/** * @brief Compute derivative kernels for sizes different than 3 * @param _kx Horizontal kernel ues * @param _ky Vertical kernel values * @param dx Derivative order in X-direction (horizontal) * @param dy Derivative order in Y-direction (vertical) * @param scale_ Scale factor or derivative size */ void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky, int dx, int dy, int scale) { int ksize = 3 + 2 * (scale - 1); // The standard Scharr kernel if (scale == 1) { getDerivKernels(_kx, _ky, dx, dy, 0, true, CV_32F); return; } _kx.create(ksize, 1, CV_32F, -1, true); _ky.create(ksize, 1, CV_32F, -1, true); Mat kx = _kx.getMat(); Mat ky = _ky.getMat(); float w = 10.0f / 3.0f; float norm = 1.0f / (2.0f*scale*(w + 2.0f)); for (int k = 0; k < 2; k++) { Mat* kernel = k == 0 ? &kx : &ky; int order = k == 0 ? dx : dy; std::vector<float> kerI(ksize, 0.0f); if (order == 0) { kerI[0] = norm, kerI[ksize / 2] = w*norm, kerI[ksize - 1] = norm; } else if (order == 1) { kerI[0] = -1, kerI[ksize / 2] = 0, kerI[ksize - 1] = 1; } Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]); temp.copyTo(*kernel); } }
void stereo::stereoRectify(cv::InputArray _K1, cv::InputArray _K2, cv::InputArray _R, cv::InputArray _T, cv::OutputArray _R1, cv::OutputArray _R2, cv::OutputArray _P1, cv::OutputArray _P2) { Mat K1 = _K1.getMat(), K2 = _K2.getMat(), R = _R.getMat(), T = _T.getMat(); _R1.create(3, 3, CV_32F); _R2.create(3, 3, CV_32F); Mat R1 = _R1.getMat(); Mat R2 = _R2.getMat(); _P1.create(3, 4, CV_32F); _P2.create(3, 4, CV_32F); Mat P1 = _P1.getMat(); Mat P2 = _P2.getMat(); if(K1.type()!=CV_32F) K1.convertTo(K1,CV_32F); if(K2.type()!=CV_32F) K2.convertTo(K2,CV_32F); if(R.type()!=CV_32F) R.convertTo(R,CV_32F); if(T.type()!=CV_32F) T.convertTo(T,CV_32F); if(T.rows != 3) T = T.t(); // R and T is the transformation from the first to the second camera // Get the transformation from the second to the first camera Mat R_inv = R.t(); Mat T_inv = -R.t()*T; Mat e1, e2, e3; e1 = T_inv.t() / norm(T_inv); /*Mat z = (Mat_<float>(1, 3) << 0.0,0.0,-1.0); e2 = e1.cross(z); e2 = e2 / norm(e2);*/ e2 = (Mat_<float>(1,3) << T_inv.at<float>(1)*-1, T_inv.at<float>(0), 0.0 ); e2 = e2 / (sqrt(e2.at<float>(0)*e2.at<float>(0) + e2.at<float>(1)*e2.at<float>(1))); e3 = e1.cross(e2); e3 = e3 / norm(e3); e1.copyTo(R1.row(0)); e2.copyTo(R1.row(1)); e3.copyTo(R1.row(2)); R2 = R_inv * R1; P1.setTo(Scalar(0)); R1.copyTo(P1.colRange(0, 3)); P1 = K1 * P1; P2.setTo(Scalar(0)); R2.copyTo(P2.colRange(0, 3)); P2 = K2 * P2; }
/** * Get the average image at the given altitude. * If the altitude is not located exactly at one of the altitude bins, * the average image is interpolated between any overlapping bins. * @param _dst the output image (zeros at desired resolution) * @param alt the altitude the image was taken at * @param pitch the pitch of the vehicle * @param roll the roll of the vehicle */ void getAverage(cv::OutputArray _dst, double alt, double pitch, double roll) { Mat dst = _dst.getMat(); int width = dst.size().width; int height = dst.size().height; Mat D = Mat::zeros(height, width, CV_32F); double width_m = width * cameras.pixel_sep; double height_m = height * cameras.pixel_sep; interp::distance_map(D, alt, pitch, roll, width_m, height_m, cameras.focal_length); // now discretize into slices int i = 0; Mat W = Mat::zeros(D.size(), CV_32F); while(cv::countNonZero(W) == 0) { interp::dist_weight(D, W, alt_step, i++); } while(cv::countNonZero(W) > 0) { Slice<int>* slice = getSlice(i); Mat sAverage; // get the slice average boost::mutex* mutex = slice->get_mutex(); { // protect slice with mutex to prevent interleaved read/write operations boost::lock_guard<boost::mutex> lock(*mutex); sAverage = slice->getLightfield()->getAverage(); } dst += sAverage.mul(W); // multiply by slice weight interp::dist_weight(D, W, alt_step, i++); } }
void stereo_disparity_normal(cv::InputArray left_image, cv::InputArray right_image, cv::OutputArray disp_, int max_dis_level, int scale, float sigma) { cv::Mat imL = left_image.getMat(); cv::Mat imR = right_image.getMat(); CV_Assert(imL.size() == imR.size()); CV_Assert(imL.type() == CV_8UC3 && imR.type() == CV_8UC3); cv::Size imageSize = imL.size(); disp_.create(imageSize, CV_8U); cv::Mat disp = disp_.getMat(); CDisparityHelper dispHelper; //step 1: cost initialization cv::Mat costVol = dispHelper.GetMatchingCost(imL, imR, max_dis_level); //step 2: cost aggregation CSegmentTree stree; CColorWeight cWeight(imL); stree.BuildSegmentTree(imL.size(), sigma, TAU, cWeight); stree.Filter(costVol, max_dis_level); //step 3: disparity computation cv::Mat disparity = dispHelper.GetDisparity_WTA((float*)costVol.data, imageSize.width, imageSize.height, max_dis_level); MeanFilter(disparity, disparity, 3); disparity *= scale; disparity.copyTo(disp); }
void EdgeDetector_<ParallelUtils::eGLSL>::getLatestEdgeMask(cv::OutputArray _oLastEdgeMask) { _oLastEdgeMask.create(m_oFrameSize,CV_8UC1); cv::Mat oLastEdgeMask = _oLastEdgeMask.getMat(); if(!GLImageProcAlgo::m_bFetchingOutput) glAssert(GLImageProcAlgo::setOutputFetching(true)) GLImageProcAlgo::fetchLastOutput(oLastEdgeMask); }
void textureFlattening(cv::InputArray _src, cv::InputArray _mask, cv::OutputArray _dst, double low_threshold, double high_threshold, int kernel_size) { Mat src = _src.getMat(); Mat mask = _mask.getMat(); _dst.create(src.size(), src.type()); Mat blend = _dst.getMat(); Mat gray = Mat::zeros(mask.size(), CV_8UC1); if(mask.channels() == 3) cvtColor(mask, gray, COLOR_BGR2GRAY); else gray = mask; Mat cs_mask = Mat::zeros(src.size(), CV_8UC3); src.copyTo(cs_mask, gray); Cloning obj; obj.texture_flatten(src, cs_mask, gray, low_threshold, high_threshold, kernel_size, blend); }
void illuminationChange(cv::InputArray _src, cv::InputArray _mask, cv::OutputArray _dst, float a, float b) { Mat src = _src.getMat(); Mat mask = _mask.getMat(); _dst.create(src.size(), src.type()); Mat blend = _dst.getMat(); float alpha = a; float beta = b; Mat gray = Mat::zeros(mask.size(), CV_8UC1); if(mask.channels() == 3) cvtColor(mask, gray, COLOR_BGR2GRAY); else gray = mask; Mat cs_mask = Mat::zeros(src.size(), CV_8UC3); src.copyTo(cs_mask, gray); Cloning obj; obj.illum_change(src, cs_mask, gray, blend, alpha, beta); }
void colorChange(cv::InputArray _src, cv::InputArray _mask, cv::OutputArray _dst, float r, float g, float b) { Mat src = _src.getMat(); Mat mask = _mask.getMat(); _dst.create(src.size(), src.type()); Mat blend = _dst.getMat(); float red = r; float green = g; float blue = b; Mat gray = Mat::zeros(mask.size(), CV_8UC1); if(mask.channels() == 3) cvtColor(mask, gray, COLOR_BGR2GRAY); else gray = mask; Mat cs_mask = Mat::zeros(src.size(), CV_8UC3); src.copyTo(cs_mask, gray); Cloning obj; obj.local_color_change(src, cs_mask, gray, blend, red, green, blue); }
void BackgroundSubtractorMedian::operator()(cv::InputArray _image, cv::OutputArray _fgmask, double learningRate) { framecount++; cv::Mat image = _image.getMat(); if (image.channels() > 1) { cvtColor(image,image,CV_BGR2GRAY); } if (image.cols == 0 || image.rows == 0) { return; } _fgmask.create(image.size(), CV_8U); cv::Mat fgmask = _fgmask.getMat(); if (!init) { init = true; bgmodel = cv::Mat(image.size(), CV_8U); } //printf("(%d,%d)(%d) ",image.cols,image.rows,image.type()); //printf("(%d,%d)(%d)\n",bgmodel.cols,bgmodel.rows,bgmodel.type()); cv::Mat cmpArr = cv::Mat(image.size(),CV_8U); cv::compare(image, bgmodel, cmpArr, CV_CMP_GT); cv::bitwise_and(cmpArr, 1, cmpArr); cv::add(bgmodel, cmpArr, bgmodel); cmpArr = cv::Mat(image.size(),CV_8U); cv::compare(image, bgmodel, cmpArr, CV_CMP_LT); cv::bitwise_and(cmpArr, 1, cmpArr); cv::subtract(bgmodel, cmpArr, bgmodel); cv::absdiff(image, bgmodel,fgmask); cv::threshold(fgmask,fgmask,fg_threshold,255,CV_THRESH_TOZERO); cv::medianBlur(fgmask,fgmask,median_filter_level); }
int boostColor(cv::InputArray src, cv::OutputArray dst, float intensity) { const int MAX_INTENSITY = 255; Mat srcImg = src.getMat(); CV_Assert(srcImg.channels() == 3); CV_Assert(intensity >= 0.0f && intensity <= 1.0f); if (srcImg.type() != CV_8UC3) { srcImg.convertTo(srcImg, CV_8UC3); } Mat srcHls; cvtColor(srcImg, srcHls, CV_BGR2HLS); int intensityInt = intensity * MAX_INTENSITY; srcHls += Scalar(0, 0, intensityInt); cvtColor(srcHls, dst, CV_HLS2BGR); dst.getMat().convertTo(dst, srcImg.type()); return 0; }
void IBackgroundSubtractor_GLSL::getLatestForegroundMask(cv::OutputArray _oLastFGMask) { _oLastFGMask.create(m_oImgSize,CV_8UC1); cv::Mat oLastFGMask = _oLastFGMask.getMat(); glAssert(GLImageProcAlgo::m_bFetchingOutput || GLImageProcAlgo::setOutputFetching(true)) if(GLImageProcAlgo::m_nInternalFrameIdx>0) GLImageProcAlgo::fetchLastOutput(oLastFGMask); else oLastFGMask = cv::Scalar_<uchar>(0); }
void sadTemplate(cv::InputArray tar, cv::InputArray tmp, cv::OutputArray res, int *minx, int *miny){ //引数の入力をMatとして受け取る cv::Mat tarM = tar.getMat(); cv::Mat tmpM = tmp.getMat(); cv::Mat resM = res.getMat(); //sadが最小値のところがマッチングしたい箇所なので int minsad = std::numeric_limits<int>::max(); int sad = 0; //各回のsadを格納 int diff; //sadに加算する前の作業変数 int tarx,tary; //目的のxy座標 for(int y=0;y<tarM.rows - tmpM.rows;y++){ for(int x=0;x<tarM.cols - tmpM.cols;x++){ sad = 0; //次の領域の計算の前に初期化 //探索 for(int yt = 0; yt < tmpM.rows; yt++){ for(int xt = 0; xt < tmpM.cols; xt++){ diff = (int)(tarM.at<uchar>(y+yt,x+xt) - tmpM.at<uchar>(yt,xt)); if(diff < 0){ //負なら正に変換 diff = -diff; } sad += diff; ////残差逐次検定法 if(sad > minsad){ yt = tmpM.rows; break; } } } //探索結果:sadが今までで最小なら if(sad < minsad){ minsad = sad; //最小値を更新 //目的のxyを格納 tarx = x; tary = y; } } } //outputに出力 for(int y=0;y<resM.rows;y++){ for(int x=0;x<resM.cols;x++){ if(x==tarx && y==tary){ resM.at<uchar>(y,x) = (uchar)0; }else{ resM.at<uchar>(y,x) = (uchar)255; } } } std::cout << "最小値=" << minsad << std::endl; std::cout << "最小点=[" << tarx << ", " << tary << "]" << std::endl; *minx = tarx; *miny = tary; }
bool OpenNI2Grabber::grabFrame(cv::OutputArray _color) { if (_color.kind() != cv::_InputArray::MAT) BOOST_THROW_EXCEPTION(GrabberException("Grabbing only into cv::Mat")); _color.create(p->color_image_resolution.height, p->color_image_resolution.width, CV_8UC3); cv::Mat color = _color.getMat(); return p->grabFrame(color); }
void BackgroundSubtractor_<ParallelUtils::eGLSL>::getLatestForegroundMask(cv::OutputArray _oLastFGMask) { _oLastFGMask.create(m_oImgSize,CV_8UC1); cv::Mat oLastFGMask = _oLastFGMask.getMat(); if(!GLImageProcAlgo::m_bFetchingOutput) glAssert(GLImageProcAlgo::setOutputFetching(true)) else if(m_nFrameIdx>0) GLImageProcAlgo::fetchLastOutput(oLastFGMask); else oLastFGMask = cv::Scalar_<uchar>(0); }
void IEdgeDetector_GLSL::getLatestEdgeMask(cv::OutputArray _oLastEdgeMask) { lvAssert_(GLImageProcAlgo::m_bGLInitialized,"algo must be initialized first"); _oLastEdgeMask.create(GLImageProcAlgo::m_oFrameSize,CV_8UC1); cv::Mat oLastEdgeMask = _oLastEdgeMask.getMat(); lvAssert_(GLImageProcAlgo::m_bFetchingOutput || GLImageProcAlgo::setOutputFetching(true),"algo not initialized with mat output support") if(GLImageProcAlgo::m_nInternalFrameIdx>0) GLImageProcAlgo::fetchLastOutput(oLastEdgeMask); else oLastEdgeMask = cv::Scalar_<uchar>(0); }
void stereo::stereoMatching(cv::InputArray _recImage1, cv::InputArray _recIamge2, cv::OutputArray _disparityMap, int minDisparity, int numDisparities, int SADWindowSize, int P1, int P2) { Mat img1 = _recImage1.getMat(); Mat img2 = _recIamge2.getMat(); _disparityMap.create(img1.size(), CV_16S); Mat dis = _disparityMap.getMat(); StereoSGBM matcher(minDisparity, numDisparities, SADWindowSize, P1, P2); matcher(img1, img2, dis); dis = dis / 16.0; }
/** * @brief Compute Scharr derivative kernels for sizes different than 3 * @param kx_ The derivative kernel in x-direction * @param ky_ The derivative kernel in y-direction * @param dx The derivative order in x-direction * @param dy The derivative order in y-direction * @param scale The kernel size */ void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, const size_t& dx, const size_t& dy, const size_t& scale) { const int ksize = 3 + 2*(scale-1); // The usual Scharr kernel if (scale == 1) { getDerivKernels(kx_,ky_,dx,dy,0,true,CV_32F); return; } kx_.create(ksize,1,CV_32F,-1,true); ky_.create(ksize,1,CV_32F,-1,true); Mat kx = kx_.getMat(); Mat ky = ky_.getMat(); float w = 10.0/3.0; float norm = 1.0/(2.0*scale*(w+2.0)); for (int k = 0; k < 2; k++) { Mat* kernel = k == 0 ? &kx : &ky; int order = k == 0 ? dx : dy; float kerI[1000]; for (int t = 0; t<ksize; t++) { kerI[t] = 0; } if (order == 0) { kerI[0] = norm; kerI[ksize/2] = w*norm; kerI[ksize-1] = norm; } else if (order == 1) { kerI[0] = -1; kerI[ksize/2] = 0; kerI[ksize-1] = 1; } Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]); temp.copyTo(*kernel); } }
void warmify(cv::InputArray src, cv::OutputArray dst, uchar delta) { CV_Assert(src.type() == CV_8UC3); Mat imgSrc = src.getMat(); CV_Assert(imgSrc.data); dst.create(src.size(), CV_8UC3); Mat imgDst = dst.getMat(); imgDst = imgSrc + Scalar(0, delta, delta); }
static void seqToMat(const CvSeq* seq, cv::OutputArray _arr) { if( seq && seq->total > 0 ) { _arr.create(1, seq->total, seq->flags, -1, true); cv::Mat arr = _arr.getMat(); cvCvtSeqToArray(seq, arr.data); } else _arr.release(); }
void IPPE::PoseSolver::solveCanonicalForm(cv::InputArray _canonicalObjPoints, cv::InputArray _normalizedInputPoints, cv::InputArray _H, cv::OutputArray _Ma, cv::OutputArray _Mb) { _Ma.create(4, 4, CV_64FC1); _Mb.create(4, 4, CV_64FC1); cv::Mat Ma = _Ma.getMat(); cv::Mat Mb = _Mb.getMat(); cv::Mat H = _H.getMat(); //initialise poses: Ma.setTo(0); Ma.at<double>(3, 3) = 1; Mb.setTo(0); Mb.at<double>(3, 3) = 1; //Compute the Jacobian J of the homography at (0,0): double j00, j01, j10, j11, v0, v1; j00 = H.at<double>(0, 0) - H.at<double>(2, 0) * H.at<double>(0, 2); j01 = H.at<double>(0, 1) - H.at<double>(2, 1) * H.at<double>(0, 2); j10 = H.at<double>(1, 0) - H.at<double>(2, 0) * H.at<double>(1, 2); j11 = H.at<double>(1, 1) - H.at<double>(2, 1) * H.at<double>(1, 2); //Compute the transformation of (0,0) into the image: v0 = H.at<double>(0, 2); v1 = H.at<double>(1, 2); //compute the two rotation solutions: cv::Mat Ra = Ma.colRange(0, 3).rowRange(0, 3); cv::Mat Rb = Mb.colRange(0, 3).rowRange(0, 3); computeRotations(j00, j01, j10, j11, v0, v1, Ra, Rb); //for each rotation solution, compute the corresponding translation solution: cv::Mat ta = Ma.colRange(3, 4).rowRange(0, 3); cv::Mat tb = Mb.colRange(3, 4).rowRange(0, 3); computeTranslation(_canonicalObjPoints, _normalizedInputPoints, Ra, ta); computeTranslation(_canonicalObjPoints, _normalizedInputPoints, Rb, tb); }
void stereo::rectifyImage(cv::InputArray _inImage1, cv::InputArray _inImage2, cv::InputArray _map11, cv::InputArray _map12, cv::InputArray _map21, cv::InputArray _map22, cv::OutputArray _recImage1, cv::OutputArray _recImage2) { Mat img1 = _inImage1.getMat(); Mat img2 = _inImage2.getMat(); Mat map11 = _map11.getMat(); Mat map12 = _map12.getMat(); Mat map21 = _map21.getMat(); Mat map22 = _map22.getMat(); _recImage1.create(map11.size(), img1.type()); Mat recImg1 = _recImage1.getMat(); _recImage2.create(map21.size(), img2.type()); Mat recImg2 = _recImage2.getMat(); remap(img1, recImg1, map11, map12, INTER_LINEAR); remap(img2, recImg2, map21, map22, INTER_LINEAR); }
void StereoMatch::StereoMatching(cv::InputArray rec_image1, cv::InputArray rec_image2, cv::OutputArray disparity_map, int min_disparity, int num_disparities, int SAD_window_size, int P1, int P2) { cv::Mat img1 = rec_image1.getMat(); cv::Mat img2 = rec_image2.getMat(); disparity_map.create(img1.size(), CV_16S); cv::Mat dis = disparity_map.getMat(); cv::StereoSGBM matcher(min_disparity, num_disparities, SAD_window_size, P1, P2); matcher(img1, img2, dis); dis = dis / 16.0; }
void EdgeDetectorCanny::apply(cv::InputArray _oInputImage, cv::OutputArray _oEdgeMask) { cv::Mat oInputImg = _oInputImage.getMat(); CV_Assert(!oInputImg.empty()); CV_Assert(oInputImg.channels()==1 || oInputImg.channels()==3 || oInputImg.channels()==4); _oEdgeMask.create(oInputImg.size(),CV_8UC1); cv::Mat oEdgeMask = _oEdgeMask.getMat(); oEdgeMask = cv::Scalar_<uchar>(0); cv::Mat oTempEdgeMask = oEdgeMask.clone(); for(size_t nCurrThreshold=0; nCurrThreshold<UCHAR_MAX; ++nCurrThreshold) { apply_threshold(oInputImg,oTempEdgeMask,double(nCurrThreshold)); oEdgeMask += oTempEdgeMask/UCHAR_MAX; } cv::normalize(oEdgeMask,oEdgeMask,0,UCHAR_MAX,cv::NORM_MINMAX); }
void MixtureOfGaussianCPU::operator() (cv::InputArray in, cv::OutputArray out, float learningRate) { cv::Mat frame = in.getMat(); ++nframe; float alpha = learningRate >= 0 && nframe > 1 ? learningRate : 1.0f/std::min(nframe, history); out.create(frame.size(), CV_8U); cv::Mat mask = out.getMat(); calc_impl(frame.data, mask.data, bgmodel.ptr<MixtureData>(), alpha); }
void Tools::ReduceRowByMost(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _mask) { cv::Mat src = _src.getMat(); _dst.create(1, src.cols, CV_8UC1); cv::Mat dst = _dst.getMat(); cv::Mat mask = _mask.getMat(); if (src.depth() != CV_8U || mask.depth() != CV_8U) { throw "TYPE DON'T SUPPORT"; } int i, j, addr; cv::Size size = src.size(); uchar *srcd = src.data; uchar *dstd = dst.data; uchar *maskd = mask.data; std::map<uchar, int> m; std::map<uchar, int>::iterator p; uchar mostVal; uchar rVal; int r; for (i = 0;i < size.width;++i) { m.clear(); mostVal = 0; for (j = 0;j < size.height;++j) { addr = j*size.width + i; if (!maskd[addr]) continue; for (r = -2;r <= 2;++r) { rVal = (uchar)(((int)srcd[addr] + r) % 180); if (m.find(rVal) != m.end()) { m[rVal]++; } else { m[rVal] = 1; } } } if (m.size() == 0) { dstd[i] = 0; continue; } mostVal = m.begin()->first; for (p = m.begin();p != m.end();++p) { if (p->second > m[mostVal]) { mostVal = p->first; } } dstd[i] = mostVal; } }
void Camera::undistortLUT(cv::InputArray source, cv::OutputArray dest) { cv::Mat src = source.getMat(); dest.create(src.size(), src.type()); cv::Mat dst = dest.getMat(); int stripeSize = std::min(std::max(1, (1 << 12) / std::max(camFrameWidth, 1)), camFrameHeight); for (int y = 0; y < src.rows; y += stripeSize) { int stripe = std::min(stripeSize, src.rows - y); cv::Mat map1Part = map1LUT[y]; cv::Mat map2Part = map2LUT[y]; cv::Mat destPart = dst.rowRange(y, y + stripe); cv::remap(src, destPart, map1Part, map2Part, cv::INTER_LINEAR, cv::BORDER_CONSTANT); } }
void RadiometricResponse::directMap(cv::InputArray _E, cv::OutputArray _I) const { if (_E.empty()) { _I.clear(); return; } auto E = _E.getMat(); _I.create(_E.size(), CV_8UC3); auto I = _I.getMat(); #if CV_MAJOR_VERSION > 2 E.forEach<cv::Vec3f>( [&I, this](cv::Vec3f& v, const int* p) { I.at<cv::Vec3b>(p[0], p[1]) = inverseLUT(response_channels_, v); }); #else for (int i = 0; i < E.rows; i++) for (int j = 0; j < E.cols; j++) I.at<cv::Vec3b>(i, j) = inverseLUT(response_channels_, E.at<cv::Vec3f>(i, j)); #endif }
void FilterBase::apply(cv::InputArray _src, cv::OutputArray _dst, const int &ddepth){ int stype = _src.type(); int dcn = _src.channels(); int depth = CV_MAT_DEPTH(stype); if (0 <= ddepth) depth = ddepth; Mat src, dst; src = _src.getMat(); Size sz = src.size(); _dst.create(sz, CV_MAKETYPE(depth, dcn)); dst = _dst.getMat(); int imageWidth = src.rows; int imageHeight = src.cols; Mat srcChannels[3]; split(src, srcChannels); int margineWidth = kernel.cols / 2; int margineHeight = kernel.rows / 2; double kernelElemCount = (double)(kernel.cols * kernel.rows); for(int ch = 0; ch < dcn; ++ch){ for(int y = 0; y < imageHeight; ++y){ Vec3d *ptr = dst.ptr<Vec3d>(y); for(int x = 0; x < imageWidth; ++x){ if (isEdge(x, y, imageWidth, imageHeight, margineWidth, margineWidth)){ ptr[x][ch] = calcKernelOutputAtEdge(srcChannels[ch], kernel, x, y, imageWidth, imageHeight, margineWidth, margineHeight); }else{ ptr[x][ch] = calcKernelOutput(srcChannels[ch], kernel, x, y, margineWidth, margineHeight, kernelElemCount); } } } } }
void stereo::stereoMatching(cv::InputArray _recImage1, cv::InputArray _recIamge2, cv::OutputArray _disparityMap, int minDisparity, int numDisparities, int SADWindowSize, int P1, int P2) { Mat img1 = _recImage1.getMat(); Mat img2 = _recIamge2.getMat(); _disparityMap.create(img1.size(), CV_16S); Mat dis = _disparityMap.getMat(); // create(int minDisparity, int numDisparities, int blockSize,) Ptr<StereoSGBM> matcher = StereoSGBM::create(minDisparity, numDisparities, SADWindowSize); matcher->setP1(P1); matcher->setP2(P2); matcher->compute(img1, img2, dis); //StereoSGBM matcher(minDisparity, numDisparities, SADWindowSize, P1, P2); //matcher(img1, img2, dis); dis = dis / 16.0; }
double Camera::reprojectionError(const std::vector< std::vector<cv::Point3f> >& objectPoints, const std::vector< std::vector<cv::Point2f> >& imagePoints, const std::vector<cv::Mat>& rvecs, const std::vector<cv::Mat>& tvecs, cv::OutputArray _perViewErrors) const { int imageCount = objectPoints.size(); size_t pointsSoFar = 0; double totalErr = 0.0; bool computePerViewErrors = _perViewErrors.needed(); cv::Mat perViewErrors; if (computePerViewErrors) { _perViewErrors.create(imageCount, 1, CV_64F); perViewErrors = _perViewErrors.getMat(); } for (int i = 0; i < imageCount; ++i) { size_t pointCount = imagePoints.at(i).size(); pointsSoFar += pointCount; std::vector<cv::Point2f> estImagePoints; projectPoints(objectPoints.at(i), rvecs.at(i), tvecs.at(i), estImagePoints); double err = 0.0; for (size_t j = 0; j < imagePoints.at(i).size(); ++j) { err += cv::norm(imagePoints.at(i).at(j) - estImagePoints.at(j)); } if (computePerViewErrors) { perViewErrors.at<double>(i) = err / pointCount; } totalErr += err; } return totalErr / pointsSoFar; }