void IPPE::PoseSolver::solveGeneric(cv::InputArray _objectPoints, cv::InputArray _imagePoints, cv::InputArray _cameraMatrix, cv::InputArray _distCoeffs, cv::OutputArray _rvec1, cv::OutputArray _tvec1, float& err1, cv::OutputArray _rvec2, cv::OutputArray _tvec2, float& err2) { cv::Mat normalizedImagePoints; //undistored version of imagePoints if (_cameraMatrix.empty()) { //there is no camera matrix and image points are given in normalized pixel coordinates. _imagePoints.copyTo(normalizedImagePoints); } else { //undistort the image points (i.e. put them in normalized pixel coordinates): cv::undistortPoints(_imagePoints, normalizedImagePoints, _cameraMatrix, _distCoeffs); } //solve: cv::Mat Ma, Mb; solveGeneric(_objectPoints, normalizedImagePoints, Ma, Mb); //the two poses computed by IPPE (sorted): cv::Mat M1, M2; //sort poses by reprojection error: sortPosesByReprojError(_objectPoints, _imagePoints, _cameraMatrix, _distCoeffs, Ma, Mb, M1, M2, err1, err2); //fill outputs rot2vec(M1.colRange(0, 3).rowRange(0, 3), _rvec1); rot2vec(M2.colRange(0, 3).rowRange(0, 3), _rvec2); M1.colRange(3, 4).rowRange(0, 3).copyTo(_tvec1); M2.colRange(3, 4).rowRange(0, 3).copyTo(_tvec2); }
void FaceDetectorModule::ProcessFrame(cv::InputArray in, cv::OutputArray out){ if(IsEnabled()){ float scale = imageScale; float unscale = 1.0/scale; cv::UMat latestStep; in.copyTo(latestStep); cv::resize(latestStep, latestStep, cv::Size(), scale, scale, INTER_NEAREST); cvtColor( latestStep, latestStep, CV_BGR2GRAY ); equalizeHist( latestStep, latestStep ); cv::UMat outCopy; //outCopy = cv::Mat(in.cols(), in.rows(), in.type()); out.copyTo(outCopy); std::vector<cv::Rect> faces; //-- Detect faces face_cascade.detectMultiScale( latestStep, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, cv::Size(30, 30) ); //http://docs.opencv.org/3.0.0/db/d28/tutorial_cascade_classifier.html for( size_t i = 0; i < faces.size(); i++ ) { cv::Point center( (faces[i].x + faces[i].width*0.5) * unscale, (faces[i].y + faces[i].height*0.5) * unscale); ellipse( outCopy, center, cv::Size( (faces[i].width*0.5) * unscale, (faces[i].height*0.5) * unscale), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 ); /* cv::UMat faceROI = latestStep( faces[i] ); std::vector<cv::Rect> eyes; //-- In each face, detect eyes eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CASCADE_SCALE_IMAGE, cv::Size(30, 30) ); for( size_t j = 0; j < eyes.size(); j++ ) { cv::Point eye_center( (faces[i].x + eyes[j].x + eyes[j].width/2) * unscale, (faces[i].y + eyes[j].y + eyes[j].height/2) * unscale ); int radius = cvRound( (eyes[j].width + eyes[j].height) * 0.25 * unscale ); circle( outCopy, eye_center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 ); } */ } outCopy.copyTo(out); } else{ //in.copyTo(out); } }
void IPPE::PoseSolver::sortPosesByReprojError(cv::InputArray _objectPoints, cv::InputArray _imagePoints, cv::InputArray _cameraMatrix, cv::InputArray _distCoeffs, cv::InputArray _Ma, cv::InputArray _Mb, cv::OutputArray _M1, cv::OutputArray _M2, float& err1, float& err2) { float erra, errb; evalReprojError(_objectPoints, _imagePoints, _cameraMatrix, _distCoeffs, _Ma, erra); evalReprojError(_objectPoints, _imagePoints, _cameraMatrix, _distCoeffs, _Mb, errb); if (erra < errb) { err1 = erra; _Ma.copyTo(_M1); err2 = errb; _Mb.copyTo(_M2); } else { err1 = errb; _Mb.copyTo(_M1); err2 = erra; _Ma.copyTo(_M2); } }
std::vector<std::vector<struct ColouredCircle> > findColouredCirclesInFrame(cv::InputArray frame, cv::InputArray background) { cv::UMat foreground; cv::UMat processed; cv::Ptr<cv::BackgroundSubtractorMOG2> bs = cv::createBackgroundSubtractorMOG2(1, 254, false); // HEURISTIC: 254 = parameter for background subtractor bs->apply(background, foreground, 1); bs->apply(frame, foreground, 0); frame.copyTo(processed, foreground); cv::medianBlur(processed, processed, 9); // HEURISTIC: 9 = amount of blur applied before colour convertion cv::cvtColor(processed, processed, cv::COLOR_BGR2HSV); std::array<cv::UMat, 5> masks; // order: ball, blue, yellow, pink, green cv::inRange(processed, cv::Scalar(0, 100, 100), cv::Scalar(10, 255, 255), masks[0]); // HEURISTIC: range of HSV values cv::inRange(processed, cv::Scalar(76, 90, 90), cv::Scalar(146, 255, 255), masks[1]); // HEURISTIC: range of HSV values cv::inRange(processed, cv::Scalar(24, 200, 200), cv::Scalar(44, 255, 255), masks[2]); // HEURISTIC: range of HSV values cv::inRange(processed, cv::Scalar(165, 90, 90), cv::Scalar(180, 255, 255), masks[3]); // HEURISTIC: range of HSV values cv::inRange(processed, cv::Scalar(50, 200, 200), cv::Scalar(70, 255, 255), masks[4]); // HEURISTIC: range of HSV values std::array<std::vector<std::vector<cv::Point> >, 5> contours; // order: ball, blue, yellow, pink, green // TODO: potentially can be vectorized for(size_t i = 0; i < masks.size(); i++) { cv::findContours(masks[i], contours[i], cv::RETR_LIST, cv::CHAIN_APPROX_SIMPLE); } std::vector<std::vector<struct ColouredCircle> > circles; // TODO: potentially can be vectorized for(size_t i = 0; i < contours.size(); i++) { std::vector<struct ColouredCircle> c; findCircles(contours[i], c, 1, 5); // HEURISTIC: deviation of circle and ellipse center and radius for(size_t j = 0; j < c.size(); j++) { c[j].colour = int(i); } circles.push_back(c); } return circles; }