Esempio n. 1
0
Eigen::VectorXf testEigen2(const Eigen::MatrixXf &A,const Eigen::VectorXf &b){
	Eigen::VectorXf x(size);
	Eigen::ConjugateGradient<Eigen::MatrixXf > cg;
	cg.compute(A);
	x = cg.solve(b);
	std::cout << "#iterations:     " << cg.iterations() << std::endl;
	std::cout << "estimated error: " << cg.error()      << std::endl;

	return x;
}
int main()
{
  int n = 10;
  Eigen::SparseMatrix<double> S = Eigen::MatrixXd::Random(n,n).sparseView(0.5,1);
  S = S.transpose()*S;

  MatrixReplacement A;
  A.attachMyMatrix(S);

  Eigen::VectorXd b(n), x;
  b.setRandom();

  // Solve Ax = b using various iterative solver with matrix-free version:
  {
    Eigen::ConjugateGradient<MatrixReplacement, Eigen::Lower|Eigen::Upper, Eigen::IdentityPreconditioner> cg;
    cg.compute(A);
    x = cg.solve(b);
    std::cout << "CG:       #iterations: " << cg.iterations() << ", estimated error: " << cg.error() << std::endl;
  }

  {
    Eigen::BiCGSTAB<MatrixReplacement, Eigen::IdentityPreconditioner> bicg;
    bicg.compute(A);
    x = bicg.solve(b);
    std::cout << "BiCGSTAB: #iterations: " << bicg.iterations() << ", estimated error: " << bicg.error() << std::endl;
  }

  {
    Eigen::GMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
    gmres.compute(A);
    x = gmres.solve(b);
    std::cout << "GMRES:    #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
  }

  {
    Eigen::DGMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
    gmres.compute(A);
    x = gmres.solve(b);
    std::cout << "DGMRES:   #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
  }

  {
    Eigen::MINRES<MatrixReplacement, Eigen::Lower|Eigen::Upper, Eigen::IdentityPreconditioner> minres;
    minres.compute(A);
    x = minres.solve(b);
    std::cout << "MINRES:   #iterations: " << minres.iterations() << ", estimated error: " << minres.error() << std::endl;
  }
}
Esempio n. 3
0
void BasicCGSolver<Real>::solve(const SparseMatrix &A, const Vector &rhs, Vector &result) const
{
	Eigen::ConjugateGradient<SparseMatrix > cg;
	cg.compute(A);
	result = cg.solve(rhs);
}