/* ************************************************************************* */
void accomodateStudent() {

  // super-hack! just count...
  bool debug = false;
  //  SETDEBUG("DiscreteConditional::COUNT",true);
  SETDEBUG("DiscreteConditional::DiscreteConditional", debug); // progress

  Scheduler scheduler = largeExample(0);
  //  scheduler.addStudent("Victor E", "Autonomy", "HRI", "AI",
  //      "Henrik Christensen");
  scheduler.addStudent("Carlos N", "Perception", "AI", "Autonomy",
      "Henrik Christensen");
  scheduler.print("scheduler");

  // rule out all occupied slots
  vector<size_t> slots;
  slots += 16, 17, 11, 2, 0, 5, 9, 14;
  vector<double> slotsAvailable(scheduler.nrTimeSlots(), 1.0);
  BOOST_FOREACH(size_t s, slots)
  slotsAvailable[s] = 0;
  scheduler.setSlotsAvailable(slotsAvailable);

  // BUILD THE GRAPH !
  scheduler.buildGraph(1);

  // Do EXACT INFERENCE
  DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();

  // find root node
  DiscreteConditional::shared_ptr root = chordal->back();
  if (debug)
    root->print(""/*scheduler.studentName(s)*/);
  //  GTSAM_PRINT(*chordal);

  // solve root node only
  Scheduler::Values values;
  size_t bestSlot = root->solve(values);

  // get corresponding count
  DiscreteKey dkey = scheduler.studentKey(0);
  values[dkey.first] = bestSlot;
  size_t count = (*root)(values);
  cout << boost::format("%s = %d (%d), count = %d") % scheduler.studentName(0)
      % scheduler.slotName(bestSlot) % bestSlot % count << endl;

  // sample schedules
  for (size_t n = 0; n < 10; n++) {
    Scheduler::sharedValues sample0 = chordal->sample();
    scheduler.printAssignment(sample0);
  }
}
Esempio n. 2
0
/* ************************************************************************* */
void runLargeExample() {

  Scheduler scheduler = largeExample();
  scheduler.print();

  // BUILD THE GRAPH !
  size_t addMutex = 3;
  // SETDEBUG("Scheduler::buildGraph", true);
  scheduler.buildGraph(addMutex);

  // Do brute force product and output that to file
  if (scheduler.nrStudents() == 1) { // otherwise too slow
    DecisionTreeFactor product = scheduler.product();
    product.dot("scheduling-large", false);
  }

  // Do exact inference
  //  SETDEBUG("timing-verbose", true);
  SETDEBUG("DiscreteConditional::DiscreteConditional", true);
#define SAMPLE
#ifdef SAMPLE
  gttic(large);
  DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
  gttoc(large);
  tictoc_finishedIteration();
  tictoc_print();
  for (size_t i=0;i<100;i++) {
    DiscreteFactor::sharedValues assignment = chordal->sample();
    vector<size_t> stats(scheduler.nrFaculty());
    scheduler.accumulateStats(assignment, stats);
    size_t max = *max_element(stats.begin(), stats.end());
    size_t min = *min_element(stats.begin(), stats.end());
    size_t nz = count_if(stats.begin(), stats.end(), NonZero);
//    cout << min << ", " << max << ", "  << nz << endl;
    if (nz >= 13 && min >=1 && max <= 4) {
      cout << "======================================================\n";
      scheduler.printAssignment(assignment);
    }
  }
#else
  gttic(large);
  DiscreteFactor::sharedValues MPE = scheduler.optimalAssignment();
  gttoc(large);
  tictoc_finishedIteration();
  tictoc_print();
  scheduler.printAssignment(MPE);
#endif
}