Esempio n. 1
0
void init_patches()
{
  using namespace Eigen;
  using namespace igl;
  using namespace std;
  {
    VectorXi VCC;
    components(F,VCC);
    cout<<"There are "<<VCC.maxCoeff()+1<<" connected components of vertices."<<endl;
  }
  bfs_orient(F,F,CC);
  VectorXi I;
  switch(orient_method)
  {
    case ORIENT_METHOD_AO:
    {
      cout<<"orient_outward_ao()"<<endl;
      igl::embree::reorient_facets_raycast(V,F,F,I);
      break;
    }
    case ORIENT_METHOD_OUTWARD:
    default:
      cout<<"orient_outward()"<<endl;
      orient_outward(V,F,CC,F,I);
      break;
  }
  double num_cc = (double)CC.maxCoeff()+1.0;
  cout<<"There are "<<num_cc<<" 'manifold/orientable' patches of faces."<<endl;
}
Esempio n. 2
0
TEST(slice_into, sparse_identity)
{
  Eigen::SparseMatrix<double> A = Eigen::MatrixXd::Random(10,9).sparseView();
  Eigen::VectorXi I = Eigen::VectorXi::LinSpaced(A.rows(),0,A.rows()-1);
  Eigen::VectorXi J = Eigen::VectorXi::LinSpaced(A.cols(),0,A.cols()-1);
  {
    Eigen::SparseMatrix<double> B(I.maxCoeff()+1,J.maxCoeff()+1);
    igl::slice_into(A,I,J,B);
    test_common::assert_eq(A,B);
  }
  {
    Eigen::SparseMatrix<double> B(I.maxCoeff()+1,A.cols());
    igl::slice_into(A,I,1,B);
    test_common::assert_eq(A,B);
  }
  {
    Eigen::SparseMatrix<double> B(A.rows(),J.maxCoeff()+1);
    igl::slice_into(A,J,2,B);
    test_common::assert_eq(A,B);
  }
}
Esempio n. 3
0
TEST(slice_into,density_reverse)
{
  {
    Eigen::MatrixXd A = Eigen::MatrixXd::Random(10,9);
    Eigen::VectorXi I = Eigen::VectorXi::LinSpaced(A.rows(),A.rows()-1,0);
    Eigen::VectorXi J = Eigen::VectorXi::LinSpaced(A.cols(),0,A.cols()-1);
    Eigen::MatrixXd B(I.maxCoeff()+1,J.maxCoeff()+1);
    igl::slice_into(A,I,J,B);
    // reverse rows (i.e., reverse each column vector)
    Eigen::MatrixXd C = A.colwise().reverse().eval();
    test_common::assert_eq(B,C);
  }
  {
    Eigen::MatrixXd A = Eigen::MatrixXd::Random(10,9);
    Eigen::VectorXi I = Eigen::VectorXi::LinSpaced(A.rows(),0,A.rows()-1);
    Eigen::VectorXi J = Eigen::VectorXi::LinSpaced(A.cols(),A.cols()-1,0);
    Eigen::MatrixXd B(I.maxCoeff()+1,J.maxCoeff()+1);
    igl::slice_into(A,I,J,B);
    // reverse cols (i.e., reverse each row vector)
    Eigen::MatrixXd C = A.rowwise().reverse().eval();
    test_common::assert_eq(B,C);
  }
}
Esempio n. 4
0
void randomly_color(
  const Eigen::VectorXi & CC,
  Eigen::MatrixXd & C)
{
  using namespace Eigen;
  using namespace igl;
  using namespace std;
  VectorXi I;
  srand ( unsigned ( time(0) ) );
  double num_cc = (double)CC.maxCoeff()+1.0;
  randperm(num_cc,I);
  C.resize(CC.rows(),3);
  for(int f = 0;f<CC.rows();f++)
  {
    jet(
      (double)I(CC(f))/num_cc,
      C(f,0),
      C(f,1),
      C(f,2));
  }
}
Esempio n. 5
0
#include <test_common.h>
#include <igl/unique_rows.h>
#include <igl/matrix_to_list.h>

TEST_CASE("unique: matrix", "[igl]")
{
  Eigen::VectorXi A(12);
  A = (Eigen::VectorXd::Random(A.size(),1).array().abs()*9).cast<int>();
  Eigen::VectorXi C,IA,IC;
  igl::unique_rows(A,C,IA,IC);
  std::vector<bool> inA(A.maxCoeff()+1,false);
  for(int i = 0;i<A.size();i++)
  {
    inA[A(i)] = true;
    REQUIRE (C(IC(i)) == A(i));
  }
  std::vector<bool> inC(inA.size(),false);
  // Expect a column vector
  REQUIRE (C.cols() == 1);
  for(int i = 0;i<C.size();i++)
  {
    // Should be the first time finding this
    REQUIRE (!inC[C(i)]);
    // Mark as found
    inC[C(i)] = true;
    // Should be something also found in A
    REQUIRE (inA[C(i)]);
    REQUIRE (A(IA(i)) == C(i));
  }
  for(int i = 0;i<inC.size();i++)
  {
Esempio n. 6
0
void key(unsigned char key, int mouse_x, int mouse_y)
{
  using namespace std;
  using namespace Eigen;
  using namespace igl;
  int mod = glutGetModifiers();
  switch(key)
  {
    // ESC
    case char(27):
      rebar.save(REBAR_NAME);
    // ^C
    case char(3):
      exit(0);
    case 'I':
    case 'i':
      {
        push_undo();
        s.N *= -1.0;
        F = F.rowwise().reverse().eval();
        break;
      }
    case 'z':
    case 'Z':
      if(mod & GLUT_ACTIVE_COMMAND)
      {
        if(mod & GLUT_ACTIVE_SHIFT)
        {
          redo();
        }else
        {
          undo();
        }
      }else
      {
        push_undo();
        Quaterniond q;
        snap_to_canonical_view_quat(s.camera.m_rotation_conj,1.0,q);
        switch(center_type)
        {
          default:
          case CENTER_TYPE_ORBIT:
            s.camera.orbit(q.conjugate());
            break;
          case CENTER_TYPE_FPS:
            s.camera.turn_eye(q.conjugate());
            break;
        }
      }
      break;
    case 'u':
        mouse_wheel(0, 1,mouse_x,mouse_y);
        break;
    case 'j':
        mouse_wheel(0,-1,mouse_x,mouse_y);
        break;
    case 'n':
      cc_selected = (cc_selected + 1) % (CC.maxCoeff() + 2);
      cout << "selected cc: " << cc_selected << endl;
      glutPostRedisplay();
      break;
    default:
      if(!TwEventKeyboardGLUT(key,mouse_x,mouse_y))
      {
        cout<<"Unknown key command: "<<key<<" "<<int(key)<<endl;
      }
  }

}
Esempio n. 7
0
bool BF3PointCircle::getRobustCircle(const cvb::CvContourChainCode& contour, const unsigned int maxVotes, const unsigned int maxAccu, const int maxInvalidVotesInSeries, BFCircle& circle) {

	cvb::CvChainCodes::const_iterator it 		= contour.chainCode.begin();
	cvb::CvChainCodes::const_iterator it_beg	= contour.chainCode.begin();
	cvb::CvChainCodes::const_iterator it_end 	= contour.chainCode.end();

	unsigned int x = contour.startingPoint.x;
	unsigned int y = contour.startingPoint.y;

	BFContour bfContour;
	while(it != it_end) {

		bfContour.add(BFCoordinate<int>(static_cast<int>(x),static_cast<int>(y)));

		x += cvb::cvChainCodeMoves[*it][0];
		y += cvb::cvChainCodeMoves[*it][1];

		it++;
	}
	const unsigned int nContourPoints = bfContour.getPixelCount();

	BFRectangle rect = bfContour.getBounds();
	int nRows = bfRound(rect.getHeight());
	int nCols = bfRound(rect.getWidth());
	int x0 = bfRound(rect.getX0());
	int y0 = bfRound(rect.getY0());
	BFCoordinate<int> topLeft(x0,y0);

	// generate 2d histogram for circle center estimation
	Eigen::MatrixXi H = Eigen::MatrixXi::Zero(nRows, nCols);

	unsigned int votes = 0;
	int invalidVotesInSeries = 0;
	while(votes < maxVotes) {

		unsigned int randIndex1 = (rand() % nContourPoints);
		unsigned int randIndex2 = (rand() % nContourPoints);
		while(randIndex2 == randIndex1)
			randIndex2 = (rand() % nContourPoints);
		unsigned int randIndex3 = (rand() % nContourPoints);
		while(randIndex3 == randIndex2 || randIndex3 == randIndex1)
			randIndex3 = (rand() % nContourPoints);

		BFCoordinate<int> c1 = bfContour.getCoordinate(randIndex1) - topLeft;
		BFCoordinate<int> c2 = bfContour.getCoordinate(randIndex2) - topLeft;
		BFCoordinate<int> c3 = bfContour.getCoordinate(randIndex3) - topLeft;

		BFCoordinate<double> center;
		bool validCenter = getCenter(c1,c2,c3,center);

		if(!validCenter) {
			votes--;
			invalidVotesInSeries++;

			if(invalidVotesInSeries > maxInvalidVotesInSeries) {
				return false;
			}
			continue;
		}
		invalidVotesInSeries = 0;

		double cxD = center.getX();
		double cyD = center.getY();

		int cx = bfRound(cxD);
		int cy = bfRound(cyD);

		if(cx < 0 || cy < 0 || cx >= nRows || cy >= nCols) {
			continue;
		}
		else {
			H(cx,cy) += 1;

			if(H(cx,cy) >= static_cast<int>(maxAccu)) {
				break;
			}
		}

		votes++;
	}

	int finalX = 0;
	int finalY = 0;
	H.maxCoeff(&finalX,&finalY);
	finalX += bfRound(x0);
	finalY += bfRound(y0);

	// generate 1d histogram for circle radius estimation
	Eigen::VectorXi K = Eigen::VectorXi::Zero(bfMax(nRows,nCols));

	it = it_beg;
	x = contour.startingPoint.x;
	y = contour.startingPoint.y;

	while(it != it_end) {

		int r = bfRound(sqrt(pow(static_cast<double>(static_cast<int>(x)-finalX),2.0) + pow(static_cast<double>(static_cast<int>(y)-finalY),2.0)));

		if(r < K.rows()) {
			K(r) += 1;
		}

		x += cvb::cvChainCodeMoves[*it][0];
		y += cvb::cvChainCodeMoves[*it][1];

		it++;
	}

	int finalR = 0;
	K.maxCoeff(&finalR);
	circle.set(finalX,finalY,finalR);

	return true;
}
Esempio n. 8
0
bool BF3PointCircle::getRobustCircle(const BFContour& contour, const unsigned int maxVotes, const unsigned int maxAccu, const int maxInvalidVotesInSeries, BFCircle& circle) {

	unsigned int nContourPoints = contour.getPixelCount();
	BFRectangle rect = contour.getBounds();

	BFRectangle zeroRect;
	if(rect.equals(zeroRect)) {
		return false;
	}

	int nRows = bfRound(rect.getHeight());
	int nCols = bfRound(rect.getWidth());

	int x0 = bfRound(rect.getX0());
	int y0 = bfRound(rect.getY0());
	BFCoordinate<int> topLeft(x0,y0);

	int invalidVotesInSeries = 0;

	// generate 2d histogram for circle center estimation
	Eigen::MatrixXi H = Eigen::MatrixXi::Zero(nRows, nCols);
	unsigned int votes = 0;
	for(votes; votes <= maxVotes; ++votes) {
		// random index number in range [0,nContourPoints-1]
		unsigned int randIndex1 = (rand() % nContourPoints);
		unsigned int randIndex2 = (rand() % nContourPoints);
		while(randIndex2 == randIndex1)
			randIndex2 = (rand() % nContourPoints);
		unsigned int randIndex3 = (rand() % nContourPoints);
		while(randIndex3 == randIndex2 || randIndex3 == randIndex1)
			randIndex3 = (rand() % nContourPoints);

		BFCoordinate<int> c1 = contour.getCoordinate(randIndex1) - topLeft;
		BFCoordinate<int> c2 = contour.getCoordinate(randIndex2) - topLeft;
		BFCoordinate<int> c3 = contour.getCoordinate(randIndex3) - topLeft;

		BFCoordinate<double> center;
		bool validCenter = getCenter(c1,c2,c3,center);

		if(!validCenter) {
			votes--;
			invalidVotesInSeries++;

			if(invalidVotesInSeries > maxInvalidVotesInSeries) {
				return false;
			}
			continue;
		}

		invalidVotesInSeries = 0;

		double cxD = center.getX();
		double cyD = center.getY();

		int cx = bfRound(cxD);
		int cy = bfRound(cyD);

		if(cx < 0 || cy < 0 || cx >= nRows || cy >= nCols) {
			votes--;
			continue;
		}
		else {
			H(cx,cy) += 1;

			if(H(cx,cy) >= static_cast<int>(maxAccu)) {
				break;
			}
		}
	}

	int finalX = 0;
	int finalY = 0;
	H.maxCoeff(&finalX,&finalY);
	finalX += bfRound(x0);
	finalY += bfRound(y0);

	// generate 1d histogram for circle radius estimation
	Eigen::VectorXi K = Eigen::VectorXi::Zero(bfMax(nRows,nCols));
	const std::vector<BFCoordinate<int> >& cont = contour.getContour();
	std::vector<BFCoordinate<int> >::const_iterator iter = cont.begin();

	int x;
	int y;

	while(iter != cont.end()) {

		x = bfRound((*iter).getX());
		y = bfRound((*iter).getY());

		int r = bfRound(sqrt(pow(static_cast<double>(x-finalX),2) + pow(static_cast<double>(y-finalY),2)));

		if(r < K.rows()) {
			K(r) += 1;
		}

		iter++;
	}

	int finalR = 0;
	K.maxCoeff(&finalR);

	// return result
	circle.set(finalX,finalY,finalR);
	return true;
}
Esempio n. 9
0
bool init_arap()
{
  using namespace igl;
  using namespace Eigen;
  using namespace std;
  VectorXi b(num_in_selection(S));
  assert(S.rows() == V.rows());
  C.resize(S.rows(),3);
  MatrixXd bc = MatrixXd::Zero(b.size(),S.maxCoeff()+1);
  MatrixXi * Ele;
  if(T.rows()>0)
  {
    Ele = &T;
  }else
  {
    Ele = &F;
  }
  // get b from S
  {
    int bi = 0;
    for(int v = 0;v<S.rows(); v++)
    {
      if(S(v) >= 0)
      {
        b(bi) = v;
        bc(bi,S(v)) = 1;
        bi++;
        switch(S(v))
        {
          case 0:
            C.row(v) = RowVector3d(0.039,0.31,1);
            break;
          case 1:
            C.row(v) = RowVector3d(1,0.41,0.70);
            break;
          default:
            C.row(v) = RowVector3d(0.4,0.8,0.3);
            break;
        }
      }else
      {
        C.row(v) = RowVector3d(
          GOLD_DIFFUSE[0],
          GOLD_DIFFUSE[1],
          GOLD_DIFFUSE[2]);
      }
    }
  }
  // Store current mesh
  U = V;
  VectorXi _S;
  VectorXd _D;
  MatrixXd W;
  if(!harmonic(V,*Ele,b,bc,1,W))
  {
    return false;
  }
  //arap_data.with_dynamics = true;
  //arap_data.h = 0.5;
  //arap_data.max_iter = 100;
  //partition(W,100,arap_data.G,_S,_D);
  return arap_precomputation(V,*Ele,V.cols(),b,arap_data);
}