDescriptions().size() != 2)
      throw Exception::IllegalArgument(__FILE__, __LINE__, __PRETTY_FUNCTION__, "two file descriptions required");
    if (result_map.getFileDescriptions().begin()->second.filename != result_map.getFileDescriptions().rbegin()->second.filename)
      throw Exception::IllegalArgument(__FILE__, __LINE__, __PRETTY_FUNCTION__, "the two file descriptions have to contain the same file name");
    checkIds_(input_maps);

    //look up the light and heavy index
    Size light_index = numeric_limits<Size>::max();
    Size heavy_index = numeric_limits<Size>::max();
    for (ConsensusMap::FileDescriptions::const_iterator it = result_map.getFileDescriptions().begin();
         it != result_map.getFileDescriptions().end();
         ++it)
    {
      if (it->second.label == "heavy")
      {
        heavy_index = it->first;
      }
      else if (it->second.label == "light")
      {
        light_index = it->first;
      }
    }
    if (light_index == numeric_limits<Size>::max() || heavy_index == numeric_limits<Size>::max())
    {
      throw Exception::IllegalArgument(__FILE__, __LINE__, __PRETTY_FUNCTION__, "the input maps have to be labeled 'light' and 'heavy'");
    }

    result_map.clear(false);

    // sort consensus features by RT (and MZ) to speed up searching afterwards
    typedef ConstRefVector<ConsensusMap> RefMap;
    RefMap model_ref(input_maps[0].begin(), input_maps[0].end());
    model_ref.sortByPosition();

    //calculate matches
    ConsensusMap matches;
    //settings
    double rt_pair_dist = param_.getValue("rt_pair_dist");
    double rt_dev_low = param_.getValue("rt_dev_low");
    double rt_dev_high = param_.getValue("rt_dev_high");
    double mz_dev = param_.getValue("mz_dev");
    DoubleList mz_pair_dists = param_.getValue("mz_pair_dists");
    bool mrm = param_.getValue("mrm").toBool();

    //estimate RT parameters
    if (param_.getValue("rt_estimate") == "true")
    {
      //find all possible RT distances of features with the same charge and a good m/z distance
      vector<double> dists;
      dists.reserve(model_ref.size());
      for (RefMap::const_iterator it = model_ref.begin(); it != model_ref.end(); ++it)
      {
        for (RefMap::const_iterator it2 = model_ref.begin(); it2 != model_ref.end(); ++it2)
        {
          for (DoubleList::const_iterator dist_it = mz_pair_dists.begin(); dist_it != mz_pair_dists.end(); ++dist_it)
          {
            double mz_pair_dist = *dist_it;
            if (it2->getCharge() == it->getCharge()
               && it2->getMZ() >= it->getMZ() + mz_pair_dist / it->getCharge() - mz_dev
               && it2->getMZ() <= it->getMZ() + mz_pair_dist / it->getCharge() + mz_dev)
            {
              dists.push_back(it2->getRT() - it->getRT());
            }
          }
        }
      }
      if (dists.empty())
      {
        cout << "Warning: Could not find pairs for RT distance estimation. The manual settings are used!" << endl;
      }
      else
      {
        if (dists.size() < 50)
        {
          cout << "Warning: Found only " << dists.size() << " pairs. The estimated shift and std deviation are probably not reliable!" << endl;
        }
        //--------------------------- estimate initial parameters of fit ---------------------------
        GaussFitter::GaussFitResult result(-1, -1, -1);
        //first estimate of the optimal shift: median of the distances
        sort(dists.begin(), dists.end());
        Size median_index = dists.size() / 2;
        result.x0 = dists[median_index];
        //create histogram of distances
        //consider only the maximum of pairs, centered around the optimal shift
        Size max_pairs = model_ref.size() / 2;
        Size start_index = (Size) max((SignedSize)0, (SignedSize)(median_index - max_pairs / 2));
        Size end_index = (Size) min((SignedSize)(dists.size() - 1), (SignedSize)(median_index + max_pairs / 2));
        double start_value = dists[start_index];
        double end_value = dists[end_index];
        double bin_step = fabs(end_value - start_value) / 99.999; //ensure that we have 100 bins
        Math::Histogram<> hist(start_value, end_value, bin_step);
        //std::cout << "HIST from " << start_value << " to " << end_value << " (bin size " << bin_step << ")" << endl;
        for (Size i = start_index; i <= end_index; ++i)
        {
          hist.inc(dists[i]);
        }
        //cout << hist << endl;
        dists.clear();
        //determine median of bins (uniform background distribution)
        vector<Size> bins(hist.begin(), hist.end());
        sort(bins.begin(), bins.end());
        Size bin_median = bins[bins.size() / 2];
        bins.clear();
        //estimate scale A: maximum of the histogram
        Size max_value = hist.maxValue();
        result.A = max_value - bin_median;
        //overwrite estimate of x0 with the position of the highest bin
        for (Size i = 0; i < hist.size(); ++i)
        {
          if (hist[i] == max_value)
          {
            result.x0 = hist.centerOfBin(i);
            break;
          }
        }
        //estimate sigma: first time the count is less or equal the median count in the histogram
        double pos = result.x0;
        while (pos > start_value && hist.binValue(pos) > bin_median)
        {
          pos -= bin_step;
        }
        double sigma_low =  result.x0 - pos;
        pos = result.x0;
        while (pos<end_value&& hist.binValue(pos)> bin_median)
        {
          pos += bin_step;
        }
        double sigma_high = pos - result.x0;
        result.sigma = (sigma_high + sigma_low) / 6.0;
        //cout << "estimated optimal RT distance (before fit): " << result.x0 << endl;
        //cout << "estimated allowed deviation (before fit): " << result.sigma*3.0 << endl;
        //--------------------------- do gauss fit ---------------------------
        vector<DPosition<2> > points(hist.size());
        for (Size i = 0; i < hist.size(); ++i)
        {
          points[i][0] = hist.centerOfBin(i);
          points[i][1] = max(0u, hist[i]);
        }
        GaussFitter fitter;
        fitter.setInitialParameters(result);
        result = fitter.fit(points);
        cout << "estimated optimal RT distance: " << result.x0 << endl;
        cout << "estimated allowed deviation: " << fabs(result.sigma) * 3.0 << endl;
        rt_pair_dist = result.x0;
        rt_dev_low = fabs(result.sigma) * 3.0;
        rt_dev_high = fabs(result.sigma) * 3.0;
      }
    }


    // check each feature
    for (RefMap::const_iterator it = model_ref.begin(); it != model_ref.end(); ++it)
    {
      for (DoubleList::const_iterator dist_it = mz_pair_dists.begin(); dist_it != mz_pair_dists.end(); ++dist_it)
      {
        double mz_pair_dist = *dist_it;
        RefMap::const_iterator it2 = lower_bound(model_ref.begin(), model_ref.end(), it->getRT() + rt_pair_dist - rt_dev_low, ConsensusFeature::RTLess());
        while (it2 != model_ref.end() && it2->getRT() <= it->getRT() + rt_pair_dist + rt_dev_high)
        {
          // if in mrm mode, we need to compare precursor mass difference and fragment mass difference, charge remains the same

          double prec_mz_diff(0);
          if (mrm)
          {
            prec_mz_diff = fabs((double)it2->getMetaValue("MZ") - (double)it->getMetaValue("MZ"));
            if (it->getCharge() != 0)
            {
              prec_mz_diff = fabs(prec_mz_diff - mz_pair_dist / it->getCharge());
            }
            else
            {
              prec_mz_diff = fabs(prec_mz_diff - mz_pair_dist);
            }
          }

          bool mrm_correct_dist(false);
          double frag_mz_diff = fabs(it->getMZ() - it2->getMZ());

          //cerr << it->getRT() << " charge1=" << it->getCharge() << ", charge2=" << it2->getCharge() << ", prec_diff=" << prec_mz_diff << ", frag_diff=" << frag_mz_diff << endl;

          if (mrm &&
              it2->getCharge() == it->getCharge() &&
              prec_mz_diff < mz_dev &&
              (frag_mz_diff < mz_dev || fabs(frag_mz_diff - mz_pair_dist) < mz_dev))
          {
            mrm_correct_dist = true;
            //cerr << "mrm_correct_dist" << endl;
          }

          if ((mrm && mrm_correct_dist) || (!mrm &&
                                            it2->getCharge() == it->getCharge() &&
                                            it2->getMZ() >= it->getMZ() + mz_pair_dist / it->getCharge() - mz_dev &&
                                            it2->getMZ() <= it->getMZ() + mz_pair_dist / it->getCharge() + mz_dev
                                            ))
          {
            //cerr << "dist correct" << endl;
            double score = sqrt(
              PValue_(it2->getMZ() - it->getMZ(), mz_pair_dist / it->getCharge(), mz_dev, mz_dev) *
              PValue_(it2->getRT() - it->getRT(), rt_pair_dist, rt_dev_low, rt_dev_high)
              );

            // Note: we used to copy the id from the light feature here, but that strategy does not generalize to more than two labels.
            // We might want to report consensus features where the light one is missing but more than one heavier variant was found.
            // Also, the old strategy is inconsistent with what was done in the unlabeled case.  Thus now we assign a new unique id here.
            matches.push_back(ConsensusFeature());
            matches.back().setUniqueId();

            matches.back().insert(light_index, *it);
            matches.back().clearMetaInfo();
            matches.back().insert(heavy_index, *it2);
            matches.back().setQuality(score);
            matches.back().setCharge(it->getCharge());
            matches.back().computeMonoisotopicConsensus();
          }
          ++it2;
        }
      }
    }

    //compute best pairs
    // - sort matches by quality
    // - take highest-quality matches first (greedy) and mark them as used
    set<Size> used_features;
    matches.sortByQuality(true);
    for (ConsensusMap::const_iterator match = matches.begin(); match != matches.end(); ++match)
    {
      //check if features are not used yet
      if (used_features.find(match->begin()->getUniqueId()) == used_features.end() &&
          used_features.find(match->rbegin()->getUniqueId()) == used_features.end()
          )
      {
        //if unused, add it to the final set of elements
        result_map.push_back(*match);
        used_features.insert(match->begin()->getUniqueId());
        used_features.insert(match->rbegin()->getUniqueId());
      }
    }

    //Add protein identifications to result map
    for (Size i = 0; i < input_maps.size(); ++i)
    {
      result_map.getProteinIdentifications().insert(result_map.getProteinIdentifications().end(), input_maps[i].getProteinIdentifications().begin(), input_maps[i].getProteinIdentifications().end());
    }

    //Add unassigned peptide identifications to result map
    for (Size i = 0; i < input_maps.size(); ++i)
    {
      result_map.getUnassignedPeptideIdentifications().insert(result_map.getUnassignedPeptideIdentifications().end(), input_maps[i].getUnassignedPeptideIdentifications().begin(), input_maps[i].getUnassignedPeptideIdentifications().end());
    }

    // Very useful for checking the results, and the ids have no real meaning anyway
    result_map.sortByMZ();
  }
  ExitCodes main_(int, const char **)
  {
    FeatureGroupingAlgorithmUnlabeled * algorithm = new FeatureGroupingAlgorithmUnlabeled();

    //-------------------------------------------------------------
    // parameter handling
    //-------------------------------------------------------------
    StringList ins;
    ins = getStringList_("in");
    String out = getStringOption_("out");

    //-------------------------------------------------------------
    // check for valid input
    //-------------------------------------------------------------
    // check if all input files have the correct type
    FileTypes::Type file_type = FileHandler::getType(ins[0]);
    for (Size i = 0; i < ins.size(); ++i)
    {
      if (FileHandler::getType(ins[i]) != file_type)
      {
        writeLog_("Error: All input files must be of the same type!");
        return ILLEGAL_PARAMETERS;
      }
    }

    //-------------------------------------------------------------
    // set up algorithm
    //-------------------------------------------------------------
    Param algorithm_param = getParam_().copy("algorithm:", true);
    writeDebug_("Used algorithm parameters", algorithm_param, 3);
    algorithm->setParameters(algorithm_param);

    Size reference_index(0);
    //-------------------------------------------------------------
    // perform grouping
    //-------------------------------------------------------------
    // load input
    ConsensusMap out_map;
    StringList ms_run_locations;
    if (file_type == FileTypes::FEATUREXML)
    {
      // use map with highest number of features as reference:
      Size max_count(0);
      FeatureXMLFile f;
      for (Size i = 0; i < ins.size(); ++i)
      {
        Size s = f.loadSize(ins[i]);
        if (s > max_count)
        {
          max_count = s;
          reference_index = i;
        }
      }

      // Load reference map and input it to the algorithm
      UInt64 ref_id;
      Size ref_size;
      std::vector<PeptideIdentification> ref_pepids;
      std::vector<ProteinIdentification> ref_protids;
      {
        FeatureMap map_ref;
        FeatureXMLFile f_fxml_tmp;
        f_fxml_tmp.getOptions().setLoadConvexHull(false);
        f_fxml_tmp.getOptions().setLoadSubordinates(false);
        f_fxml_tmp.load(ins[reference_index], map_ref);
        algorithm->setReference(reference_index, map_ref);
        ref_id = map_ref.getUniqueId();
        ref_size = map_ref.size();
        ref_pepids = map_ref.getUnassignedPeptideIdentifications();
        ref_protids = map_ref.getProteinIdentifications();
      }

      ConsensusMap dummy;
      // go through all input files and add them to the result one by one
      for (Size i = 0; i < ins.size(); ++i)
      {

        FeatureXMLFile f_fxml_tmp;
        FeatureMap tmp_map;
        f_fxml_tmp.getOptions().setLoadConvexHull(false);
        f_fxml_tmp.getOptions().setLoadSubordinates(false);
        f_fxml_tmp.load(ins[i], tmp_map);

        // copy over information on the primary MS run
        StringList ms_runs;
        tmp_map.getPrimaryMSRunPath(ms_runs);
        ms_run_locations.insert(ms_run_locations.end(), ms_runs.begin(), ms_runs.end());

        if (i != reference_index)
        {
          algorithm->addToGroup(i, tmp_map);

          // store some meta-data about the maps in the "dummy" object -> try to
          // keep the same order as they were given in the input independent of
          // which map is the reference.

          dummy.getFileDescriptions()[i].filename = ins[i];
          dummy.getFileDescriptions()[i].size = tmp_map.size();
          dummy.getFileDescriptions()[i].unique_id = tmp_map.getUniqueId();

          // add protein identifications to result map
          dummy.getProteinIdentifications().insert(
            dummy.getProteinIdentifications().end(),
            tmp_map.getProteinIdentifications().begin(),
            tmp_map.getProteinIdentifications().end());

          // add unassigned peptide identifications to result map
          dummy.getUnassignedPeptideIdentifications().insert(
            dummy.getUnassignedPeptideIdentifications().end(),
            tmp_map.getUnassignedPeptideIdentifications().begin(),
            tmp_map.getUnassignedPeptideIdentifications().end());
        }
        else
        {
          // copy the meta-data from the refernce map
          dummy.getFileDescriptions()[i].filename = ins[i];
          dummy.getFileDescriptions()[i].size = ref_size;
          dummy.getFileDescriptions()[i].unique_id = ref_id;

          // add protein identifications to result map
          dummy.getProteinIdentifications().insert(
            dummy.getProteinIdentifications().end(),
            ref_protids.begin(),
            ref_protids.end());

          // add unassigned peptide identifications to result map
          dummy.getUnassignedPeptideIdentifications().insert(
            dummy.getUnassignedPeptideIdentifications().end(),
            ref_pepids.begin(),
            ref_pepids.end());
        }
      }

      // get the resulting map
      out_map = algorithm->getResultMap();

      //
      // Copy back meta-data (Protein / Peptide ids / File descriptions)
      //

      // add protein identifications to result map
      out_map.getProteinIdentifications().insert(
        out_map.getProteinIdentifications().end(),
        dummy.getProteinIdentifications().begin(),
        dummy.getProteinIdentifications().end());

      // add unassigned peptide identifications to result map
      out_map.getUnassignedPeptideIdentifications().insert(
        out_map.getUnassignedPeptideIdentifications().end(),
        dummy.getUnassignedPeptideIdentifications().begin(),
        dummy.getUnassignedPeptideIdentifications().end());

      out_map.setFileDescriptions(dummy.getFileDescriptions());

      // canonical ordering for checking the results, and the ids have no real meaning anyway
      // the way this was done in DelaunayPairFinder and StablePairFinder
      // -> the same ordering as FeatureGroupingAlgorithmUnlabeled::group applies!
      out_map.sortByMZ();
      out_map.updateRanges();
    }
    else
    {
      vector<ConsensusMap> maps(ins.size());
      ConsensusXMLFile f;
      for (Size i = 0; i < ins.size(); ++i)
      {
        f.load(ins[i], maps[i]);
        StringList ms_runs;
        maps[i].getPrimaryMSRunPath(ms_runs);
        ms_run_locations.insert(ms_run_locations.end(), ms_runs.begin(), ms_runs.end());
      }
      // group
      algorithm->FeatureGroupingAlgorithm::group(maps, out_map);

      // set file descriptions:
      bool keep_subelements = getFlag_("keep_subelements");
      if (!keep_subelements)
      {
        for (Size i = 0; i < ins.size(); ++i)
        {
          out_map.getFileDescriptions()[i].filename = ins[i];
          out_map.getFileDescriptions()[i].size = maps[i].size();
          out_map.getFileDescriptions()[i].unique_id = maps[i].getUniqueId();
        }
      }
      else
      {
        // components of the output map are not the input maps themselves, but
        // the components of the input maps:
        algorithm->transferSubelements(maps, out_map);
      }
    }

    // assign unique ids
    out_map.applyMemberFunction(&UniqueIdInterface::setUniqueId);

    // annotate output with data processing info
    addDataProcessing_(out_map, getProcessingInfo_(DataProcessing::FEATURE_GROUPING));

    out_map.setPrimaryMSRunPath(ms_run_locations);
    // write output
    ConsensusXMLFile().store(out, out_map);

    // some statistics
    map<Size, UInt> num_consfeat_of_size;
    for (ConsensusMap::const_iterator cmit = out_map.begin(); cmit != out_map.end(); ++cmit)
    {
      ++num_consfeat_of_size[cmit->size()];
    }

    LOG_INFO << "Number of consensus features:" << endl;
    for (map<Size, UInt>::reverse_iterator i = num_consfeat_of_size.rbegin(); i != num_consfeat_of_size.rend(); ++i)
    {
      LOG_INFO << "  of size " << setw(2) << i->first << ": " << setw(6) << i->second << endl;
    }
    LOG_INFO << "  total:      " << setw(6) << out_map.size() << endl;

    delete algorithm;

    return EXECUTION_OK;
  }
  ExitCodes outputTo(ostream& os)
  {
    //-------------------------------------------------------------
    // Parameter handling
    //-------------------------------------------------------------

    // File names
    String in = getStringOption_("in");

    // File type
    FileHandler fh;
    FileTypes::Type in_type = FileTypes::nameToType(getStringOption_("in_type"));

    if (in_type == FileTypes::UNKNOWN)
    {
      in_type = fh.getType(in);
      writeDebug_(String("Input file type: ") + FileTypes::typeToName(in_type), 2);
    }

    if (in_type == FileTypes::UNKNOWN)
    {
      writeLog_("Error: Could not determine input file type!");
      return PARSE_ERROR;
    }

    MSExperiment<Peak1D> exp;
    FeatureMap feat;
    ConsensusMap cons;

    if (in_type == FileTypes::FEATUREXML) //features
    {
      FeatureXMLFile().load(in, feat);
      feat.updateRanges();
    }
    else if (in_type == FileTypes::CONSENSUSXML)     //consensus features
    {
      ConsensusXMLFile().load(in, cons);
      cons.updateRanges();
    }

    //-------------------------------------------------------------
    // meta information
    //-------------------------------------------------------------
    if (getFlag_("m"))
    {
      os << endl
         << "-- General information --" << endl
         << endl
         << "file name: " << in << endl
         << "file type: " <<  FileTypes::typeToName(in_type) << endl;

      //basic info
      os << endl
         << "-- Meta information --" << endl
         << endl;

      if (in_type == FileTypes::FEATUREXML) //features
      {
        os << "Document id       : " << feat.getIdentifier() << endl << endl;
      }
      else if (in_type == FileTypes::CONSENSUSXML)       //consensus features
      {
        os << "Document id       : " << cons.getIdentifier() << endl << endl;
      }
    }

    //-------------------------------------------------------------
    // data processing
    //-------------------------------------------------------------
    if (getFlag_("p"))
    {
      //basic info
      os << endl
         << "-- Data processing information --" << endl
         << endl;

      //get data processing info
      vector<DataProcessing> dp;
      if (in_type == FileTypes::FEATUREXML) //features
      {
        dp = feat.getDataProcessing();
      }
      else if (in_type == FileTypes::CONSENSUSXML)       //consensus features
      {
        dp = cons.getDataProcessing();
      }
      int i = 0;
      for (vector<DataProcessing>::iterator it = dp.begin(); it != dp.end(); ++it)
      {
        os << "Data processing " << i << endl;
        os << "\tcompletion_time:   " << (*it).getCompletionTime().getDate() << 'T' << (*it).getCompletionTime().getTime() << endl;
        os << "\tsoftware name:     " << (*it).getSoftware().getName() << " version " << (*it).getSoftware().getVersion() << endl;
        for (set<DataProcessing::ProcessingAction>::const_iterator paIt = (*it).getProcessingActions().begin(); paIt != (*it).getProcessingActions().end(); ++paIt)
        {
          os << "\t\tprocessing action: " << DataProcessing::NamesOfProcessingAction[*paIt] << endl;
        }
      }
      ++i;
    }

    //-------------------------------------------------------------
    // statistics
    //-------------------------------------------------------------
    if (getFlag_("s"))
    {
      //-------------------------------------------------------------
      // Content statistics
      //-------------------------------------------------------------
      Map<String, int> meta_names;
      if (in_type == FileTypes::FEATUREXML) //features
      {
        os << "Number of features: " << feat.size() << endl
           << endl
           << "Ranges:" << endl
           << "  retention time:  " << String::number(feat.getMin()[Peak2D::RT], 2) << " : " << String::number(feat.getMax()[Peak2D::RT], 2) << endl
           << "  mass-to-charge:  " << String::number(feat.getMin()[Peak2D::MZ], 2) << " : " << String::number(feat.getMax()[Peak2D::MZ], 2) << endl
           << "  intensity:       " << String::number(feat.getMinInt(), 2) << " : " << String::number(feat.getMaxInt(), 2) << endl
           << endl;

        // Charge distribution
        Map<UInt, UInt> charges;
        for (Size i = 0; i < feat.size(); ++i)
        {
          charges[feat[i].getCharge()]++;
        }

        os << "Charge distribution" << endl;
        for (Map<UInt, UInt>::const_iterator it = charges.begin();
             it != charges.end(); ++it)
        {
          os << "charge " << it->first << ": " << it->second << endl;
        }
      }
      else if (in_type == FileTypes::CONSENSUSXML)       //consensus features
      {
        map<Size, UInt> num_consfeat_of_size;
        for (ConsensusMap::const_iterator cmit = cons.begin();
             cmit != cons.end(); ++cmit)
        {
          ++num_consfeat_of_size[cmit->size()];
        }

        os << endl << "Number of consensus features:" << endl;
        for (map<Size, UInt>::reverse_iterator i = num_consfeat_of_size.rbegin(); i != num_consfeat_of_size.rend(); ++i)
        {
          os << "  of size " << setw(2) << i->first << ": " << setw(6) << i->second << endl;
        }
        os << "  total:      " << setw(6) << cons.size() << endl << endl;

        os << "Ranges:" << endl
           << "  retention time:  " << String::number(cons.getMin()[Peak2D::RT], 2) << " : " << String::number(cons.getMax()[Peak2D::RT], 2) << endl
           << "  mass-to-charge:  " << String::number(cons.getMin()[Peak2D::MZ], 2) << " : " << String::number(cons.getMax()[Peak2D::MZ], 2) << endl
           << "  intensity:       " << String::number(cons.getMinInt(), 2) << " : " << String::number(cons.getMaxInt(), 2) << endl;

        // file descriptions
        const ConsensusMap::FileDescriptions& descs = cons.getFileDescriptions();
        if (!descs.empty())
        {
          os << endl <<
          "File descriptions:" << endl;
          for (ConsensusMap::FileDescriptions::const_iterator it = descs.begin(); it != descs.end(); ++it)
          {
            os << " - " << it->second.filename << endl
               << "   identifier: " << it->first << endl
               << "   label     : " << it->second.label << endl
               << "   size      : " << it->second.size << endl;
          }
        }
      }

      os << endl
         << "-- Summary Statistics --" << endl
         << endl;

    }

    if (in_type == FileTypes::FEATUREXML) //features
    {
      feat.sortByRT();

      vector<double> slice_stats;
      Size n = getIntOption_("n");

      Size begin = 0;
      Size end = 0;
      os << "#slice\tRT_begin\tRT_end\tnumber_of_features\ttic\t"
         << "int_mean\tint_stddev\tint_min\tint_max\tint_median\tint_lowerq\tint_upperq\t"
         << "mz_mean\tmz_stddev\tmz_min\tmz_max\tmz_median\tmz_lowerq\tmz_upperq\t"
         << "width_mean\twidth_stddev\twidth_min\twidth_max\twidth_median\twidth_lowerq\twidth_upperq\t"
         << "qual_mean\tqual_stddev\tqual_min\tqual_max\tqual_median\tqual_lowerq\tqual_upperq\t"
         << "rt_qual_mean\trt_qual_stddev\trt_qual_min\trt_qual_max\trt_qual_median\trt_qual_lowerq\trt_qual_upperq\t"
         << "mz_qual_mean\tmz_qual_stddev\tmz_qual_min\tmz_qual_max\tmz_qual_median\tmz_qual_lowerq\tmz_qual_upperq"
         << endl;

      double rt_begin = 0.0;
      for (Size slice = 0; slice < n; ++slice)
      {
        // Determine slice boundaries.
        double rt_end = feat.back().getRT() / (double)n * (slice + 1);
        for (end = begin; end < feat.size() && feat[end].getRT() < rt_end; ++end) {}

        // Compute statistics on all features in this slice.
        slice_stats = sliceStatistics(feat, begin, end);

        // Write the beginning and end of the slices to the output as well as the slice index.
        os << slice << "\t" << rt_begin << "\t" << rt_end << "\t" << end - begin << "\t";

        // Write the statistics as a line of an csv file
        copy(slice_stats.begin(), slice_stats.end(), ostream_iterator<double>(os, "\t"));
        os << endl;

        begin = end;
        rt_begin = rt_end;
      }
    }
    else if (in_type == FileTypes::CONSENSUSXML)     //consensus features
    {
      Size size = cons.size();

      vector<double> intensities;
      intensities.reserve(size);
      vector<double> qualities(size);
      qualities.reserve(size);
      vector<double> widths(size);
      widths.reserve(size);

      vector<double> rt_delta_by_elems;
      vector<double> rt_aad_by_elems;
      vector<double> rt_aad_by_cfs;
      rt_aad_by_cfs.reserve(size);

      vector<double> mz_delta_by_elems;
      vector<double> mz_aad_by_elems;
      vector<double> mz_aad_by_cfs;
      mz_aad_by_cfs.reserve(size);

      vector<double> it_delta_by_elems;
      vector<double> it_aad_by_elems;
      vector<double> it_aad_by_cfs;
      it_aad_by_cfs.reserve(size);

      for (ConsensusMap::const_iterator cm_iter = cons.begin();
           cm_iter != cons.end(); ++cm_iter)
      {
        double rt_aad = 0;
        double mz_aad = 0;
        double it_aad = 0;
        intensities.push_back(cm_iter->getIntensity());
        qualities.push_back(cm_iter->getQuality());
        widths.push_back(cm_iter->getWidth());
        for (ConsensusFeature::HandleSetType::const_iterator hs_iter = cm_iter->begin();
             hs_iter != cm_iter->end(); ++hs_iter)
        {
          double rt_diff = hs_iter->getRT() - cm_iter->getRT();
          rt_delta_by_elems.push_back(rt_diff);
          if (rt_diff < 0)
          {
            rt_diff = -rt_diff;
          }
          rt_aad_by_elems.push_back(rt_diff);
          rt_aad += rt_diff;
          double mz_diff = hs_iter->getMZ() - cm_iter->getMZ();
          mz_delta_by_elems.push_back(mz_diff);
          if (mz_diff < 0)
          {
            mz_diff = -mz_diff;
          }
          mz_aad_by_elems.push_back(mz_diff);
          mz_aad += mz_diff;
          double it_ratio = hs_iter->getIntensity() / (cm_iter->getIntensity() ? cm_iter->getIntensity() : 1.);
          it_delta_by_elems.push_back(it_ratio);
          if (it_ratio < 1.)
          {
            it_ratio = 1. / it_ratio;
          }
          it_aad_by_elems.push_back(it_ratio);
          it_aad += it_ratio;
        }
        if (!cm_iter->empty())
        {
          rt_aad /= cm_iter->size();
          mz_aad /= cm_iter->size();
          it_aad /= cm_iter->size();
        } // otherwise rt_aad etc. are 0 anyway
        rt_aad_by_cfs.push_back(rt_aad);
        mz_aad_by_cfs.push_back(mz_aad);
        it_aad_by_cfs.push_back(it_aad);
      }

      OpenMS::SomeStatistics some_statistics;

      os.precision(writtenDigits(ConsensusFeature::IntensityType()));
      os << "Intensities of consensus features:" << endl << some_statistics(intensities) << endl;

      os.precision(writtenDigits(ConsensusFeature::QualityType()));
      os << "Qualities of consensus features:" << endl << some_statistics(qualities) << endl;

      os.precision(writtenDigits(ConsensusFeature::CoordinateType()));
      os << "Retention time differences ( element-center, weight 1 per element):" << endl << some_statistics(rt_delta_by_elems) << endl;
      os << "Absolute retention time differences ( |element-center|, weight 1 per element):" << endl << some_statistics(rt_aad_by_elems) << endl;
      os << "Average absolute differences of retention time within consensus features ( |element-center|, weight 1 per consensus features):" << endl << some_statistics(rt_aad_by_cfs) << endl;

      os.precision(writtenDigits(ConsensusFeature::CoordinateType()));
      os << "Mass-to-charge differences ( element-center, weight 1 per element):" << endl << some_statistics(mz_delta_by_elems) << endl;
      os << "Absolute differences of mass-to-charge ( |element-center|, weight 1 per element):" << endl << some_statistics(mz_aad_by_elems) << endl;
      os << "Average absolute differences of mass-to-charge within consensus features ( |element-center|, weight 1 per consensus features):" << endl << some_statistics(mz_aad_by_cfs) << endl;

      os.precision(writtenDigits(ConsensusFeature::IntensityType()));
      os << "Intensity ratios ( element/center, weight 1 per element):" << endl << some_statistics(it_delta_by_elems) << endl;
      os << "Relative intensity error ( max{(element/center),(center/element)}, weight 1 per element):" << endl << some_statistics(it_aad_by_elems) << endl;
      os << "Average relative intensity error within consensus features ( max{(element/center),(center/element)}, weight 1 per consensus features):" << endl << some_statistics(it_aad_by_cfs) << endl;
    }

    return EXECUTION_OK;
  }