Esempio n. 1
0
  host_image2d<V>::host_image2d(cv::Mat m)
  {
    assert(m.rows > 0 && m.cols > 0);

    m.addref();
    pitch_ = m.step;
    data_ = PT((V*) m.data, dummy_free<V>);
    begin_ = (V*) m.data;
    domain_ = domain_type(m.rows, m.cols);
    // *this = static_cast<IplImage*>(&m);
  }
Esempio n. 2
0
TensorWrapper::TensorWrapper(cv::Mat & mat) {

    if (mat.empty()) {
        this->tensorPtr = nullptr;
        return;
    }

    this->typeCode = static_cast<char>(mat.depth());

    THByteTensor *outputPtr = new THByteTensor;

    // Build new storage on top of the Mat
    outputPtr->storage = THByteStorage_newWithData(
            mat.data,
            mat.step[0] * mat.rows
    );

    int sizeMultiplier;
    if (mat.channels() == 1) {
        outputPtr->nDimension = mat.dims;
        sizeMultiplier = cv::getElemSize(mat.depth());
    } else {
        outputPtr->nDimension = mat.dims + 1;
        sizeMultiplier = mat.elemSize1();
    }

    outputPtr->size = static_cast<long *>(THAlloc(sizeof(long) * outputPtr->nDimension));
    outputPtr->stride = static_cast<long *>(THAlloc(sizeof(long) * outputPtr->nDimension));

    if (mat.channels() > 1) {
        outputPtr->size[outputPtr->nDimension - 1] = mat.channels();
        outputPtr->stride[outputPtr->nDimension - 1] = 1; //cv::getElemSize(returnValue.typeCode);
    }

    for (int i = 0; i < mat.dims; ++i) {
        outputPtr->size[i] = mat.size[i];
        outputPtr->stride[i] = mat.step[i] / sizeMultiplier;
    }

    // Prevent OpenCV from deallocating Mat data
    mat.addref();

    outputPtr->refcount = 0;

    this->tensorPtr = outputPtr;
}
 ULONG AddRef() {
     mat.addref();
     return mat.u->refcount;
 }
bool numpy_to_mat(const PyObject* o, cv::Mat& m, const char* name, bool allowND)
{
  if(!o || o == Py_None)
    {
        if( !m.data )
            m.allocator = &g_numpyAllocator;
        return true;
    }

    if( !PyArray_Check(o) )
    {
        failmsg("%s is not a numpy array", name);
        return false;
    }

    int typenum = PyArray_TYPE(o);
    int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S :
               typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S :
               typenum == NPY_INT || typenum == NPY_LONG ? CV_32S :
               typenum == NPY_FLOAT ? CV_32F :
               typenum == NPY_DOUBLE ? CV_64F : -1;

    if( type < 0 )
    {
        failmsg("%s data type = %d is not supported", name, typenum);
        return false;
    }

    int ndims = PyArray_NDIM(o);
    if(ndims >= CV_MAX_DIM)
    {
        failmsg("%s dimensionality (=%d) is too high", name, ndims);
        return false;
    }

    int size[CV_MAX_DIM+1];
    size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type);
    const npy_intp* _sizes = PyArray_DIMS(o);
    const npy_intp* _strides = PyArray_STRIDES(o);

    for(int i = 0; i < ndims; i++)
    {
        size[i] = (int)_sizes[i];
        step[i] = (size_t)_strides[i];
    }

    if( ndims == 0 || step[ndims-1] > elemsize ) {
        size[ndims] = 1;
        step[ndims] = elemsize;
        ndims++;
    }

    if( ndims == 3 && size[2] <= CV_CN_MAX && step[1] == elemsize*size[2] )
    {
        ndims--;
        type |= CV_MAKETYPE(0, size[2]);
    }

    if( ndims > 2 && !allowND )
    {
        failmsg("%s has more than 2 dimensions", name);
        return false;
    }

    m = Mat(ndims, size, type, PyArray_DATA(o), step);

    if( m.data )
    {
        m.refcount = refcountFromPyObject(o);
        m.addref(); // protect the original numpy array from deallocation
                    // (since Mat destructor will decrement the reference counter)
    };
    m.allocator = &g_numpyAllocator;
    return true;
}