Eigen::MatrixXd Tra_via0( double x0 , double v0 , double a0, double xf , double vf , double af, double smp , double tf ) /* simple minimum jerk trajectory x0 : position at initial state v0 : velocity at initial state a0 : acceleration at initial state xf : position at final state vf : velocity at final state af : acceleration at final state smp : sampling time tf : movement time */ { Eigen::MatrixXd A( 3 , 3 ); Eigen::MatrixXd B( 3 , 1 ); A << pow( tf , 3 ) , pow( tf , 4 ) , pow( tf , 5 ), 3 * pow( tf , 2 ) , 4 * pow( tf , 3 ) , 5 * pow( tf , 4 ), 6 * tf , 12 * pow( tf , 2 ) , 20 * pow( tf , 3 ); B << xf - x0 - v0 * tf - a0 * pow( tf , 2 ) / 2, vf - v0 - a0 * tf, af - a0 ; Eigen::Matrix<double,3,1> C = A.inverse() * B; double N; N = tf / smp; int NN = round( N + 1 ); Eigen::MatrixXd Time = Eigen::MatrixXd::Zero( NN , 1 ); Eigen::MatrixXd Tra = Eigen::MatrixXd::Zero( NN , 1 ); int i; for ( i = 1; i <= NN; i++ ) Time.coeffRef( i - 1 , 0 ) = ( i - 1 ) * smp; for ( i = 1; i <= NN; i++ ) { Tra.coeffRef(i-1,0) = x0 + v0 * Time.coeff( i - 1 ) + 0.5 * a0 * pow( Time.coeff( i - 1 ) , 2 ) + C.coeff( 0 , 0 ) * pow( Time.coeff( i - 1 ) , 3 ) + C.coeff( 1 , 0 ) * pow( Time.coeff( i - 1 ) , 4 ) + C.coeff( 2 , 0 ) * pow( Time.coeff( i - 1 ) , 5 ); } return Tra; }
void GreenStrain_LIMSolver2D::computeHessian(const Eigen::Matrix<double,Eigen::Dynamic,1>& x, const Eigen::Matrix<double*,Eigen::Dynamic,1>& hess) { // green strain tensor energy Eigen::Matrix<double,2,3> S; for(int t=0;t<mesh->Triangles->rows();t++) { Eigen::Vector2d A(x[TriangleVertexIdx.coeff(0,t)],x[TriangleVertexIdx.coeff(1,t)]); Eigen::Vector2d B(x[TriangleVertexIdx.coeff(2,t)],x[TriangleVertexIdx.coeff(3,t)]); Eigen::Vector2d C(x[TriangleVertexIdx.coeff(4,t)],x[TriangleVertexIdx.coeff(5,t)]); Eigen::Matrix<double,2,3> V; V.col(0) = A; V.col(1) = B; V.col(2) = C; // hessian(E) = 4*r_x'*((SMM'V'V+VMM'*(V'S+SV))*MM' - SMM')*c_x Eigen::Matrix3d VTV = V.transpose()*V; Eigen::Matrix3d MMT = MMTs.block<3,3>(0,3*t); Eigen::Matrix<double,2,3> VMMT = V*MMT; Eigen::Matrix3d MMTVTV = MMT*VTV; int numElem = 0; for(int r=0;r<6;r++) { S = Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic>::Zero(2,3); S.coeffRef(r) = 1; Eigen::Matrix<double,2,3> Temp = 4*((S*MMTVTV + VMMT*(V.transpose()*S+S.transpose()*V))*MMT - S*MMT); for(int c=r;c<6;c++) *denseHessianCoeffs(numElem++,t) += Temp.coeff(c)*Divider; } } }
void GreenStrain_LIMSolver2D::computeGradient(const Eigen::Matrix<double,Eigen::Dynamic,1>& x, Eigen::Matrix<double,Eigen::Dynamic,1>& grad) { // green strain energy for(int t=0;t<mesh->Triangles->rows();t++) { Eigen::Vector2d A(x[TriangleVertexIdx.coeff(0,t)],x[TriangleVertexIdx.coeff(1,t)]); Eigen::Vector2d B(x[TriangleVertexIdx.coeff(2,t)],x[TriangleVertexIdx.coeff(3,t)]); Eigen::Vector2d C(x[TriangleVertexIdx.coeff(4,t)],x[TriangleVertexIdx.coeff(5,t)]); Eigen::Matrix<double,2,3> V; V.col(0) = A; V.col(1) = B; V.col(2) = C; // jacobian(E) = 4(VMM'V'VMM' - VMM') Eigen::Matrix<double,2,3> VMMT = V*MMTs.block<3,3>(0,3*t); Eigen::Matrix<double,2,3> T = 4*(VMMT*V.transpose()*VMMT - VMMT); for(int i=0;i<6;i++) grad[TriangleVertexIdx.coeff(i,t)] += T.coeff(i)*Divider; } }
void GreenStrain_LIMSolver3D::computeGradient(const Eigen::Matrix<double,Eigen::Dynamic,1>& x, Eigen::Matrix<double,Eigen::Dynamic,1>& grad) { // green strain energy for(int t=0;t<mesh->Tetrahedra->rows();t++) { Eigen::Vector3d A(x[TetrahedronVertexIdx.coeff(0,t)],x[TetrahedronVertexIdx.coeff(1,t)],x[TetrahedronVertexIdx.coeff(2,t)]); Eigen::Vector3d B(x[TetrahedronVertexIdx.coeff(3,t)],x[TetrahedronVertexIdx.coeff(4,t)],x[TetrahedronVertexIdx.coeff(5,t)]); Eigen::Vector3d C(x[TetrahedronVertexIdx.coeff(6,t)],x[TetrahedronVertexIdx.coeff(7,t)],x[TetrahedronVertexIdx.coeff(8,t)]); Eigen::Vector3d D(x[TetrahedronVertexIdx.coeff(9,t)],x[TetrahedronVertexIdx.coeff(10,t)],x[TetrahedronVertexIdx.coeff(11,t)]); Eigen::Matrix<double,3,4> V; V.col(0) = A; V.col(1) = B; V.col(2) = C; V.col(3) = D; // jacobian(E) = 4(VMM'V'VMM' - VMM') Eigen::Matrix<double,3,4> VMMT = V*MMTs.block<4,4>(0,4*t); Eigen::Matrix<double,3,4> T = 4*(VMMT*V.transpose()*VMMT - VMMT); for(int i=0;i<12;i++) grad[TetrahedronVertexIdx.coeff(i,t)] += T.coeff(i)*Divider; } }
void GreenStrain_LIMSolver3D::computeHessian(const Eigen::Matrix<double,Eigen::Dynamic,1>& x, const Eigen::Matrix<double*,Eigen::Dynamic,1>& hess) { // green strain tensor energy Eigen::Matrix<double,3,4> S; for(int t=0;t<mesh->Tetrahedra->rows();t++) { Eigen::Vector3d A(x[TetrahedronVertexIdx.coeff(0,t)],x[TetrahedronVertexIdx.coeff(1,t)],x[TetrahedronVertexIdx.coeff(2,t)]); Eigen::Vector3d B(x[TetrahedronVertexIdx.coeff(3,t)],x[TetrahedronVertexIdx.coeff(4,t)],x[TetrahedronVertexIdx.coeff(5,t)]); Eigen::Vector3d C(x[TetrahedronVertexIdx.coeff(6,t)],x[TetrahedronVertexIdx.coeff(7,t)],x[TetrahedronVertexIdx.coeff(8,t)]); Eigen::Vector3d D(x[TetrahedronVertexIdx.coeff(9,t)],x[TetrahedronVertexIdx.coeff(10,t)],x[TetrahedronVertexIdx.coeff(11,t)]); Eigen::Matrix<double,3,4> V; V.col(0) = A; V.col(1) = B; V.col(2) = C; V.col(3) = D; // hessian(E) = 4*r_x'*((SMM'V'V+VMM'*(V'S+SV))*MM' - SMM')*c_x Eigen::Matrix<double,4,4> VTV = V.transpose()*V; Eigen::Matrix<double,4,4> MMT = MMTs.block<4,4>(0,4*t); Eigen::Matrix<double,3,4> VMMT = V*MMT; Eigen::Matrix<double,4,4> MMTVTV = MMT*VTV; int numElem = 0; for(int r=0;r<12;r++) { S = Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic>::Zero(3,4); S.coeffRef(r) = 1; Eigen::Matrix<double,3,4> Temp = 4*((S*MMTVTV + VMMT*(V.transpose()*S+S.transpose()*V))*MMT - S*MMT); for(int c=r;c<12;c++) *denseHessianCoeffs(numElem++,t) += Temp.coeff(c)*Divider; } } }
template<typename PointT> void pcl::search::OrganizedNeighbor<PointT>::estimateProjectionMatrix () { // internally we calculate with double but store the result into float matrices. typedef double Scalar; projection_matrix_.setZero (); if (input_->height == 1 || input_->width == 1) { PCL_ERROR ("[pcl::%s::estimateProjectionMatrix] Input dataset is not organized!\n", getName ().c_str ()); return; } // we just want to use every 16th column and row -> skip = 2^4 const unsigned int skip = input_->width >> 4; Eigen::Matrix<Scalar, 4, 4> A = Eigen::Matrix<Scalar, 4, 4>::Zero (); Eigen::Matrix<Scalar, 4, 4> B = Eigen::Matrix<Scalar, 4, 4>::Zero (); Eigen::Matrix<Scalar, 4, 4> C = Eigen::Matrix<Scalar, 4, 4>::Zero (); Eigen::Matrix<Scalar, 4, 4> D = Eigen::Matrix<Scalar, 4, 4>::Zero (); for (unsigned yIdx = 0, idx = 0; yIdx < input_->height; yIdx += skip, idx += input_->width * (skip-1)) { for (unsigned xIdx = 0; xIdx < input_->width; xIdx += skip, idx += skip) { const PointT& point = input_->points[idx]; if (isFinite (point)) { Scalar xx = point.x * point.x; Scalar xy = point.x * point.y; Scalar xz = point.x * point.z; Scalar yy = point.y * point.y; Scalar yz = point.y * point.z; Scalar zz = point.z * point.z; Scalar xx_yy = xIdx * xIdx + yIdx * yIdx; A.coeffRef (0) += xx; A.coeffRef (1) += xy; A.coeffRef (2) += xz; A.coeffRef (3) += point.x; A.coeffRef (5) += yy; A.coeffRef (6) += yz; A.coeffRef (7) += point.y; A.coeffRef (10) += zz; A.coeffRef (11) += point.z; A.coeffRef (15) += 1.0; B.coeffRef (0) -= xx * xIdx; B.coeffRef (1) -= xy * xIdx; B.coeffRef (2) -= xz * xIdx; B.coeffRef (3) -= point.x * xIdx; B.coeffRef (5) -= yy * xIdx; B.coeffRef (6) -= yz * xIdx; B.coeffRef (7) -= point.y * xIdx; B.coeffRef (10) -= zz * xIdx; B.coeffRef (11) -= point.z * xIdx; B.coeffRef (15) -= xIdx; C.coeffRef (0) -= xx * yIdx; C.coeffRef (1) -= xy * yIdx; C.coeffRef (2) -= xz * yIdx; C.coeffRef (3) -= point.x * yIdx; C.coeffRef (5) -= yy * yIdx; C.coeffRef (6) -= yz * yIdx; C.coeffRef (7) -= point.y * yIdx; C.coeffRef (10) -= zz * yIdx; C.coeffRef (11) -= point.z * yIdx; C.coeffRef (15) -= yIdx; D.coeffRef (0) += xx * xx_yy; D.coeffRef (1) += xy * xx_yy; D.coeffRef (2) += xz * xx_yy; D.coeffRef (3) += point.x * xx_yy; D.coeffRef (5) += yy * xx_yy; D.coeffRef (6) += yz * xx_yy; D.coeffRef (7) += point.y * xx_yy; D.coeffRef (10) += zz * xx_yy; D.coeffRef (11) += point.z * xx_yy; D.coeffRef (15) += xx_yy; } } } makeSymmetric(A); makeSymmetric(B); makeSymmetric(C); makeSymmetric(D); Eigen::Matrix<Scalar, 12, 12> X = Eigen::Matrix<Scalar, 12, 12>::Zero (); X.topLeftCorner<4,4> () = A; X.block<4,4> (0, 8) = B; X.block<4,4> (8, 0) = B; X.block<4,4> (4, 4) = A; X.block<4,4> (4, 8) = C; X.block<4,4> (8, 4) = C; X.block<4,4> (8, 8) = D; Eigen::SelfAdjointEigenSolver<Eigen::Matrix<Scalar, 12, 12> > ei_symm(X); Eigen::Matrix<Scalar, 12, 12> eigen_vectors = ei_symm.eigenvectors(); // check whether the residual MSE is low. If its high, the cloud was not captured from a projective device. Eigen::Matrix<Scalar, 1, 1> residual_sqr = eigen_vectors.col (0).transpose () * X * eigen_vectors.col (0); if ( residual_sqr.coeff (0) > eps_ * A.coeff (15)) { PCL_ERROR ("[pcl::%s::radiusSearch] Input dataset is not from a projective device!\n", getName ().c_str ()); return; } projection_matrix_.coeffRef (0) = eigen_vectors.coeff (0); projection_matrix_.coeffRef (1) = eigen_vectors.coeff (12); projection_matrix_.coeffRef (2) = eigen_vectors.coeff (24); projection_matrix_.coeffRef (3) = eigen_vectors.coeff (36); projection_matrix_.coeffRef (4) = eigen_vectors.coeff (48); projection_matrix_.coeffRef (5) = eigen_vectors.coeff (60); projection_matrix_.coeffRef (6) = eigen_vectors.coeff (72); projection_matrix_.coeffRef (7) = eigen_vectors.coeff (84); projection_matrix_.coeffRef (8) = eigen_vectors.coeff (96); projection_matrix_.coeffRef (9) = eigen_vectors.coeff (108); projection_matrix_.coeffRef (10) = eigen_vectors.coeff (120); projection_matrix_.coeffRef (11) = eigen_vectors.coeff (132); if (projection_matrix_.coeff (0) < 0) projection_matrix_ *= -1.0; // get left 3x3 sub matrix, which contains K * R, with K = camera matrix = [[fx s cx] [0 fy cy] [0 0 1]] // and R being the rotation matrix KR_ = projection_matrix_.topLeftCorner <3, 3> (); // precalculate KR * KR^T needed by calculations during nn-search KR_KRT_ = KR_ * KR_.transpose (); }
template <typename PointT> double pcl::estimateProjectionMatrix ( typename pcl::PointCloud<PointT>::ConstPtr cloud, Eigen::Matrix<float, 3, 4, Eigen::RowMajor>& projection_matrix, const std::vector<int>& indices) { // internally we calculate with double but store the result into float matrices. typedef double Scalar; projection_matrix.setZero (); if (cloud->height == 1 || cloud->width == 1) { PCL_ERROR ("[pcl::estimateProjectionMatrix] Input dataset is not organized!\n"); return (-1.0); } Eigen::Matrix<Scalar, 4, 4, Eigen::RowMajor> A = Eigen::Matrix<Scalar, 4, 4, Eigen::RowMajor>::Zero (); Eigen::Matrix<Scalar, 4, 4, Eigen::RowMajor> B = Eigen::Matrix<Scalar, 4, 4, Eigen::RowMajor>::Zero (); Eigen::Matrix<Scalar, 4, 4, Eigen::RowMajor> C = Eigen::Matrix<Scalar, 4, 4, Eigen::RowMajor>::Zero (); Eigen::Matrix<Scalar, 4, 4, Eigen::RowMajor> D = Eigen::Matrix<Scalar, 4, 4, Eigen::RowMajor>::Zero (); pcl::ConstCloudIterator <PointT> pointIt (*cloud, indices); while (pointIt) { unsigned yIdx = pointIt.getCurrentPointIndex () / cloud->width; unsigned xIdx = pointIt.getCurrentPointIndex () % cloud->width; const PointT& point = *pointIt; if (pcl_isfinite (point.x)) { Scalar xx = point.x * point.x; Scalar xy = point.x * point.y; Scalar xz = point.x * point.z; Scalar yy = point.y * point.y; Scalar yz = point.y * point.z; Scalar zz = point.z * point.z; Scalar xx_yy = xIdx * xIdx + yIdx * yIdx; A.coeffRef (0) += xx; A.coeffRef (1) += xy; A.coeffRef (2) += xz; A.coeffRef (3) += point.x; A.coeffRef (5) += yy; A.coeffRef (6) += yz; A.coeffRef (7) += point.y; A.coeffRef (10) += zz; A.coeffRef (11) += point.z; A.coeffRef (15) += 1.0; B.coeffRef (0) -= xx * xIdx; B.coeffRef (1) -= xy * xIdx; B.coeffRef (2) -= xz * xIdx; B.coeffRef (3) -= point.x * static_cast<double>(xIdx); B.coeffRef (5) -= yy * xIdx; B.coeffRef (6) -= yz * xIdx; B.coeffRef (7) -= point.y * static_cast<double>(xIdx); B.coeffRef (10) -= zz * xIdx; B.coeffRef (11) -= point.z * static_cast<double>(xIdx); B.coeffRef (15) -= xIdx; C.coeffRef (0) -= xx * yIdx; C.coeffRef (1) -= xy * yIdx; C.coeffRef (2) -= xz * yIdx; C.coeffRef (3) -= point.x * static_cast<double>(yIdx); C.coeffRef (5) -= yy * yIdx; C.coeffRef (6) -= yz * yIdx; C.coeffRef (7) -= point.y * static_cast<double>(yIdx); C.coeffRef (10) -= zz * yIdx; C.coeffRef (11) -= point.z * static_cast<double>(yIdx); C.coeffRef (15) -= yIdx; D.coeffRef (0) += xx * xx_yy; D.coeffRef (1) += xy * xx_yy; D.coeffRef (2) += xz * xx_yy; D.coeffRef (3) += point.x * xx_yy; D.coeffRef (5) += yy * xx_yy; D.coeffRef (6) += yz * xx_yy; D.coeffRef (7) += point.y * xx_yy; D.coeffRef (10) += zz * xx_yy; D.coeffRef (11) += point.z * xx_yy; D.coeffRef (15) += xx_yy; } ++pointIt; } // while pcl::common::internal::makeSymmetric (A); pcl::common::internal::makeSymmetric (B); pcl::common::internal::makeSymmetric (C); pcl::common::internal::makeSymmetric (D); Eigen::Matrix<Scalar, 12, 12, Eigen::RowMajor> X = Eigen::Matrix<Scalar, 12, 12, Eigen::RowMajor>::Zero (); X.topLeftCorner<4,4> ().matrix () = A; X.block<4,4> (0, 8).matrix () = B; X.block<4,4> (8, 0).matrix () = B; X.block<4,4> (4, 4).matrix () = A; X.block<4,4> (4, 8).matrix () = C; X.block<4,4> (8, 4).matrix () = C; X.block<4,4> (8, 8).matrix () = D; Eigen::SelfAdjointEigenSolver<Eigen::Matrix<Scalar, 12, 12, Eigen::RowMajor> > ei_symm (X); Eigen::Matrix<Scalar, 12, 12, Eigen::RowMajor> eigen_vectors = ei_symm.eigenvectors (); // check whether the residual MSE is low. If its high, the cloud was not captured from a projective device. Eigen::Matrix<Scalar, 1, 1> residual_sqr = eigen_vectors.col (0).transpose () * X * eigen_vectors.col (0); double residual = residual_sqr.coeff (0); projection_matrix.coeffRef (0) = static_cast <float> (eigen_vectors.coeff (0)); projection_matrix.coeffRef (1) = static_cast <float> (eigen_vectors.coeff (12)); projection_matrix.coeffRef (2) = static_cast <float> (eigen_vectors.coeff (24)); projection_matrix.coeffRef (3) = static_cast <float> (eigen_vectors.coeff (36)); projection_matrix.coeffRef (4) = static_cast <float> (eigen_vectors.coeff (48)); projection_matrix.coeffRef (5) = static_cast <float> (eigen_vectors.coeff (60)); projection_matrix.coeffRef (6) = static_cast <float> (eigen_vectors.coeff (72)); projection_matrix.coeffRef (7) = static_cast <float> (eigen_vectors.coeff (84)); projection_matrix.coeffRef (8) = static_cast <float> (eigen_vectors.coeff (96)); projection_matrix.coeffRef (9) = static_cast <float> (eigen_vectors.coeff (108)); projection_matrix.coeffRef (10) = static_cast <float> (eigen_vectors.coeff (120)); projection_matrix.coeffRef (11) = static_cast <float> (eigen_vectors.coeff (132)); if (projection_matrix.coeff (0) < 0) projection_matrix *= -1.0; return (residual); }