int main(int argc, char** argv) { Opm::parameter::ParameterGroup param(argc, argv); Dune::MPIHelper::instance(argc,argv); // Make a grid Dune::CpGrid grid; Opm::EclipseGridParser parser(param.get<std::string>("filename")); double z_tol = param.getDefault<double>("z_tolerance", 0.0); std::tr1::array<int,3> cartDims; build_grid(parser, z_tol, grid, cartDims); // Make the grid interface Opm::GridInterfaceEuler<Dune::CpGrid> g(grid); // Reservoir properties. typedef ReservoirPropertyCapillaryAnisotropicRelperm<3> RP; RP res_prop; res_prop.init(parser, grid.globalCell()); assign_permeability<3>(res_prop, g.numberOfCells(), 0.1*Opm::unit::darcy); test_flowsolver<3>(g, res_prop); #if 0 // Make flow equation boundary conditions. // Pressure 1.0e5 on the left, 0.0 on the right. // Recall that the boundary ids range from 1 to 6 for the cartesian edges, // and that boundary id 0 means interiour face/intersection. typedef FlowBoundaryCondition BC; FlowBoundaryConditions flow_bcond(7); flow_bcond[1] = BC(BC::Dirichlet, 1.0e5); flow_bcond[2] = BC(BC::Dirichlet, 0.0); // Make transport equation boundary conditions. // The default one is fine (sat = 1.0 on inflow). SaturationBoundaryConditions sat_bcond(7); // No injection or production. SparseVector<double> injection_rates(g.numberOfCells()); // Make a solver. typedef EulerUpstream<GridInterface, RP, SaturationBoundaryConditions> TransportSolver; TransportSolver transport_solver(g, res_prop, sat_bcond, injection_rates); // Define a flow field with constant velocity Dune::FieldVector<double, 3> vel(0.0); vel[0] = 2.0; vel[1] = 1.0; TestSolution<GridInterface> flow_solution(g, vel); // Solve a step. double time = 1.0; std::vector<double> sat(g.numberOfCells(), 0.0); Dune::FieldVector<double, 3> gravity(0.0); gravity[2] = -9.81; transport_solver.transportSolve(sat, time, gravity, flow_solution); #endif }
inline void setupGridAndPropsEclipse(Opm::DeckConstPtr deck, bool periodic_extension, bool turn_normals, bool clip_z, bool unique_bids, double perm_threshold, const std::string& rock_list, bool use_jfunction_scaling, double sigma, double theta, Dune::CpGrid& grid, ResProp<3>& res_prop) { grid.processEclipseFormat(deck, periodic_extension, turn_normals, clip_z); const std::string* rl_ptr = (rock_list == "no_list") ? 0 : &rock_list; res_prop.init(deck, grid.globalCell(), perm_threshold, rl_ptr, use_jfunction_scaling, sigma, theta); if (unique_bids) { grid.setUniqueBoundaryIds(true); } }
inline void setupGridAndProps(const Opm::parameter::ParameterGroup& param, Dune::CpGrid& grid, ResProp<3>& res_prop) { // Initialize grid and reservoir properties. // Parts copied from Dune::CpGrid::init(). std::string fileformat = param.getDefault<std::string>("fileformat", "cartesian"); if (fileformat == "sintef_legacy") { std::string grid_prefix = param.get<std::string>("grid_prefix"); grid.readSintefLegacyFormat(grid_prefix); OPM_MESSAGE("Warning: We do not yet read legacy reservoir properties. Using defaults."); res_prop.init(grid.size(0)); } else if (fileformat == "eclipse") { std::string ecl_file = param.get<std::string>("filename"); Opm::ParseContext parseContext; Opm::ParserPtr parser(new Opm::Parser()); Opm::DeckConstPtr deck(parser->parseFile(ecl_file , parseContext)); if (param.has("z_tolerance")) { std::cerr << "****** Warning: z_tolerance parameter is obsolete, use PINCH in deck input instead\n"; } bool periodic_extension = param.getDefault<bool>("periodic_extension", false); bool turn_normals = param.getDefault<bool>("turn_normals", false); grid.processEclipseFormat(deck, periodic_extension, turn_normals); // Save EGRID file in case we are writing ECL output. if (param.getDefault("output_ecl", false)) { OPM_THROW(std::runtime_error, "Saving to EGRID files is not yet implemented"); /* boost::filesystem::path ecl_path(ecl_file); const std::vector<int>& globalCell = grid.globalCell(); ecl_path.replace_extension(".EGRID"); parser.saveEGRID(ecl_path.string() , (int) globalCell.size() , &globalCell[0]); */ } double perm_threshold_md = param.getDefault("perm_threshold_md", 0.0); double perm_threshold = Opm::unit::convert::from(perm_threshold_md, Opm::prefix::milli*Opm::unit::darcy); std::string rock_list = param.getDefault<std::string>("rock_list", "no_list"); std::string* rl_ptr = (rock_list == "no_list") ? 0 : &rock_list; bool use_j = param.getDefault("use_jfunction_scaling", useJ<ResProp<3> >()); double sigma = 1.0; double theta = 0.0; if (use_j) { sigma = param.getDefault("sigma", sigma); theta = param.getDefault("theta", theta); } if (param.has("viscosity1") || param.has("viscosity2")) { double v1 = param.getDefault("viscosity1", 0.001); double v2 = param.getDefault("viscosity2", 0.003); res_prop.setViscosities(v1, v2); } res_prop.init(deck, grid.globalCell(), perm_threshold, rl_ptr, use_j, sigma, theta); } else if (fileformat == "cartesian") { std::array<int, 3> dims = {{ param.getDefault<int>("nx", 1), param.getDefault<int>("ny", 1), param.getDefault<int>("nz", 1) }}; std::array<double, 3> cellsz = {{ param.getDefault<double>("dx", 1.0), param.getDefault<double>("dy", 1.0), param.getDefault<double>("dz", 1.0) }}; grid.createCartesian(dims, cellsz); double default_poro = param.getDefault("default_poro", 0.2); double default_perm_md = param.getDefault("default_perm_md", 100.0); double default_perm = Opm::unit::convert::from(default_perm_md, Opm::prefix::milli*Opm::unit::darcy); OPM_MESSAGE("Warning: For generated cartesian grids, we use uniform reservoir properties."); res_prop.init(grid.size(0), default_poro, default_perm); } else { OPM_THROW(std::runtime_error, "Unknown file format string: " << fileformat); } if (param.getDefault("use_unique_boundary_ids", false)) { grid.setUniqueBoundaryIds(true); } }