static bool _GatherRibAttributes( const UsdPrim &prim, double currentTime, FnKat::GroupBuilder& attrsBuilder) { bool hasAttrs = false; // USD SHADING STYLE ATTRIBUTES UsdRiStatements riStatements(prim); if (riStatements) { const std::vector<UsdProperty> props = riStatements.GetRiAttributes(); std::string attrName; TF_FOR_ALL(propItr, props) { UsdProperty prop = *propItr; if (!prop) continue; std::string nameSpace = riStatements.GetRiAttributeNameSpace(prop).GetString(); nameSpace = TfStringReplace(nameSpace, ":", ".") + "."; attrName = nameSpace + riStatements.GetRiAttributeName(prop).GetString(); VtValue vtValue; UsdAttribute usdAttr = prim.GetAttribute(prop.GetName()); if (usdAttr) { if (not usdAttr.Get(&vtValue, currentTime)) continue; // XXX asShaderParam really means: // "For arrays, as a single attr vs a type/value pair group" // The type/value pair group is meaningful for attrs who don't // have a formal type definition -- like a "user" RiAttribute. // // However, other array values (such as two-element shadingrate) // are not expecting the type/value pair form and will not // generate rib correctly. As such, we'll handle the "user" // attribute as a special case. bool asShaderParam = true; if (nameSpace == "user.") { asShaderParam = false; } attrsBuilder.set(attrName, PxrUsdKatanaUtils::ConvertVtValueToKatAttr(vtValue, asShaderParam) ); } else { UsdRelationship usdRel = prim.GetRelationship(prop.GetName()); attrsBuilder.set(attrName, PxrUsdKatanaUtils::ConvertRelTargetsToKatAttr(usdRel, /* asShaderParam */ false) ); } hasAttrs = true; } }
// For now, this is only used by the mesh op. If this logic needs to be // accessed elsewhere, it should move down into usdKatana. static void _CreateFaceSetsFromFaceSetAPI( const UsdPrim& prim, const PxrUsdKatanaUsdInPrivateData &data, FnKat::GeolibCookInterface& interface) { UsdGeomFaceSetAPI faceSet = UsdShadeMaterial::GetMaterialFaceSet(prim); bool isPartition = faceSet.GetIsPartition();; if (!isPartition) { TF_WARN("Found face set on prim <%s> that is not a partition.", prim.GetPath().GetText()); // continue here? } const double currentTime = data.GetCurrentTime(); VtIntArray faceCounts, faceIndices; faceSet.GetFaceCounts(&faceCounts, currentTime); faceSet.GetFaceIndices(&faceIndices, currentTime); SdfPathVector bindingTargets; faceSet.GetBindingTargets(&bindingTargets); size_t faceSetIdxStart = 0; for(size_t faceSetIdx = 0; faceSetIdx < faceCounts.size(); ++faceSetIdx) { size_t faceCount = faceCounts[faceSetIdx]; FnKat::GroupBuilder faceSetAttrs; faceSetAttrs.set("type", FnKat::StringAttribute("faceset")); faceSetAttrs.set("materialAssign", FnKat::StringAttribute( PxrUsdKatanaUtils::ConvertUsdMaterialPathToKatLocation( bindingTargets[faceSetIdx], data))); FnKat::IntBuilder facesBuilder; { std::vector<int> faceIndicesVec(faceCount); for (size_t faceIndicesIdx = 0; faceIndicesIdx < faceCount; ++faceIndicesIdx) { faceIndicesVec[faceIndicesIdx] = faceIndices[faceSetIdxStart + faceIndicesIdx]; } faceSetIdxStart += faceCount; facesBuilder.set(faceIndicesVec); } faceSetAttrs.set("geometry.faces", facesBuilder.build()); std::string faceSetName = TfStringPrintf("faceset_%zu", faceSetIdx); FnKat::GroupBuilder staticSceneCreateAttrs; staticSceneCreateAttrs.set("a", faceSetAttrs.build()); interface.createChild( faceSetName, "StaticSceneCreate", staticSceneCreateAttrs.build()); } }
void ShaderInfoHelper::addIntEnumParam(const std::string& name, int defaultValue, const char** options, unsigned int size) { EnumPairVector enums; FnKat::IntBuilder ib(1); ib.push_back(defaultValue); FnKat::Attribute defaultAttribute = ib.build(); FnKat::GroupBuilder params; params.set("options", FnKat::StringAttribute(options, size, 1)); params.set("widget", FnKat::StringAttribute("popup")); FnKat::Attribute hintsAttribute = params.build(); m_iri.localAddRenderObjectParam(m_rendererObjectInfo, name, kFnRendererObjectValueTypeInt, 0, defaultAttribute, hintsAttribute, enums); }
void ShaderInfoHelper::addFloatSliderParam(const std::string& name, float defaultValue, float sliderMin, float sliderMax) { EnumPairVector enums; FnKat::FloatBuilder fb(1); fb.push_back(defaultValue); FnKat::Attribute defaultAttribute = fb.build(); FnKat::GroupBuilder params; params.set("isDynamicArray", FnKat::IntAttribute(0)); params.set("slider", FnKat::IntAttribute(1)); params.set("slidermin", FnKat::FloatAttribute(sliderMin)); params.set("slidermax", FnKat::FloatAttribute(sliderMax)); // TODO: see if we can work out how to get log/exp sliders for roughness params... FnKat::Attribute hintsAttribute = params.build(); m_iri.localAddRenderObjectParam(m_rendererObjectInfo, name, kFnRendererObjectValueTypeFloat, 0, defaultAttribute, hintsAttribute, enums); }
void ShaderInfoHelper::addStringParam(const std::string& name) { EnumPairVector enums; FnKat::StringBuilder sb(1); sb.push_back(""); FnKat::Attribute defaultAttribute = sb.build(); FnKat::GroupBuilder params; params.set("widget", FnKat::StringAttribute("assetIdInput")); FnKat::Attribute hintsAttribute = params.build(); m_iri.localAddRenderObjectParam(m_rendererObjectInfo, name, kFnRendererObjectValueTypeString, 0, defaultAttribute, hintsAttribute, enums); }
void ShaderInfoHelper::addFloatParam(const std::string& name, float defaultValue) { EnumPairVector enums; FnKat::FloatBuilder fb(1); fb.push_back(defaultValue); FnKat::Attribute defaultAttribute = fb.build(); FnKat::GroupBuilder params; params.set("isDynamicArray", FnKat::IntAttribute(0)); FnKat::Attribute hintsAttribute = params.build(); m_iri.localAddRenderObjectParam(m_rendererObjectInfo, name, kFnRendererObjectValueTypeFloat, 0, defaultAttribute, hintsAttribute, enums); }
void ShaderInfoHelper::addColourParam(const std::string& name, Col3f defaultValue) { EnumPairVector enums; FnKat::FloatBuilder fb(3); fb.push_back(defaultValue.r); fb.push_back(defaultValue.g); fb.push_back(defaultValue.b); FnKat::Attribute defaultAttribute = fb.build(); FnKat::GroupBuilder params; params.set("panelWidget", FnKat::StringAttribute("color")); FnKat::Attribute hintsAttribute = params.build(); m_iri.localAddRenderObjectParam(m_rendererObjectInfo, name, kFnRendererObjectValueTypeColor3, 0, defaultAttribute, hintsAttribute, enums); }
void PxrUsdKatanaReadPointInstancer( const UsdGeomPointInstancer& instancer, const PxrUsdKatanaUsdInPrivateData& data, PxrUsdKatanaAttrMap& instancerAttrMap, PxrUsdKatanaAttrMap& sourcesAttrMap, PxrUsdKatanaAttrMap& instancesAttrMap, PxrUsdKatanaAttrMap& inputAttrMap) { const double currentTime = data.GetCurrentTime(); PxrUsdKatanaReadXformable(instancer, data, instancerAttrMap); // Get primvars for setting later. Unfortunatley, the only way to get them // out of the attr map is to build it, which will cause its contents to be // cleared. We'll need to restore its contents before continuing. // FnKat::GroupAttribute instancerAttrs = instancerAttrMap.build(); FnKat::GroupAttribute primvarAttrs = instancerAttrs.getChildByName("geometry.arbitrary"); for (int64_t i = 0; i < instancerAttrs.getNumberOfChildren(); ++i) { instancerAttrMap.set(instancerAttrs.getChildName(i), instancerAttrs.getChildByIndex(i)); } instancerAttrMap.set("type", FnKat::StringAttribute("usd point instancer")); const std::string fileName = data.GetUsdInArgs()->GetFileName(); instancerAttrMap.set("info.usd.fileName", FnKat::StringAttribute(fileName)); FnKat::GroupAttribute inputAttrs = inputAttrMap.build(); const std::string katOutputPath = FnKat::StringAttribute( inputAttrs.getChildByName("outputLocationPath")).getValue("", false); if (katOutputPath.empty()) { _LogAndSetError(instancerAttrMap, "No output location path specified"); return; } // // Validate instancer data. // const std::string instancerPath = instancer.GetPath().GetString(); UsdStageWeakPtr stage = instancer.GetPrim().GetStage(); // Prototypes (required) // SdfPathVector protoPaths; instancer.GetPrototypesRel().GetTargets(&protoPaths); if (protoPaths.empty()) { _LogAndSetError(instancerAttrMap, "Instancer has no prototypes"); return; } _PathToPrimMap primCache; for (auto protoPath : protoPaths) { const UsdPrim &protoPrim = stage->GetPrimAtPath(protoPath); primCache[protoPath] = protoPrim; } // Indices (required) // VtIntArray protoIndices; if (!instancer.GetProtoIndicesAttr().Get(&protoIndices, currentTime)) { _LogAndSetError(instancerAttrMap, "Instancer has no prototype indices"); return; } const size_t numInstances = protoIndices.size(); if (numInstances == 0) { _LogAndSetError(instancerAttrMap, "Instancer has no prototype indices"); return; } for (auto protoIndex : protoIndices) { if (protoIndex < 0 || static_cast<size_t>(protoIndex) >= protoPaths.size()) { _LogAndSetError(instancerAttrMap, TfStringPrintf( "Out of range prototype index %d", protoIndex)); return; } } // Mask (optional) // std::vector<bool> pruneMaskValues = instancer.ComputeMaskAtTime(currentTime); if (!pruneMaskValues.empty() and pruneMaskValues.size() != numInstances) { _LogAndSetError(instancerAttrMap, "Mismatch in length of indices and mask"); return; } // Positions (required) // UsdAttribute positionsAttr = instancer.GetPositionsAttr(); if (!positionsAttr.HasValue()) { _LogAndSetError(instancerAttrMap, "Instancer has no positions"); return; } // // Compute instance transform matrices. // const double timeCodesPerSecond = stage->GetTimeCodesPerSecond(); // Gather frame-relative sample times and add them to the current time to // generate absolute sample times. // const std::vector<double> &motionSampleTimes = data.GetMotionSampleTimes(positionsAttr); const size_t sampleCount = motionSampleTimes.size(); std::vector<UsdTimeCode> sampleTimes(sampleCount); for (size_t a = 0; a < sampleCount; ++a) { sampleTimes[a] = UsdTimeCode(currentTime + motionSampleTimes[a]); } // Get velocityScale from the opArgs. // float velocityScale = FnKat::FloatAttribute( inputAttrs.getChildByName("opArgs.velocityScale")).getValue(1.0f, false); // XXX Replace with UsdGeomPointInstancer::ComputeInstanceTransformsAtTime. // std::vector<std::vector<GfMatrix4d>> xformSamples(sampleCount); const size_t numXformSamples = _ComputeInstanceTransformsAtTime(xformSamples, instancer, sampleTimes, UsdTimeCode(currentTime), timeCodesPerSecond, numInstances, positionsAttr, velocityScale); if (numXformSamples == 0) { _LogAndSetError(instancerAttrMap, "Could not compute " "sample/topology-invarying instance " "transform matrix"); return; } // // Compute prototype bounds. // bool aggregateBoundsValid = false; std::vector<double> aggregateBounds; // XXX Replace with UsdGeomPointInstancer::ComputeExtentAtTime. // VtVec3fArray aggregateExtent; if (_ComputeExtentAtTime( aggregateExtent, data.GetUsdInArgs(), xformSamples, motionSampleTimes, protoIndices, protoPaths, primCache, pruneMaskValues)) { aggregateBoundsValid = true; aggregateBounds.resize(6); aggregateBounds[0] = aggregateExtent[0][0]; // min x aggregateBounds[1] = aggregateExtent[1][0]; // max x aggregateBounds[2] = aggregateExtent[0][1]; // min y aggregateBounds[3] = aggregateExtent[1][1]; // max y aggregateBounds[4] = aggregateExtent[0][2]; // min z aggregateBounds[5] = aggregateExtent[1][2]; // max z } // // Build sources. Keep track of which instances use them. // FnGeolibServices::StaticSceneCreateOpArgsBuilder sourcesBldr(false); std::vector<int> instanceIndices; instanceIndices.reserve(numInstances); std::vector<std::string> instanceSources; instanceSources.reserve(protoPaths.size()); std::map<std::string, int> instanceSourceIndexMap; std::vector<int> omitList; omitList.reserve(numInstances); std::map<SdfPath, std::string> protoPathsToKatPaths; for (size_t i = 0; i < numInstances; ++i) { int index = protoIndices[i]; // Check to see if we are pruned. // bool isPruned = (!pruneMaskValues.empty() and pruneMaskValues[i] == false); if (isPruned) { omitList.push_back(i); } const SdfPath &protoPath = protoPaths[index]; // Compute the full (Katana) path to this prototype. // std::string fullProtoPath; std::map<SdfPath, std::string>::const_iterator pptkpIt = protoPathsToKatPaths.find(protoPath); if (pptkpIt != protoPathsToKatPaths.end()) { fullProtoPath = pptkpIt->second; } else { _PathToPrimMap::const_iterator pcIt = primCache.find(protoPath); const UsdPrim &protoPrim = pcIt->second; if (!protoPrim) { continue; } // Determine where (what path) to start building the prototype prim // such that its material bindings will be preserved. This could be // the prototype path itself or an ancestor path. // SdfPathVector commonPrefixes; UsdRelationship materialBindingsRel = UsdShadeMaterial::GetBindingRel(protoPrim); auto assetAPI = UsdModelAPI(protoPrim); std::string assetName; bool isReferencedModelPrim = assetAPI.IsModel() and assetAPI.GetAssetName(&assetName); if (!materialBindingsRel or isReferencedModelPrim) { // The prim has no material bindings or is a referenced model // prim (meaning that materials are defined below it); start // building at the prototype path. // commonPrefixes.push_back(protoPath); } else { SdfPathVector materialPaths; materialBindingsRel.GetForwardedTargets(&materialPaths); for (auto materialPath : materialPaths) { const SdfPath &commonPrefix = protoPath.GetCommonPrefix(materialPath); if (commonPrefix.GetString() == "/") { // XXX Unhandled case. // The prototype prim and its material are not under the // same parent; start building at the prototype path // (although it is likely that bindings will be broken). // commonPrefixes.push_back(protoPath); } else { // Start building at the common ancestor between the // prototype prim and its material. // commonPrefixes.push_back(commonPrefix); } } } // XXX Unhandled case. // We'll use the first common ancestor even if there is more than // one (which shouldn't appen if the prototype prim and its bindings // are under the same parent). // SdfPath::RemoveDescendentPaths(&commonPrefixes); const std::string buildPath = commonPrefixes[0].GetString(); // See if the path is a child of the point instancer. If so, we'll // match its hierarchy. If not, we'll put it under a 'prototypes' // group. // std::string relBuildPath; if (pystring::startswith(buildPath, instancerPath + "/")) { relBuildPath = pystring::replace( buildPath, instancerPath + "/", ""); } else { relBuildPath = "prototypes/" + FnGeolibUtil::Path::GetLeafName(buildPath); } // Start generating the full path to the prototype. // fullProtoPath = katOutputPath + "/" + relBuildPath; // Make the common ancestor our instance source. // sourcesBldr.setAttrAtLocation(relBuildPath, "type", FnKat::StringAttribute("instance source")); // Author a tracking attr. // sourcesBldr.setAttrAtLocation(relBuildPath, "info.usd.sourceUsdPath", FnKat::StringAttribute(buildPath)); // Tell the BuildIntermediate op to start building at the common // ancestor. // sourcesBldr.setAttrAtLocation(relBuildPath, "usdPrimPath", FnKat::StringAttribute(buildPath)); sourcesBldr.setAttrAtLocation(relBuildPath, "usdPrimName", FnKat::StringAttribute("geo")); if (protoPath.GetString() != buildPath) { // Finish generating the full path to the prototype. // fullProtoPath = fullProtoPath + "/geo" + pystring::replace( protoPath.GetString(), buildPath, ""); } // Create a mapping that will link the instance's index to its // prototype's full path. // instanceSourceIndexMap[fullProtoPath] = instanceSources.size(); instanceSources.push_back(fullProtoPath); // Finally, store the full path in the map so we won't have to do // this work again. // protoPathsToKatPaths[protoPath] = fullProtoPath; } instanceIndices.push_back(instanceSourceIndexMap[fullProtoPath]); } // // Build instances. // FnGeolibServices::StaticSceneCreateOpArgsBuilder instancesBldr(false); instancesBldr.createEmptyLocation("instances", "instance array"); instancesBldr.setAttrAtLocation("instances", "geometry.instanceSource", FnKat::StringAttribute(instanceSources, 1)); instancesBldr.setAttrAtLocation("instances", "geometry.instanceIndex", FnKat::IntAttribute(&instanceIndices[0], instanceIndices.size(), 1)); FnKat::DoubleBuilder instanceMatrixBldr(16); for (size_t a = 0; a < numXformSamples; ++a) { double relSampleTime = motionSampleTimes[a]; // Shove samples into the builder at the frame-relative sample time. If // motion is backwards, make sure to reverse time samples. std::vector<double> &matVec = instanceMatrixBldr.get( data.IsMotionBackward() ? PxrUsdKatanaUtils::ReverseTimeSample(relSampleTime) : relSampleTime); matVec.reserve(16 * numInstances); for (size_t i = 0; i < numInstances; ++i) { GfMatrix4d instanceXform = xformSamples[a][i]; const double *matArray = instanceXform.GetArray(); for (int j = 0; j < 16; ++j) { matVec.push_back(matArray[j]); } } } instancesBldr.setAttrAtLocation("instances", "geometry.instanceMatrix", instanceMatrixBldr.build()); if (!omitList.empty()) { instancesBldr.setAttrAtLocation("instances", "geometry.omitList", FnKat::IntAttribute(&omitList[0], omitList.size(), 1)); } instancesBldr.setAttrAtLocation("instances", "geometry.pointInstancerId", FnKat::StringAttribute(katOutputPath)); // // Transfer primvars. // FnKat::GroupBuilder instancerPrimvarsBldr; FnKat::GroupBuilder instancesPrimvarsBldr; for (int64_t i = 0; i < primvarAttrs.getNumberOfChildren(); ++i) { const std::string primvarName = primvarAttrs.getChildName(i); // Use "point" scope for the instancer. instancerPrimvarsBldr.set(primvarName, primvarAttrs.getChildByIndex(i)); instancerPrimvarsBldr.set(primvarName + ".scope", FnKat::StringAttribute("point")); // User "primitive" scope for the instances. instancesPrimvarsBldr.set(primvarName, primvarAttrs.getChildByIndex(i)); instancesPrimvarsBldr.set(primvarName + ".scope", FnKat::StringAttribute("primitive")); } instancerAttrMap.set("geometry.arbitrary", instancerPrimvarsBldr.build()); instancesBldr.setAttrAtLocation("instances", "geometry.arbitrary", instancesPrimvarsBldr.build()); // // Set the final aggregate bounds. // if (aggregateBoundsValid) { instancerAttrMap.set("bound", FnKat::DoubleAttribute(&aggregateBounds[0], 6, 2)); } // // Set proxy attrs. // instancerAttrMap.set("proxies", PxrUsdKatanaUtils::GetViewerProxyAttr(data)); // // Transfer builder results to our attr maps. // FnKat::GroupAttribute sourcesAttrs = sourcesBldr.build(); for (int64_t i = 0; i < sourcesAttrs.getNumberOfChildren(); ++i) { sourcesAttrMap.set( sourcesAttrs.getChildName(i), sourcesAttrs.getChildByIndex(i)); } FnKat::GroupAttribute instancesAttrs = instancesBldr.build(); for (int64_t i = 0; i < instancesAttrs.getNumberOfChildren(); ++i) { instancesAttrMap.set( instancesAttrs.getChildName(i), instancesAttrs.getChildByIndex(i)); } }