Esempio n. 1
0
/// CloneFunction - Return a copy of the specified function, but without
/// embedding the function into another module.  Also, any references specified
/// in the VMap are changed to refer to their mapped value instead of the
/// original one.  If any of the arguments to the function are in the VMap,
/// the arguments are deleted from the resultant function.  The VMap is
/// updated to include mappings from all of the instructions and basicblocks in
/// the function from their old to new values.
///
Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
                              bool ModuleLevelChanges,
                              ClonedCodeInfo *CodeInfo) {
  std::vector<Type*> ArgTypes;

  // The user might be deleting arguments to the function by specifying them in
  // the VMap.  If so, we need to not add the arguments to the arg ty vector
  //
  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
       I != E; ++I)
    if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
      ArgTypes.push_back(I->getType());

  // Create a new function type...
  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
                                    ArgTypes, F->getFunctionType()->isVarArg());

  // Create the new function...
  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());

  // Loop over the arguments, copying the names of the mapped arguments over...
  Function::arg_iterator DestI = NewF->arg_begin();
  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
       I != E; ++I)
    if (VMap.count(I) == 0) {   // Is this argument preserved?
      DestI->setName(I->getName()); // Copy the name over...
      VMap[I] = DestI++;        // Add mapping to VMap
    }

  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
  CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
  return NewF;
}
static X86MachineFunctionInfo calculateFunctionInfo(const Function *F,
                                                    const TargetData *TD) {
  X86MachineFunctionInfo Info;
  uint64_t Size = 0;

  switch (F->getCallingConv()) {
  case CallingConv::X86_StdCall:
    Info.setDecorationStyle(StdCall);
    break;
  case CallingConv::X86_FastCall:
    Info.setDecorationStyle(FastCall);
    break;
  default:
    return Info;
  }

  unsigned argNum = 1;
  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
       AI != AE; ++AI, ++argNum) {
    const Type* Ty = AI->getType();

    // 'Dereference' type in case of byval parameter attribute
    if (F->paramHasAttr(argNum, Attribute::ByVal))
      Ty = cast<PointerType>(Ty)->getElementType();

    // Size should be aligned to DWORD boundary
    Size += ((TD->getTypePaddedSize(Ty) + 3)/4)*4;
  }

  // We're not supporting tooooo huge arguments :)
  Info.setBytesToPopOnReturn((unsigned int)Size);
  return Info;
}
Esempio n. 3
0
void Andersen::collectConstraintsForGlobals(Module& M)
{
	// Create a pointer and an object for each global variable
	for (auto const& globalVal: M.globals())
	{
		NodeIndex gVal = nodeFactory.createValueNode(&globalVal);
		NodeIndex gObj = nodeFactory.createObjectNode(&globalVal);
		constraints.emplace_back(AndersConstraint::ADDR_OF, gVal, gObj);
	}

	// Functions and function pointers are also considered global
	for (auto const& f: M)
	{
		// If f is an addr-taken function, create a pointer and an object for it
		if (f.hasAddressTaken())
		{
			NodeIndex fVal = nodeFactory.createValueNode(&f);
			NodeIndex fObj = nodeFactory.createObjectNode(&f);
			constraints.emplace_back(AndersConstraint::ADDR_OF, fVal, fObj);
		}

		if (f.isDeclaration() || f.isIntrinsic())
			continue;

		// Create return node
		if (f.getFunctionType()->getReturnType()->isPointerTy())
		{
			nodeFactory.createReturnNode(&f);
		}

		// Create vararg node
		if (f.getFunctionType()->isVarArg())
			nodeFactory.createVarargNode(&f);

		// Add nodes for all formal arguments.
		for (Function::const_arg_iterator itr = f.arg_begin(), ite = f.arg_end(); itr != ite; ++itr)
		{
			if (isa<PointerType>(itr->getType()))
				nodeFactory.createValueNode(itr);
		}
	}

	// Init globals here since an initializer may refer to a global var/func below it
	for (auto const& globalVal: M.globals())
	{
		NodeIndex gObj = nodeFactory.getObjectNodeFor(&globalVal);
		assert(gObj != AndersNodeFactory::InvalidIndex && "Cannot find global object!");

		if (globalVal.hasDefinitiveInitializer())
		{
			addGlobalInitializerConstraints(gObj, globalVal.getInitializer());
		}
		else
		{
			// If it doesn't have an initializer (i.e. it's defined in another translation unit), it points to the universal set.
			constraints.emplace_back(AndersConstraint::COPY,
				gObj, nodeFactory.getUniversalObjNode());
		}
	}
}
Esempio n. 4
0
const Type* getArgumentType(const Function* f, const unsigned arg_index) {
    assert (f);
    assert (arg_index < f->arg_size());
    Function::const_arg_iterator A = f->arg_begin();
    for (unsigned i=0; i<arg_index; ++i) ++A; //is there a better way? :P
    return A->getType();
}
bool TriCoreCallingConvHook::isRegVali64Type (MachineFunction& _mf) {
	Function::const_arg_iterator FI;
	FI = _mf.getFunction()->arg_begin();
	std::advance(FI,curArg);
	outs() << "size: " << FI->getType()->getScalarSizeInBits() << "\n";
	return (FI->getType()->getScalarSizeInBits() == 64) ? true : false;
}
Esempio n. 6
0
// Clone OldFunc into NewFunc, transforming the old arguments into references to
// VMap values.
//
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
                             ValueToValueMapTy &VMap,
                             bool ModuleLevelChanges,
                             SmallVectorImpl<ReturnInst*> &Returns,
                             const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
  assert(NameSuffix && "NameSuffix cannot be null!");

#ifndef NDEBUG
  for (Function::const_arg_iterator I = OldFunc->arg_begin(), 
       E = OldFunc->arg_end(); I != E; ++I)
    assert(VMap.count(I) && "No mapping from source argument specified!");
#endif

  // Clone any attributes.
  if (NewFunc->arg_size() == OldFunc->arg_size())
    NewFunc->copyAttributesFrom(OldFunc);
  else {
    //Some arguments were deleted with the VMap. Copy arguments one by one
    for (Function::const_arg_iterator I = OldFunc->arg_begin(), 
           E = OldFunc->arg_end(); I != E; ++I)
      if (Argument* Anew = dyn_cast<Argument>(VMap[I]))
        Anew->addAttr( OldFunc->getAttributes()
                       .getParamAttributes(I->getArgNo() + 1));
    NewFunc->setAttributes(NewFunc->getAttributes()
                           .addAttr(0, OldFunc->getAttributes()
                                     .getRetAttributes()));
    NewFunc->setAttributes(NewFunc->getAttributes()
                           .addAttr(~0, OldFunc->getAttributes()
                                     .getFnAttributes()));

  }

  // Loop over all of the basic blocks in the function, cloning them as
  // appropriate.  Note that we save BE this way in order to handle cloning of
  // recursive functions into themselves.
  //
  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
       BI != BE; ++BI) {
    const BasicBlock &BB = *BI;

    // Create a new basic block and copy instructions into it!
    BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
    VMap[&BB] = CBB;                       // Add basic block mapping.

    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
      Returns.push_back(RI);
  }

  // Loop over all of the instructions in the function, fixing up operand
  // references as we go.  This uses VMap to do all the hard work.
  for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
         BE = NewFunc->end(); BB != BE; ++BB)
    // Loop over all instructions, fixing each one as we find it...
    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
      RemapInstruction(II, VMap,
                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
}
Esempio n. 7
0
void  ProgramCFG::setFuncVariable(const Function *F,string func, CFG* cfg, bool initial){
	for (Function::const_arg_iterator it = F->arg_begin(), E = F->arg_end();it != E; ++it) {
		Type *Ty = it->getType();
		if(initial){
			string varNum = it->getName();
			string varName = func+"_"+varNum;
			
			if(Ty->isPointerTy()){
				Type *ETy = Ty->getPointerElementType();
				int ID = cfg->counter_variable++;
				Variable var(varName, ID, PTR);
				cfg->variableList.push_back(var);
				
				InstParser::setVariable(cfg, NULL, ETy, varName, true);
				
			}
			else{
                VarType type;
                if(Ty->isIntegerTy())
                    type = INT;
                else if(Ty->isFloatingPointTy())
                    type = FP;
                else
                    errs()<<"0:programCFG.type error\n";
				int ID = cfg->counter_variable++;
				Variable var(varName, ID, type);
				cfg->variableList.push_back(var);
				cfg->mainInput.push_back(ID);
			}
		}
		else{
			int ID = cfg->counter_variable++;
			string varNum = it->getName();
			string varName = func+"_"+varNum;
			
            VarType type;
			if(Ty->isPointerTy())
				type = PTR;
			else if(Ty->isIntegerTy())
                type = INT;
            else if(Ty->isFloatingPointTy())
                type = FP;
            else
                errs()<<"1:programCFG.type error\n";

			if(!cfg->hasVariable(varName)){
				Variable var(varName, ID, type);
				cfg->variableList.push_back(var);
			}
			else
				errs()<<"1:setFuncVariable error 10086!!\t"<<varName<<"\n";
		}
	}
}
Esempio n. 8
0
bool AArch64CallLowering::LowerFormalArguments(
    MachineIRBuilder &MIRBuilder, const Function::ArgumentListType &Args,
    const SmallVectorImpl<unsigned> &VRegs) const {
  if (!EMIT_IMPLEMENTATION)
    return false;

  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = *MF.getFunction();

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());

  unsigned NumArgs = Args.size();
  Function::const_arg_iterator CurOrigArg = Args.begin();
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  for (unsigned i = 0; i != NumArgs; ++i, ++CurOrigArg) {
    MVT ValVT = MVT::getVT(CurOrigArg->getType());
    CCAssignFn *AssignFn =
        TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);
    bool Res =
        AssignFn(i, ValVT, ValVT, CCValAssign::Full, ISD::ArgFlagsTy(), CCInfo);
    assert(!Res && "Call operand has unhandled type");
    (void)Res;
  }
  assert(ArgLocs.size() == Args.size() &&
         "We have a different number of location and args?!");
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];

    assert(VA.isRegLoc() && "Not yet implemented");
    // Transform the arguments in physical registers into virtual ones.
    MIRBuilder.getMBB().addLiveIn(VA.getLocReg());
    MIRBuilder.buildInstr(TargetOpcode::COPY, VRegs[i], VA.getLocReg());

    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::BCvt:
      // We don't care about bitcast.
      break;
    case CCValAssign::AExt:
    case CCValAssign::SExt:
    case CCValAssign::ZExt:
      // Zero/Sign extend the register.
      assert(0 && "Not yet implemented");
      break;
    }
  }
  return true;
}
Esempio n. 9
0
void llvm::copyFunctionBody(Function &New, const Function &Orig,
                            ValueToValueMapTy &VMap) {
  if (!Orig.isDeclaration()) {
    Function::arg_iterator DestI = New.arg_begin();
    for (Function::const_arg_iterator J = Orig.arg_begin(); J != Orig.arg_end();
         ++J) {
      DestI->setName(J->getName());
      VMap[J] = DestI++;
    }

    SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
    CloneFunctionInto(&New, &Orig, VMap, /*ModuleLevelChanges=*/true, Returns);
  }
}
Esempio n. 10
0
/// AddFastCallStdCallSuffix - Microsoft fastcall and stdcall functions require
/// a suffix on their name indicating the number of words of arguments they
/// take.
static void AddFastCallStdCallSuffix(SmallVectorImpl<char> &OutName,
                                     const Function *F, const DataLayout &TD) {
  // Calculate arguments size total.
  unsigned ArgWords = 0;
  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
       AI != AE; ++AI) {
    Type *Ty = AI->getType();
    // 'Dereference' type in case of byval parameter attribute
    if (AI->hasByValAttr())
      Ty = cast<PointerType>(Ty)->getElementType();
    // Size should be aligned to DWORD boundary
    ArgWords += ((TD.getTypeAllocSize(Ty) + 3)/4)*4;
  }
  
  raw_svector_ostream(OutName) << '@' << ArgWords;
}
void PIC16AsmPrinter::EmitFunctionFrame(MachineFunction &MF) {
  const Function *F = MF.getFunction();
  const TargetData *TD = TM.getTargetData();
  // Emit the data section name.
  O << "\n"; 
  
  PIC16Section *fPDataSection =
    const_cast<PIC16Section *>(getObjFileLowering().
                                SectionForFrame(CurrentFnSym->getName()));
 
  fPDataSection->setColor(getFunctionColor(F)); 
  OutStreamer.SwitchSection(fPDataSection);
  
  // Emit function frame label
  O << PAN::getFrameLabel(CurrentFnSym->getName()) << ":\n";

  const Type *RetType = F->getReturnType();
  unsigned RetSize = 0; 
  if (RetType->getTypeID() != Type::VoidTyID) 
    RetSize = TD->getTypeAllocSize(RetType);
  
  //Emit function return value space
  // FIXME: Do not emit RetvalLable when retsize is zero. To do this
  // we will need to avoid printing a global directive for Retval label
  // in emitExternandGloblas.
  if(RetSize > 0)
     O << PAN::getRetvalLabel(CurrentFnSym->getName())
       << " RES " << RetSize << "\n";
  else
     O << PAN::getRetvalLabel(CurrentFnSym->getName()) << ": \n";
   
  // Emit variable to hold the space for function arguments 
  unsigned ArgSize = 0;
  for (Function::const_arg_iterator argi = F->arg_begin(),
           arge = F->arg_end(); argi != arge ; ++argi) {
    const Type *Ty = argi->getType();
    ArgSize += TD->getTypeAllocSize(Ty);
   }

  O << PAN::getArgsLabel(CurrentFnSym->getName()) << " RES " << ArgSize << "\n";

  // Emit temporary space
  int TempSize = PTLI->GetTmpSize();
  if (TempSize > 0)
    O << PAN::getTempdataLabel(CurrentFnSym->getName()) << " RES  "
      << TempSize << '\n';
}
Esempio n. 12
0
/// Microsoft fastcall and stdcall functions require a suffix on their name
/// indicating the number of words of arguments they take.
static void addByteCountSuffix(raw_ostream &OS, const Function *F,
                               const DataLayout &DL) {
  // Calculate arguments size total.
  unsigned ArgWords = 0;
  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
       AI != AE; ++AI) {
    Type *Ty = AI->getType();
    // 'Dereference' type in case of byval or inalloca parameter attribute.
    if (AI->hasByValOrInAllocaAttr())
      Ty = cast<PointerType>(Ty)->getElementType();
    // Size should be aligned to pointer size.
    unsigned PtrSize = DL.getPointerSize();
    ArgWords += RoundUpToAlignment(DL.getTypeAllocSize(Ty), PtrSize);
  }

  OS << '@' << ArgWords;
}
Esempio n. 13
0
void PIC16AsmPrinter::EmitFunctionFrame(MachineFunction &MF) {
  const Function *F = MF.getFunction();
  std::string FuncName = Mang->getValueName(F);
  const TargetData *TD = TM.getTargetData();
  // Emit the data section name.
  O << "\n"; 
  const char *SectionName = PAN::getFrameSectionName(CurrentFnName).c_str();

  const Section *fPDataSection = TAI->getNamedSection(SectionName,
                                                      SectionFlags::Writeable);
  SwitchToSection(fPDataSection);
  
  // Emit function frame label
  O << PAN::getFrameLabel(CurrentFnName) << ":\n";

  const Type *RetType = F->getReturnType();
  unsigned RetSize = 0; 
  if (RetType->getTypeID() != Type::VoidTyID) 
    RetSize = TD->getTypeAllocSize(RetType);
  
  //Emit function return value space
  // FIXME: Do not emit RetvalLable when retsize is zero. To do this
  // we will need to avoid printing a global directive for Retval label
  // in emitExternandGloblas.
  if(RetSize > 0)
     O << PAN::getRetvalLabel(CurrentFnName) << " RES " << RetSize << "\n";
  else
     O << PAN::getRetvalLabel(CurrentFnName) << ": \n";
   
  // Emit variable to hold the space for function arguments 
  unsigned ArgSize = 0;
  for (Function::const_arg_iterator argi = F->arg_begin(),
           arge = F->arg_end(); argi != arge ; ++argi) {
    const Type *Ty = argi->getType();
    ArgSize += TD->getTypeAllocSize(Ty);
   }

  O << PAN::getArgsLabel(CurrentFnName) << " RES " << ArgSize << "\n";

  // Emit temporary space
  int TempSize = PTLI->GetTmpSize();
  if (TempSize > 0 )
    O << PAN::getTempdataLabel(CurrentFnName) << " RES  " << TempSize <<"\n";
}
Esempio n. 14
0
  std::vector<Type*> lowerJuliaArrayArguments(Function *OldFunc) {

    Module* M = OldFunc->getParent();
    LLVMContext &context = M->getContext();
    NamedMDNode* JuliaArgs = M->getOrInsertNamedMetadata("julia.args");
    MDNode *node = JuliaArgs->getOperand(0);

    int operand = 0;
    std::vector<Type*> ArgTypes;
    
    for (Function::const_arg_iterator I = OldFunc->arg_begin(), E = OldFunc->arg_end(); I != E; ++I) { 

      Type* argType = I->getType();
      if (is_jl_array_type(argType)) {
        
        // Gets the type from custom metadata
        Value *value = node->getOperand(operand);
        if (MDString* mdstring = dyn_cast<MDString>(value)) {

          if (Type* type = extractType(context, mdstring->getString())) {
            ArgTypes.push_back(type);            
          } else {
            errs() << "Could not extract type: ";
            mdstring->print(errs());
            errs() << "\n";
            exit(1);
          }
        } else {
          errs() << "Could not extract type: ";
          value->print(errs());
          errs() << "\n";
          exit(1);
        }
        
        
      } else {
        ArgTypes.push_back(I->getType());
      }
      operand++;
    }

    return ArgTypes;
    
  }
Esempio n. 15
0
/// Identify lowered values that originated from f128 arguments and record
/// this.
void MipsCCState::PreAnalyzeFormalArgumentsForF128(
    const SmallVectorImpl<ISD::InputArg> &Ins) {
  const MachineFunction &MF = getMachineFunction();
  for (unsigned i = 0; i < Ins.size(); ++i) {
    Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();

    // SRet arguments cannot originate from f128 or {f128} returns so we just
    // push false. We have to handle this specially since SRet arguments
    // aren't mapped to an original argument.
    if (Ins[i].Flags.isSRet()) {
      OriginalArgWasF128.push_back(false);
      OriginalArgWasFloat.push_back(false);
      continue;
    }

    assert(Ins[i].getOrigArgIndex() < MF.getFunction()->arg_size());
    std::advance(FuncArg, Ins[i].getOrigArgIndex());

    OriginalArgWasF128.push_back(
        originalTypeIsF128(FuncArg->getType(), nullptr));
    OriginalArgWasFloat.push_back(FuncArg->getType()->isFloatingPointTy());
  }
}
Esempio n. 16
0
std::unique_ptr<Module> llvm::CloneModule(
    const Module *M, ValueToValueMapTy &VMap,
    std::function<bool(const GlobalValue *)> ShouldCloneDefinition) {
  // First off, we need to create the new module.
  std::unique_ptr<Module> New =
      llvm::make_unique<Module>(M->getModuleIdentifier(), M->getContext());
  New->setDataLayout(M->getDataLayout());
  New->setTargetTriple(M->getTargetTriple());
  New->setModuleInlineAsm(M->getModuleInlineAsm());
   
  // Loop over all of the global variables, making corresponding globals in the
  // new module.  Here we add them to the VMap and to the new Module.  We
  // don't worry about attributes or initializers, they will come later.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = new GlobalVariable(*New, 
                                            I->getValueType(),
                                            I->isConstant(), I->getLinkage(),
                                            (Constant*) nullptr, I->getName(),
                                            (GlobalVariable*) nullptr,
                                            I->getThreadLocalMode(),
                                            I->getType()->getAddressSpace());
    GV->copyAttributesFrom(&*I);
    VMap[&*I] = GV;
  }

  // Loop over the functions in the module, making external functions as before
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *NF =
        Function::Create(cast<FunctionType>(I->getValueType()),
                         I->getLinkage(), I->getName(), New.get());
    NF->copyAttributesFrom(&*I);
    VMap[&*I] = NF;
  }

  // Loop over the aliases in the module
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I) {
    if (!ShouldCloneDefinition(&*I)) {
      // An alias cannot act as an external reference, so we need to create
      // either a function or a global variable depending on the value type.
      // FIXME: Once pointee types are gone we can probably pick one or the
      // other.
      GlobalValue *GV;
      if (I->getValueType()->isFunctionTy())
        GV = Function::Create(cast<FunctionType>(I->getValueType()),
                              GlobalValue::ExternalLinkage, I->getName(),
                              New.get());
      else
        GV = new GlobalVariable(
            *New, I->getValueType(), false, GlobalValue::ExternalLinkage,
            (Constant *)nullptr, I->getName(), (GlobalVariable *)nullptr,
            I->getThreadLocalMode(), I->getType()->getAddressSpace());
      VMap[&*I] = GV;
      // We do not copy attributes (mainly because copying between different
      // kinds of globals is forbidden), but this is generally not required for
      // correctness.
      continue;
    }
    auto *GA = GlobalAlias::create(I->getValueType(),
                                   I->getType()->getPointerAddressSpace(),
                                   I->getLinkage(), I->getName(), New.get());
    GA->copyAttributesFrom(&*I);
    VMap[&*I] = GA;
  }
  
  // Now that all of the things that global variable initializer can refer to
  // have been created, loop through and copy the global variable referrers
  // over...  We also set the attributes on the global now.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = cast<GlobalVariable>(VMap[&*I]);
    if (!ShouldCloneDefinition(&*I)) {
      // Skip after setting the correct linkage for an external reference.
      GV->setLinkage(GlobalValue::ExternalLinkage);
      continue;
    }
    if (I->hasInitializer())
      GV->setInitializer(MapValue(I->getInitializer(), VMap));
  }

  // Similarly, copy over function bodies now...
  //
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *F = cast<Function>(VMap[&*I]);
    if (!ShouldCloneDefinition(&*I)) {
      // Skip after setting the correct linkage for an external reference.
      F->setLinkage(GlobalValue::ExternalLinkage);
      // Personality function is not valid on a declaration.
      F->setPersonalityFn(nullptr);
      continue;
    }
    if (!I->isDeclaration()) {
      Function::arg_iterator DestI = F->arg_begin();
      for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end();
           ++J) {
        DestI->setName(J->getName());
        VMap[&*J] = &*DestI++;
      }

      SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
      CloneFunctionInto(F, &*I, VMap, /*ModuleLevelChanges=*/true, Returns);
    }

    if (I->hasPersonalityFn())
      F->setPersonalityFn(MapValue(I->getPersonalityFn(), VMap));
  }

  // And aliases
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I) {
    // We already dealt with undefined aliases above.
    if (!ShouldCloneDefinition(&*I))
      continue;
    GlobalAlias *GA = cast<GlobalAlias>(VMap[&*I]);
    if (const Constant *C = I->getAliasee())
      GA->setAliasee(MapValue(C, VMap));
  }

  // And named metadata....
  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
         E = M->named_metadata_end(); I != E; ++I) {
    const NamedMDNode &NMD = *I;
    NamedMDNode *NewNMD = New->getOrInsertNamedMetadata(NMD.getName());
    for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
      NewNMD->addOperand(MapMetadata(NMD.getOperand(i), VMap));
  }

  return New;
}
Esempio n. 17
0
static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
                      const DataLayout &TD, GenericValue &Result) {
  ffi_cif cif;
  FunctionType *FTy = F->getFunctionType();
  const unsigned NumArgs = F->arg_size();

  // TODO: We don't have type information about the remaining arguments, because
  // this information is never passed into ExecutionEngine::runFunction().
  if (ArgVals.size() > NumArgs && F->isVarArg()) {
    report_fatal_error("Calling external var arg function '" + F->getName()
                      + "' is not supported by the Interpreter.");
  }

  unsigned ArgBytes = 0;

  std::vector<ffi_type*> args(NumArgs);
  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
       A != E; ++A) {
    const unsigned ArgNo = A->getArgNo();
    Type *ArgTy = FTy->getParamType(ArgNo);
    args[ArgNo] = ffiTypeFor(ArgTy);
    ArgBytes += TD.getTypeStoreSize(ArgTy);
  }

  SmallVector<uint8_t, 128> ArgData;
  ArgData.resize(ArgBytes);
  uint8_t *ArgDataPtr = ArgData.data();
  SmallVector<void*, 16> values(NumArgs);
  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
       A != E; ++A) {
    const unsigned ArgNo = A->getArgNo();
    Type *ArgTy = FTy->getParamType(ArgNo);
    values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
    ArgDataPtr += TD.getTypeStoreSize(ArgTy);
  }

  Type *RetTy = FTy->getReturnType();
  ffi_type *rtype = ffiTypeFor(RetTy);

  if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) ==
      FFI_OK) {
    SmallVector<uint8_t, 128> ret;
    if (RetTy->getTypeID() != Type::VoidTyID)
      ret.resize(TD.getTypeStoreSize(RetTy));
    ffi_call(&cif, Fn, ret.data(), values.data());
    switch (RetTy->getTypeID()) {
      case Type::IntegerTyID:
        switch (cast<IntegerType>(RetTy)->getBitWidth()) {
          case 8:  Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
          case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
          case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
          case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
        }
        break;
      case Type::FloatTyID:   Result.FloatVal   = *(float *) ret.data(); break;
      case Type::DoubleTyID:  Result.DoubleVal  = *(double*) ret.data(); break;
      case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
      default: break;
    }
    return true;
  }

  return false;
}
/* ************************************************************************** */
bool RangedAddressSanitizer::doInitialization(Module &M)
{
// Link FastAddressSanitizer functions into the target module
    LLVMContext & context = M.getContext();
    const char * fasanPath = getenv("FASANMODULE");
    
    if (! fasanPath) {
        return false;        
    }
    std::stringstream ss;
    ss << fasanPath;
    SMDiagnostic diag;
    Module * fasanModule = ParseIRFile(ss.str(), diag, context);

    if (!fasanModule) {
    	abort();
    }

#if 0 /* using LLVM linking facilities */
    Linker linker(&M);
    std::string linkErr;
    if (linker.linkInModule(fasanModule, Linker::DestroySource, &linkErr)) {
    	errs() << "[FASAN] Error while linking runtime module: " << fasanModule << "(!!)\n";
    	abort();
    }

#else
    PointerType * voidPtrTy = PointerType::getInt8PtrTy(context, 0);
    IntegerType * boolTy = IntegerType::get(context, 1);
    Type * voidTy = Type::getVoidTy(context);
    FunctionType * touchFunType = FunctionType::get(voidTy, ArrayRef<Type*>(voidPtrTy), false);
    FunctionType * verifyFunType = FunctionType::get(boolTy, ArrayRef<Type*>(voidPtrTy), false);

    ValueToValueMapTy reMap;
    reMap[fasanModule->getFunction("__fasan_touch")] = M.getOrInsertFunction("__fasan_touch", touchFunType);
    reMap[fasanModule->getFunction("__fasan_verify")] = M.getOrInsertFunction("__fasan_verify", verifyFunType);
    
    // migrate check function
    {
        std::string errMsg;
        Function * checkFunc = fasanModule->getFunction("__fasan_check");
        if (!checkFunc) {
                abort();
        }

#if 1
        FunctionType * checkFuncType = checkFunc->getFunctionType();
        Function * targetFunc = dyn_cast<Function>(M.getOrInsertFunction("__fasan_check", checkFuncType));
        assert(targetFunc && "function cast to const by getOrInsertFunc..?");

      // Loop over the arguments, copying the names of the mapped arguments over...
        Function::arg_iterator DestI = targetFunc->arg_begin();
        for (Function::const_arg_iterator I = checkFunc->arg_begin(), E = checkFunc->arg_end();
             I != E; ++I)
           if (reMap.count(I) == 0) {   // Is this argument preserved?
            DestI->setName(I->getName()); // Copy the name over...
            reMap[I] = DestI++;        // Add mapping to VMap
        }
        SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
        CloneFunctionInto(targetFunc, checkFunc, reMap, false, Returns, "", nullptr);

        targetFunc->addAttribute(0,Attribute::SanitizeAddress);

#else
        Function * clonedCheckFunc = CloneFunction(checkFunc, reMap, false, 0);
        assert(!M.getFunction("__fasan_check") && "already exists in module");
        M.getFunctionList().push_back(clonedCheckFunc);

        ReuseFn_ = clonedCheckFunc;
        clonedCheckFunc->setLinkage(GlobalValue::InternalLinkage); // avoid conflicts during linking

        // re-map fake use to local copy
        for (auto & BB : *clonedCheckFunc) {
            for (auto & Inst : BB) {
                RemapInstruction(&Inst, reMap, RF_IgnoreMissingEntries, 0, 0);
            }
        }
#endif
#endif
    }
    delete fasanModule;
    return true;
}
/// NaClValueEnumerator - Enumerate module-level information.
NaClValueEnumerator::NaClValueEnumerator(const Module *M) {
  // Create map for counting frequency of types, and set field
  // TypeCountMap accordingly.  Note: Pointer field TypeCountMap is
  // used to deal with the fact that types are added through various
  // method calls in this routine. Rather than pass it as an argument,
  // we use a field. The field is a pointer so that the memory
  // footprint of count_map can be garbage collected when this
  // constructor completes.
  TypeCountMapType count_map;
  TypeCountMap = &count_map;

  IntPtrType = IntegerType::get(M->getContext(), PNaClIntPtrTypeBitSize);

  // Enumerate the functions. Note: We do this before global
  // variables, so that global variable initializations can refer to
  // the functions without a forward reference.
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    EnumerateValue(I);
  }

  // Enumerate the global variables.
  FirstGlobalVarID = Values.size();
  for (Module::const_global_iterator I = M->global_begin(),
         E = M->global_end(); I != E; ++I)
    EnumerateValue(I);
  NumGlobalVarIDs = Values.size() - FirstGlobalVarID;

  // Enumerate the aliases.
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    EnumerateValue(I);

  // Remember what is the cutoff between globalvalue's and other constants.
  unsigned FirstConstant = Values.size();

  // Skip global variable initializers since they are handled within
  // WriteGlobalVars of file NaClBitcodeWriter.cpp.

  // Enumerate the aliasees.
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    EnumerateValue(I->getAliasee());

  // Insert constants that are named at module level into the slot
  // pool so that the module symbol table can refer to them...
  EnumerateValueSymbolTable(M->getValueSymbolTable());

  // Enumerate types used by function bodies and argument lists.
  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {

    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I)
      EnumerateType(I->getType());

    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
        // Don't generate types for elided pointer casts!
        if (IsElidedCast(I))
          continue;

        if (const SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
          // Handle switch instruction specially, so that we don't
          // write out unnecessary vector/array types used to model case
          // selectors.
          EnumerateOperandType(SI->getCondition());
        } else {
          for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
               OI != E; ++OI) {
            EnumerateOperandType(*OI);
          }
        }
        EnumerateType(I->getType());
      }
  }

  // Optimized type indicies to put "common" expected types in with small
  // indices.
  OptimizeTypes(M);
  TypeCountMap = NULL;

  // Optimize constant ordering.
  OptimizeConstants(FirstConstant, Values.size());
}
Esempio n. 20
0
// InlineFunction - This function inlines the called function into the basic
// block of the caller.  This returns false if it is not possible to inline this
// call.  The program is still in a well defined state if this occurs though.
//
// Note that this only does one level of inlining.  For example, if the
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
// exists in the instruction stream.  Similiarly this will inline a recursive
// function by one level.
//
bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
  Instruction *TheCall = CS.getInstruction();
  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
         "Instruction not in function!");

  const Function *CalledFunc = CS.getCalledFunction();
  if (CalledFunc == 0 ||          // Can't inline external function or indirect
      CalledFunc->isDeclaration() || // call, or call to a vararg function!
      CalledFunc->getFunctionType()->isVarArg()) return false;


  // If the call to the callee is not a tail call, we must clear the 'tail'
  // flags on any calls that we inline.
  bool MustClearTailCallFlags =
    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());

  // If the call to the callee cannot throw, set the 'nounwind' flag on any
  // calls that we inline.
  bool MarkNoUnwind = CS.doesNotThrow();

  BasicBlock *OrigBB = TheCall->getParent();
  Function *Caller = OrigBB->getParent();

  // GC poses two hazards to inlining, which only occur when the callee has GC:
  //  1. If the caller has no GC, then the callee's GC must be propagated to the
  //     caller.
  //  2. If the caller has a differing GC, it is invalid to inline.
  if (CalledFunc->hasGC()) {
    if (!Caller->hasGC())
      Caller->setGC(CalledFunc->getGC());
    else if (CalledFunc->getGC() != Caller->getGC())
      return false;
  }

  // Get an iterator to the last basic block in the function, which will have
  // the new function inlined after it.
  //
  Function::iterator LastBlock = &Caller->back();

  // Make sure to capture all of the return instructions from the cloned
  // function.
  std::vector<ReturnInst*> Returns;
  ClonedCodeInfo InlinedFunctionInfo;
  Function::iterator FirstNewBlock;

  { // Scope to destroy ValueMap after cloning.
    DenseMap<const Value*, Value*> ValueMap;

    assert(CalledFunc->arg_size() == CS.arg_size() &&
           "No varargs calls can be inlined!");

    // Calculate the vector of arguments to pass into the function cloner, which
    // matches up the formal to the actual argument values.
    CallSite::arg_iterator AI = CS.arg_begin();
    unsigned ArgNo = 0;
    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
      Value *ActualArg = *AI;

      // When byval arguments actually inlined, we need to make the copy implied
      // by them explicit.  However, we don't do this if the callee is readonly
      // or readnone, because the copy would be unneeded: the callee doesn't
      // modify the struct.
      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
          !CalledFunc->onlyReadsMemory()) {
        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
        const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);

        // Create the alloca.  If we have TargetData, use nice alignment.
        unsigned Align = 1;
        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
        Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
                                          Caller->begin()->begin());
        // Emit a memcpy.
        const Type *Tys[] = { Type::Int64Ty };
        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
                                                       Intrinsic::memcpy, 
                                                       Tys, 1);
        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);

        Value *Size;
        if (TD == 0)
          Size = ConstantExpr::getSizeOf(AggTy);
        else
          Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));

        // Always generate a memcpy of alignment 1 here because we don't know
        // the alignment of the src pointer.  Other optimizations can infer
        // better alignment.
        Value *CallArgs[] = {
          DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
        };
        CallInst *TheMemCpy =
          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);

        // If we have a call graph, update it.
        if (CG) {
          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
          CallGraphNode *CallerNode = (*CG)[Caller];
          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
        }

        // Uses of the argument in the function should use our new alloca
        // instead.
        ActualArg = NewAlloca;
      }

      ValueMap[I] = ActualArg;
    }

    // We want the inliner to prune the code as it copies.  We would LOVE to
    // have no dead or constant instructions leftover after inlining occurs
    // (which can happen, e.g., because an argument was constant), but we'll be
    // happy with whatever the cloner can do.
    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
                              &InlinedFunctionInfo, TD);

    // Remember the first block that is newly cloned over.
    FirstNewBlock = LastBlock; ++FirstNewBlock;

    // Update the callgraph if requested.
    if (CG)
      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
  }

  // If there are any alloca instructions in the block that used to be the entry
  // block for the callee, move them to the entry block of the caller.  First
  // calculate which instruction they should be inserted before.  We insert the
  // instructions at the end of the current alloca list.
  //
  {
    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
    for (BasicBlock::iterator I = FirstNewBlock->begin(),
           E = FirstNewBlock->end(); I != E; )
      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
        // If the alloca is now dead, remove it.  This often occurs due to code
        // specialization.
        if (AI->use_empty()) {
          AI->eraseFromParent();
          continue;
        }

        if (isa<Constant>(AI->getArraySize())) {
          // Scan for the block of allocas that we can move over, and move them
          // all at once.
          while (isa<AllocaInst>(I) &&
                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
            ++I;

          // Transfer all of the allocas over in a block.  Using splice means
          // that the instructions aren't removed from the symbol table, then
          // reinserted.
          Caller->getEntryBlock().getInstList().splice(
              InsertPoint,
              FirstNewBlock->getInstList(),
              AI, I);
        }
      }
  }

  // If the inlined code contained dynamic alloca instructions, wrap the inlined
  // code with llvm.stacksave/llvm.stackrestore intrinsics.
  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
    Module *M = Caller->getParent();
    // Get the two intrinsics we care about.
    Constant *StackSave, *StackRestore;
    StackSave    = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
    StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);

    // If we are preserving the callgraph, add edges to the stacksave/restore
    // functions for the calls we insert.
    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
    if (CG) {
      // We know that StackSave/StackRestore are Function*'s, because they are
      // intrinsics which must have the right types.
      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
      CallerNode = (*CG)[Caller];
    }

    // Insert the llvm.stacksave.
    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
                                          FirstNewBlock->begin());
    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);

    // Insert a call to llvm.stackrestore before any return instructions in the
    // inlined function.
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
    }

    // Count the number of StackRestore calls we insert.
    unsigned NumStackRestores = Returns.size();

    // If we are inlining an invoke instruction, insert restores before each
    // unwind.  These unwinds will be rewritten into branches later.
    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
           BB != E; ++BB)
        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
          CallInst::Create(StackRestore, SavedPtr, "", UI);
          ++NumStackRestores;
        }
    }
  }

  // If we are inlining tail call instruction through a call site that isn't
  // marked 'tail', we must remove the tail marker for any calls in the inlined
  // code.  Also, calls inlined through a 'nounwind' call site should be marked
  // 'nounwind'.
  if (InlinedFunctionInfo.ContainsCalls &&
      (MustClearTailCallFlags || MarkNoUnwind)) {
    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
         BB != E; ++BB)
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        if (CallInst *CI = dyn_cast<CallInst>(I)) {
          if (MustClearTailCallFlags)
            CI->setTailCall(false);
          if (MarkNoUnwind)
            CI->setDoesNotThrow();
        }
  }

  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
  // instructions are unreachable.
  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
         BB != E; ++BB) {
      TerminatorInst *Term = BB->getTerminator();
      if (isa<UnwindInst>(Term)) {
        new UnreachableInst(Term);
        BB->getInstList().erase(Term);
      }
    }

  // If we are inlining for an invoke instruction, we must make sure to rewrite
  // any inlined 'unwind' instructions into branches to the invoke exception
  // destination, and call instructions into invoke instructions.
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);

  // If we cloned in _exactly one_ basic block, and if that block ends in a
  // return instruction, we splice the body of the inlined callee directly into
  // the calling basic block.
  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
    // Move all of the instructions right before the call.
    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
                                 FirstNewBlock->begin(), FirstNewBlock->end());
    // Remove the cloned basic block.
    Caller->getBasicBlockList().pop_back();

    // If the call site was an invoke instruction, add a branch to the normal
    // destination.
    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
      BranchInst::Create(II->getNormalDest(), TheCall);

    // If the return instruction returned a value, replace uses of the call with
    // uses of the returned value.
    if (!TheCall->use_empty()) {
      ReturnInst *R = Returns[0];
      TheCall->replaceAllUsesWith(R->getReturnValue());
    }
    // Since we are now done with the Call/Invoke, we can delete it.
    TheCall->eraseFromParent();

    // Since we are now done with the return instruction, delete it also.
    Returns[0]->eraseFromParent();

    // We are now done with the inlining.
    return true;
  }

  // Otherwise, we have the normal case, of more than one block to inline or
  // multiple return sites.

  // We want to clone the entire callee function into the hole between the
  // "starter" and "ender" blocks.  How we accomplish this depends on whether
  // this is an invoke instruction or a call instruction.
  BasicBlock *AfterCallBB;
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {

    // Add an unconditional branch to make this look like the CallInst case...
    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);

    // Split the basic block.  This guarantees that no PHI nodes will have to be
    // updated due to new incoming edges, and make the invoke case more
    // symmetric to the call case.
    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
                                          CalledFunc->getName()+".exit");

  } else {  // It's a call
    // If this is a call instruction, we need to split the basic block that
    // the call lives in.
    //
    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
                                          CalledFunc->getName()+".exit");
  }

  // Change the branch that used to go to AfterCallBB to branch to the first
  // basic block of the inlined function.
  //
  TerminatorInst *Br = OrigBB->getTerminator();
  assert(Br && Br->getOpcode() == Instruction::Br &&
         "splitBasicBlock broken!");
  Br->setOperand(0, FirstNewBlock);


  // Now that the function is correct, make it a little bit nicer.  In
  // particular, move the basic blocks inserted from the end of the function
  // into the space made by splitting the source basic block.
  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
                                     FirstNewBlock, Caller->end());

  // Handle all of the return instructions that we just cloned in, and eliminate
  // any users of the original call/invoke instruction.
  const Type *RTy = CalledFunc->getReturnType();

  if (Returns.size() > 1) {
    // The PHI node should go at the front of the new basic block to merge all
    // possible incoming values.
    PHINode *PHI = 0;
    if (!TheCall->use_empty()) {
      PHI = PHINode::Create(RTy, TheCall->getName(),
                            AfterCallBB->begin());
      // Anything that used the result of the function call should now use the
      // PHI node as their operand.
      TheCall->replaceAllUsesWith(PHI);
    }

    // Loop over all of the return instructions adding entries to the PHI node
    // as appropriate.
    if (PHI) {
      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
        ReturnInst *RI = Returns[i];
        assert(RI->getReturnValue()->getType() == PHI->getType() &&
               "Ret value not consistent in function!");
        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
      }
    }

    // Add a branch to the merge points and remove return instructions.
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
      ReturnInst *RI = Returns[i];
      BranchInst::Create(AfterCallBB, RI);
      RI->eraseFromParent();
    }
  } else if (!Returns.empty()) {
    // Otherwise, if there is exactly one return value, just replace anything
    // using the return value of the call with the computed value.
    if (!TheCall->use_empty())
      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());

    // Splice the code from the return block into the block that it will return
    // to, which contains the code that was after the call.
    BasicBlock *ReturnBB = Returns[0]->getParent();
    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
                                      ReturnBB->getInstList());

    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
    ReturnBB->replaceAllUsesWith(AfterCallBB);

    // Delete the return instruction now and empty ReturnBB now.
    Returns[0]->eraseFromParent();
    ReturnBB->eraseFromParent();
  } else if (!TheCall->use_empty()) {
    // No returns, but something is using the return value of the call.  Just
    // nuke the result.
    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
  }

  // Since we are now done with the Call/Invoke, we can delete it.
  TheCall->eraseFromParent();

  // We should always be able to fold the entry block of the function into the
  // single predecessor of the block...
  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);

  // Splice the code entry block into calling block, right before the
  // unconditional branch.
  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes

  // Remove the unconditional branch.
  OrigBB->getInstList().erase(Br);

  // Now we can remove the CalleeEntry block, which is now empty.
  Caller->getBasicBlockList().erase(CalleeEntry);

  return true;
}
Esempio n. 21
0
Module *llvm::CloneModule(const Module *M, ValueToValueMapTy &VMap) {
  // First off, we need to create the new module.
  Module *New = new Module(M->getModuleIdentifier(), M->getContext());
  New->setDataLayout(M->getDataLayout());
  New->setTargetTriple(M->getTargetTriple());
  New->setModuleInlineAsm(M->getModuleInlineAsm());
   
  // Loop over all of the global variables, making corresponding globals in the
  // new module.  Here we add them to the VMap and to the new Module.  We
  // don't worry about attributes or initializers, they will come later.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = new GlobalVariable(*New, 
                                            I->getType()->getElementType(),
                                            I->isConstant(), I->getLinkage(),
                                            (Constant*) nullptr, I->getName(),
                                            (GlobalVariable*) nullptr,
                                            I->getThreadLocalMode(),
                                            I->getType()->getAddressSpace());
    GV->copyAttributesFrom(I);
    VMap[I] = GV;
  }

  // Loop over the functions in the module, making external functions as before
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *NF =
      Function::Create(cast<FunctionType>(I->getType()->getElementType()),
                       I->getLinkage(), I->getName(), New);
    NF->copyAttributesFrom(I);
    VMap[I] = NF;
  }

  // Loop over the aliases in the module
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I) {
    auto *PTy = cast<PointerType>(I->getType());
    auto *GA =
        GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
                            I->getLinkage(), I->getName(), New);
    GA->copyAttributesFrom(I);
    VMap[I] = GA;
  }
  
  // Now that all of the things that global variable initializer can refer to
  // have been created, loop through and copy the global variable referrers
  // over...  We also set the attributes on the global now.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = cast<GlobalVariable>(VMap[I]);
    if (I->hasInitializer())
      GV->setInitializer(MapValue(I->getInitializer(), VMap));
  }

  // Similarly, copy over function bodies now...
  //
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *F = cast<Function>(VMap[I]);
    if (!I->isDeclaration()) {
      Function::arg_iterator DestI = F->arg_begin();
      for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end();
           ++J) {
        DestI->setName(J->getName());
        VMap[J] = DestI++;
      }

      SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
      CloneFunctionInto(F, I, VMap, /*ModuleLevelChanges=*/true, Returns);
    }
  }

  // And aliases
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I) {
    GlobalAlias *GA = cast<GlobalAlias>(VMap[I]);
    if (const Constant *C = I->getAliasee())
      GA->setAliasee(cast<GlobalObject>(MapValue(C, VMap)));
  }

  // And named metadata....
  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
         E = M->named_metadata_end(); I != E; ++I) {
    const NamedMDNode &NMD = *I;
    NamedMDNode *NewNMD = New->getOrInsertNamedMetadata(NMD.getName());
    for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
      NewNMD->addOperand(MapValue(NMD.getOperand(i), VMap));
  }

  return New;
}
Esempio n. 22
0
///
/// Method: visitIntrinsic()
///
/// Description:
///   Generate correct DSNodes for calls to LLVM intrinsic functions.
///
/// Inputs:
///   CS - The CallSite representing the call or invoke to the intrinsic.
///   F  - A pointer to the function called by the call site.
///
/// Return value:
///   true  - This intrinsic is properly handled by this method.
///   false - This intrinsic is not recognized by DSA.
///
bool GraphBuilder::visitIntrinsic(CallSite CS, Function *F) {
  ++NumIntrinsicCall;

  //
  // If this is a debug intrinsic, then don't do any special processing.
  //
  if (isa<DbgInfoIntrinsic>(CS.getInstruction()))
    return true;

  switch (F->getIntrinsicID()) {
  case Intrinsic::vastart: {
    visitVAStartInst(CS);
    return true;
  }
  case Intrinsic::vacopy: {
    // Simply merge the two arguments to va_copy.
    // This results in loss of precision on the temporaries used to manipulate
    // the va_list, and so isn't a big deal.  In theory we would build a
    // separate graph for this (like the one created in visitVAStartNode)
    // and only merge the node containing the variable arguments themselves.
    DSNodeHandle destNH = getValueDest(CS.getArgument(0));
    DSNodeHandle srcNH = getValueDest(CS.getArgument(1));
    destNH.mergeWith(srcNH);
    return true;
  }
  case Intrinsic::stacksave: {
    DSNode * Node = createNode();
    Node->setAllocaMarker()->setIncompleteMarker()->setUnknownMarker();
    Node->foldNodeCompletely();
    setDestTo (*(CS.getInstruction()), Node);
    return true;
  }
  case Intrinsic::stackrestore:
    getValueDest(CS.getInstruction()).getNode()->setAllocaMarker()
      ->setIncompleteMarker()
      ->setUnknownMarker()
      ->foldNodeCompletely();
    return true;
  case Intrinsic::vaend:
  case Intrinsic::memcpy: 
  case Intrinsic::memmove: {
    // Merge the first & second arguments, and mark the memory read and
    // modified.
    DSNodeHandle RetNH = getValueDest(*CS.arg_begin());
    RetNH.mergeWith(getValueDest(*(CS.arg_begin()+1)));
    if (DSNode *N = RetNH.getNode())
      N->setModifiedMarker()->setReadMarker();
    return true;
  }
  case Intrinsic::memset:
    // Mark the memory modified.
    if (DSNode *N = getValueDest(*CS.arg_begin()).getNode())
      N->setModifiedMarker();
    return true;

  case Intrinsic::eh_exception: {
    DSNode * Node = createNode();
    Node->setIncompleteMarker();
    Node->foldNodeCompletely();
    setDestTo (*(CS.getInstruction()), Node);
    return true;
  }

  case Intrinsic::eh_selector: {
    for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
         I != E; ++I) {
      if (isa<PointerType>((*I)->getType())) {
        DSNodeHandle Ptr = getValueDest(*I);
        if(Ptr.getNode()) {
          Ptr.getNode()->setReadMarker();
          Ptr.getNode()->setIncompleteMarker();
        }
      }
    }
    return true;
  }
  case Intrinsic::eh_typeid_for: {
    DSNodeHandle Ptr = getValueDest(*CS.arg_begin());
    Ptr.getNode()->setReadMarker();
    Ptr.getNode()->setIncompleteMarker();
    return true;
  }

  case Intrinsic::prefetch:
    return true;

  case Intrinsic::objectsize:
    return true;

    //
    // The return address/frame address aliases with the stack, 
    // is type-unknown, and should
    // have the unknown flag set since we don't know where it goes.
    //
  case Intrinsic::returnaddress:
  case Intrinsic::frameaddress: {
    DSNode * Node = createNode();
    Node->setAllocaMarker()->setIncompleteMarker()->setUnknownMarker();
    Node->foldNodeCompletely();
    setDestTo (*(CS.getInstruction()), Node);
    return true;
  }

  // Process lifetime intrinsics
  case Intrinsic::lifetime_start:
  case Intrinsic::lifetime_end:
  case Intrinsic::invariant_start:
  case Intrinsic::invariant_end:
    return true;

  default: {
    //ignore pointer free intrinsics
    if (!isa<PointerType>(F->getReturnType())) {
      bool hasPtr = false;
      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
           I != E && !hasPtr; ++I)
        if (isa<PointerType>(I->getType()))
          hasPtr = true;
      if (!hasPtr)
        return true;
    }

    DEBUG(errs() << "[dsa:local] Unhandled intrinsic: " << F->getName() << "\n");
    assert(0 && "Unhandled intrinsic");
    return false;
  }
  }
}
Esempio n. 23
0
/// ValueEnumerator - Enumerate module-level information.
ValueEnumerator::ValueEnumerator(const Module *M) {
  // Enumerate the global variables.
  for (Module::const_global_iterator I = M->global_begin(),
         E = M->global_end(); I != E; ++I)
    EnumerateValue(I);

  // Enumerate the functions.
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    EnumerateValue(I);
    EnumerateAttributes(cast<Function>(I)->getAttributes());
  }

  // Enumerate the aliases.
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    EnumerateValue(I);

  // Remember what is the cutoff between globalvalue's and other constants.
  unsigned FirstConstant = Values.size();

  // Enumerate the global variable initializers.
  for (Module::const_global_iterator I = M->global_begin(),
         E = M->global_end(); I != E; ++I)
    if (I->hasInitializer())
      EnumerateValue(I->getInitializer());

  // Enumerate the aliasees.
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    EnumerateValue(I->getAliasee());

  // Insert constants and metadata that are named at module level into the slot
  // pool so that the module symbol table can refer to them...
  EnumerateValueSymbolTable(M->getValueSymbolTable());
  EnumerateNamedMetadata(M);

  SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;

  // Enumerate types used by function bodies and argument lists.
  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {

    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I)
      EnumerateType(I->getType());

    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
             OI != E; ++OI) {
          if (MDNode *MD = dyn_cast<MDNode>(*OI))
            if (MD->isFunctionLocal() && MD->getFunction())
              // These will get enumerated during function-incorporation.
              continue;
          EnumerateOperandType(*OI);
        }
        EnumerateType(I->getType());
        if (const CallInst *CI = dyn_cast<CallInst>(I))
          EnumerateAttributes(CI->getAttributes());
        else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
          EnumerateAttributes(II->getAttributes());

        // Enumerate metadata attached with this instruction.
        MDs.clear();
        I->getAllMetadataOtherThanDebugLoc(MDs);
        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
          EnumerateMetadata(MDs[i].second);

        if (!I->getDebugLoc().isUnknown()) {
          MDNode *Scope, *IA;
          I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
          if (Scope) EnumerateMetadata(Scope);
          if (IA) EnumerateMetadata(IA);
        }
      }
  }

  // Optimize constant ordering.
  OptimizeConstants(FirstConstant, Values.size());
}
Esempio n. 24
0
/// NaClValueEnumerator - Enumerate module-level information.
NaClValueEnumerator::NaClValueEnumerator(const Module *M) {
  // Create map for counting frequency of types, and set field
  // TypeCountMap accordingly.  Note: Pointer field TypeCountMap is
  // used to deal with the fact that types are added through various
  // method calls in this routine. Rather than pass it as an argument,
  // we use a field. The field is a pointer so that the memory
  // footprint of count_map can be garbage collected when this
  // constructor completes.
  TypeCountMapType count_map;
  TypeCountMap = &count_map;
  // Enumerate the global variables.
  for (Module::const_global_iterator I = M->global_begin(),
         E = M->global_end(); I != E; ++I)
    EnumerateValue(I);

  // Enumerate the functions.
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    EnumerateValue(I);
    EnumerateAttributes(cast<Function>(I)->getAttributes());
  }

  // Enumerate the aliases.
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    EnumerateValue(I);

  // Remember what is the cutoff between globalvalue's and other constants.
  unsigned FirstConstant = Values.size();

  // Enumerate the global variable initializers.
  for (Module::const_global_iterator I = M->global_begin(),
         E = M->global_end(); I != E; ++I)
    if (I->hasInitializer())
      EnumerateValue(I->getInitializer());

  // Enumerate the aliasees.
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    EnumerateValue(I->getAliasee());

  // Insert constants and metadata that are named at module level into the slot
  // pool so that the module symbol table can refer to them...
  EnumerateValueSymbolTable(M->getValueSymbolTable());
  EnumerateNamedMetadata(M);

  SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;

  // Enumerate types used by function bodies and argument lists.
  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {

    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I)
      EnumerateType(I->getType());

    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
             OI != E; ++OI) {
          if (MDNode *MD = dyn_cast<MDNode>(*OI))
            if (MD->isFunctionLocal() && MD->getFunction())
              // These will get enumerated during function-incorporation.
              continue;
          EnumerateOperandType(*OI);
        }
        EnumerateType(I->getType());
        if (const CallInst *CI = dyn_cast<CallInst>(I))
          EnumerateAttributes(CI->getAttributes());
        else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
          EnumerateAttributes(II->getAttributes());

        // Enumerate metadata attached with this instruction.
        MDs.clear();
        I->getAllMetadataOtherThanDebugLoc(MDs);
        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
          EnumerateMetadata(MDs[i].second);

        if (!I->getDebugLoc().isUnknown()) {
          MDNode *Scope, *IA;
          I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
          if (Scope) EnumerateMetadata(Scope);
          if (IA) EnumerateMetadata(IA);
        }
      }
  }

  // Optimized type indicies to put "common" expected types in with small
  // indices.
  OptimizeTypes(M);
  TypeCountMap = NULL;

  // Optimize constant ordering.
  OptimizeConstants(FirstConstant, Values.size());
}
Esempio n. 25
0
void LowerEmAsyncify::transformAsyncFunction(Function &F, Instructions const& AsyncCalls) {
  assert(!AsyncCalls.empty());

  // Pass 0
  // collect all the return instructions from the original function
  // will use later
  std::vector<ReturnInst*> OrigReturns;
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
    if (ReturnInst *RI = dyn_cast<ReturnInst>(&*I)) {
      OrigReturns.push_back(RI);
    }
  }

  // Pass 1
  // Scan each async call and make the basic structure:
  // All these will be cloned into the callback functions
  // - allocate the async context before calling an async function
  // - check async right after calling an async function, save context & return if async, continue if not
  // - retrieve the async return value and free the async context if the called function turns out to be sync
  std::vector<AsyncCallEntry> AsyncCallEntries;
  AsyncCallEntries.reserve(AsyncCalls.size());
  for (Instructions::const_iterator I = AsyncCalls.begin(), E = AsyncCalls.end(); I != E; ++I) {
    // prepare blocks
    Instruction *CurAsyncCall = *I;

    // The block containing the async call
    BasicBlock *CurBlock = CurAsyncCall->getParent();
    // The block should run after the async call
    BasicBlock *AfterCallBlock = SplitBlock(CurBlock, CurAsyncCall->getNextNode());
    // The block where we store the context and return
    BasicBlock *SaveAsyncCtxBlock = BasicBlock::Create(TheModule->getContext(), "SaveAsyncCtx", &F, AfterCallBlock);
    // return a dummy value at the end, to make the block valid
    new UnreachableInst(TheModule->getContext(), SaveAsyncCtxBlock);

    // allocate the context before making the call
    // we don't know the size yet, will fix it later
    // we cannot insert the instruction later because,
    // we need to make sure that all the instructions and blocks are fixed before we can generate DT and find context variables
    // In CallHandler.h `sp` will be put as the second parameter
    // such that we can take a note of the original sp 
    CallInst *AllocAsyncCtxInst = CallInst::Create(AllocAsyncCtxFunction, Constant::getNullValue(I32), "AsyncCtx", CurAsyncCall);

    // Right after the call
    // check async and return if so
    // TODO: we can define truly async functions and partial async functions
    {
      // remove old terminator, which came from SplitBlock
      CurBlock->getTerminator()->eraseFromParent();
      // go to SaveAsyncCtxBlock if the previous call is async
      // otherwise just continue to AfterCallBlock
      CallInst *CheckAsync = CallInst::Create(CheckAsyncFunction, "IsAsync", CurBlock);
      BranchInst::Create(SaveAsyncCtxBlock, AfterCallBlock, CheckAsync, CurBlock);
    }

    // take a note of this async call
    AsyncCallEntry CurAsyncCallEntry;
    CurAsyncCallEntry.AsyncCallInst = CurAsyncCall;
    CurAsyncCallEntry.AfterCallBlock = AfterCallBlock;
    CurAsyncCallEntry.AllocAsyncCtxInst = AllocAsyncCtxInst;
    CurAsyncCallEntry.SaveAsyncCtxBlock = SaveAsyncCtxBlock;
    // create an empty function for the callback, which will be constructed later
    CurAsyncCallEntry.CallbackFunc = Function::Create(CallbackFunctionType, F.getLinkage(), F.getName() + "__async_cb", TheModule);
    AsyncCallEntries.push_back(CurAsyncCallEntry);
  }


  // Pass 2
  // analyze the context variables and construct SaveAsyncCtxBlock for each async call
  // also calculate the size of the context and allocate the async context accordingly
  for (std::vector<AsyncCallEntry>::iterator EI = AsyncCallEntries.begin(), EE = AsyncCallEntries.end();  EI != EE; ++EI) {
    AsyncCallEntry & CurEntry = *EI;

    // Collect everything to be saved
    FindContextVariables(CurEntry);

    // Pack the variables as a struct
    {
      // TODO: sort them from large memeber to small ones, in order to make the struct compact even when aligned
      SmallVector<Type*, 8> Types;
      Types.push_back(CallbackFunctionType->getPointerTo());
      for (Values::iterator VI = CurEntry.ContextVariables.begin(), VE = CurEntry.ContextVariables.end(); VI != VE; ++VI) {
        Types.push_back((*VI)->getType());
      }
      CurEntry.ContextStructType = StructType::get(TheModule->getContext(), Types);
    }

    // fix the size of allocation
    CurEntry.AllocAsyncCtxInst->setOperand(0, 
        ConstantInt::get(I32, DL->getTypeStoreSize(CurEntry.ContextStructType)));

    // construct SaveAsyncCtxBlock
    {
      // fill in SaveAsyncCtxBlock
      // temporarily remove the terminator for convenience
      CurEntry.SaveAsyncCtxBlock->getTerminator()->eraseFromParent();
      assert(CurEntry.SaveAsyncCtxBlock->empty());

      Type *AsyncCtxAddrTy = CurEntry.ContextStructType->getPointerTo();
      BitCastInst *AsyncCtxAddr = new BitCastInst(CurEntry.AllocAsyncCtxInst, AsyncCtxAddrTy, "AsyncCtxAddr", CurEntry.SaveAsyncCtxBlock);
      SmallVector<Value*, 2> Indices;
      // store the callback
      {
        Indices.push_back(ConstantInt::get(I32, 0));
        Indices.push_back(ConstantInt::get(I32, 0));
        GetElementPtrInst *AsyncVarAddr = GetElementPtrInst::Create(AsyncCtxAddrTy, AsyncCtxAddr, Indices, "", CurEntry.SaveAsyncCtxBlock);
        new StoreInst(CurEntry.CallbackFunc, AsyncVarAddr, CurEntry.SaveAsyncCtxBlock);
      }
      // store the context variables
      for (size_t i = 0; i < CurEntry.ContextVariables.size(); ++i) {
        Indices.clear();
        Indices.push_back(ConstantInt::get(I32, 0));
        Indices.push_back(ConstantInt::get(I32, i + 1)); // the 0th element is the callback function
        GetElementPtrInst *AsyncVarAddr = GetElementPtrInst::Create(AsyncCtxAddrTy, AsyncCtxAddr, Indices, "", CurEntry.SaveAsyncCtxBlock);
        new StoreInst(CurEntry.ContextVariables[i], AsyncVarAddr, CurEntry.SaveAsyncCtxBlock);
      }
      // to exit the block, we want to return without unwinding the stack frame
      CallInst::Create(DoNotUnwindFunction, "", CurEntry.SaveAsyncCtxBlock);
      ReturnInst::Create(TheModule->getContext(), 
          (F.getReturnType()->isVoidTy() ? 0 : Constant::getNullValue(F.getReturnType())),
          CurEntry.SaveAsyncCtxBlock);
    }
  }

  // Pass 3
  // now all the SaveAsyncCtxBlock's have been constructed
  // we can clone F and construct callback functions 
  // we could not construct the callbacks in Pass 2 because we need _all_ those SaveAsyncCtxBlock's appear in _each_ callback
  for (std::vector<AsyncCallEntry>::iterator EI = AsyncCallEntries.begin(), EE = AsyncCallEntries.end();  EI != EE; ++EI) {
    AsyncCallEntry & CurEntry = *EI;

    Function *CurCallbackFunc = CurEntry.CallbackFunc;
    ValueToValueMapTy VMap;

    // Add the entry block
    // load variables from the context
    // also update VMap for CloneFunction
    BasicBlock *EntryBlock = BasicBlock::Create(TheModule->getContext(), "AsyncCallbackEntry", CurCallbackFunc);
    std::vector<LoadInst *> LoadedAsyncVars;
    {
      Type *AsyncCtxAddrTy = CurEntry.ContextStructType->getPointerTo();
      BitCastInst *AsyncCtxAddr = new BitCastInst(CurCallbackFunc->arg_begin(), AsyncCtxAddrTy, "AsyncCtx", EntryBlock);
      SmallVector<Value*, 2> Indices;
      for (size_t i = 0; i < CurEntry.ContextVariables.size(); ++i) {
        Indices.clear();
        Indices.push_back(ConstantInt::get(I32, 0));
        Indices.push_back(ConstantInt::get(I32, i + 1)); // the 0th element of AsyncCtx is the callback function
        GetElementPtrInst *AsyncVarAddr = GetElementPtrInst::Create(AsyncCtxAddrTy, AsyncCtxAddr, Indices, "", EntryBlock);
        LoadedAsyncVars.push_back(new LoadInst(AsyncVarAddr, "", EntryBlock));
        // we want the argument to be replaced by the loaded value
        if (isa<Argument>(CurEntry.ContextVariables[i]))
          VMap[CurEntry.ContextVariables[i]] = LoadedAsyncVars.back();
      }
    }

    // we don't need any argument, just leave dummy entries there to cheat CloneFunctionInto
    for (Function::const_arg_iterator AI = F.arg_begin(), AE = F.arg_end(); AI != AE; ++AI) {
      if (VMap.count(AI) == 0)
        VMap[AI] = Constant::getNullValue(AI->getType());
    }

    // Clone the function
    {
      SmallVector<ReturnInst*, 8> Returns;
      CloneFunctionInto(CurCallbackFunc, &F, VMap, false, Returns);
      
      // return type of the callback functions is always void
      // need to fix the return type
      if (!F.getReturnType()->isVoidTy()) {
        // for those return instructions that are from the original function
        // it means we are 'truly' leaving this function
        // need to store the return value right before ruturn
        for (size_t i = 0; i < OrigReturns.size(); ++i) {
          ReturnInst *RI = cast<ReturnInst>(VMap[OrigReturns[i]]);
          // Need to store the return value into the global area
          CallInst *RawRetValAddr = CallInst::Create(GetAsyncReturnValueAddrFunction, "", RI);
          BitCastInst *RetValAddr = new BitCastInst(RawRetValAddr, F.getReturnType()->getPointerTo(), "AsyncRetValAddr", RI);
          new StoreInst(RI->getOperand(0), RetValAddr, RI);
        }
        // we want to unwind the stack back to where it was before the original function as called
        // but we don't actually need to do this here
        // at this point it must be true that no callback is pended
        // so the scheduler will correct the stack pointer and pop the frame
        // here we just fix the return type
        for (size_t i = 0; i < Returns.size(); ++i) {
          ReplaceInstWithInst(Returns[i], ReturnInst::Create(TheModule->getContext()));
        }
      }
    }

    // the callback function does not have any return value
    // so clear all the attributes for return
    {
      AttributeSet Attrs = CurCallbackFunc->getAttributes();
      CurCallbackFunc->setAttributes(
        Attrs.removeAttributes(TheModule->getContext(), AttributeSet::ReturnIndex, Attrs.getRetAttributes())
      );
    }

    // in the callback function, we never allocate a new async frame
    // instead we reuse the existing one
    for (std::vector<AsyncCallEntry>::iterator EI = AsyncCallEntries.begin(), EE = AsyncCallEntries.end();  EI != EE; ++EI) {
      Instruction *I = cast<Instruction>(VMap[EI->AllocAsyncCtxInst]);
      ReplaceInstWithInst(I, CallInst::Create(ReallocAsyncCtxFunction, I->getOperand(0), "ReallocAsyncCtx"));
    }

    // mapped entry point & async call
    BasicBlock *ResumeBlock = cast<BasicBlock>(VMap[CurEntry.AfterCallBlock]);
    Instruction *MappedAsyncCall = cast<Instruction>(VMap[CurEntry.AsyncCallInst]);
   
    // To save space, for each async call in the callback function, we just ignore the sync case, and leave it to the scheduler
    // TODO need an option for this
    {
      for (std::vector<AsyncCallEntry>::iterator EI = AsyncCallEntries.begin(), EE = AsyncCallEntries.end();  EI != EE; ++EI) {
        AsyncCallEntry & CurEntry = *EI;
        Instruction *MappedAsyncCallInst = cast<Instruction>(VMap[CurEntry.AsyncCallInst]);
        BasicBlock *MappedAsyncCallBlock = MappedAsyncCallInst->getParent();
        BasicBlock *MappedAfterCallBlock = cast<BasicBlock>(VMap[CurEntry.AfterCallBlock]);

        // for the sync case of the call, go to NewBlock (instead of MappedAfterCallBlock)
        BasicBlock *NewBlock = BasicBlock::Create(TheModule->getContext(), "", CurCallbackFunc, MappedAfterCallBlock);
        MappedAsyncCallBlock->getTerminator()->setSuccessor(1, NewBlock);
        // store the return value
        if (!MappedAsyncCallInst->use_empty()) {
          CallInst *RawRetValAddr = CallInst::Create(GetAsyncReturnValueAddrFunction, "", NewBlock);
          BitCastInst *RetValAddr = new BitCastInst(RawRetValAddr, MappedAsyncCallInst->getType()->getPointerTo(), "AsyncRetValAddr", NewBlock);
          new StoreInst(MappedAsyncCallInst, RetValAddr, NewBlock);
        }
        // tell the scheduler that we want to keep the current async stack frame
        CallInst::Create(DoNotUnwindAsyncFunction, "", NewBlock);
        // finally we go to the SaveAsyncCtxBlock, to register the callbac, save the local variables and leave
        BasicBlock *MappedSaveAsyncCtxBlock = cast<BasicBlock>(VMap[CurEntry.SaveAsyncCtxBlock]);
        BranchInst::Create(MappedSaveAsyncCtxBlock, NewBlock);
      }
    }

    std::vector<AllocaInst*> ToPromote;
    // applying loaded variables in the entry block
    {
      BasicBlockSet ReachableBlocks = FindReachableBlocksFrom(ResumeBlock);
      for (size_t i = 0; i < CurEntry.ContextVariables.size(); ++i) {
        Value *OrigVar = CurEntry.ContextVariables[i];
        if (isa<Argument>(OrigVar)) continue; // already processed
        Value *CurVar = VMap[OrigVar];
        assert(CurVar != MappedAsyncCall);
        if (Instruction *Inst = dyn_cast<Instruction>(CurVar)) {
          if (ReachableBlocks.count(Inst->getParent())) {
            // Inst could be either defined or loaded from the async context
            // Do the dirty works in memory
            // TODO: might need to check the safety first
            // TODO: can we create phi directly?
            AllocaInst *Addr = DemoteRegToStack(*Inst, false);
            new StoreInst(LoadedAsyncVars[i], Addr, EntryBlock);
            ToPromote.push_back(Addr);
          } else {
            // The parent block is not reachable, which means there is no confliction
            // it's safe to replace Inst with the loaded value
            assert(Inst != LoadedAsyncVars[i]); // this should only happen when OrigVar is an Argument
            Inst->replaceAllUsesWith(LoadedAsyncVars[i]); 
          }
        }
      }
    }

    // resolve the return value of the previous async function
    // it could be the value just loaded from the global area
    // or directly returned by the function (in its sync case)
    if (!CurEntry.AsyncCallInst->use_empty()) {
      // load the async return value
      CallInst *RawRetValAddr = CallInst::Create(GetAsyncReturnValueAddrFunction, "", EntryBlock);
      BitCastInst *RetValAddr = new BitCastInst(RawRetValAddr, MappedAsyncCall->getType()->getPointerTo(), "AsyncRetValAddr", EntryBlock);
      LoadInst *RetVal = new LoadInst(RetValAddr, "AsyncRetVal", EntryBlock);

      AllocaInst *Addr = DemoteRegToStack(*MappedAsyncCall, false);
      new StoreInst(RetVal, Addr, EntryBlock);
      ToPromote.push_back(Addr);
    }

    // TODO remove unreachable blocks before creating phi
   
    // We go right to ResumeBlock from the EntryBlock
    BranchInst::Create(ResumeBlock, EntryBlock);
   
    /*
     * Creating phi's
     * Normal stack frames and async stack frames are interleaving with each other.
     * In a callback function, if we call an async function, we might need to realloc the async ctx.
     * at this point we don't want anything stored after the ctx, 
     * such that we can free and extend the ctx by simply update STACKTOP.
     * Therefore we don't want any alloca's in callback functions.
     *
     */
    if (!ToPromote.empty()) {
      DominatorTreeWrapperPass DTW;
      DTW.runOnFunction(*CurCallbackFunc);
      PromoteMemToReg(ToPromote, DTW.getDomTree());
    }

    removeUnreachableBlocks(*CurCallbackFunc);
  }

  // Pass 4
  // Here are modifications to the original function, which we won't want to be cloned into the callback functions
  for (std::vector<AsyncCallEntry>::iterator EI = AsyncCallEntries.begin(), EE = AsyncCallEntries.end();  EI != EE; ++EI) {
    AsyncCallEntry & CurEntry = *EI;
    // remove the frame if no async functinon has been called
    CallInst::Create(FreeAsyncCtxFunction, CurEntry.AllocAsyncCtxInst, "", CurEntry.AfterCallBlock->getFirstNonPHI());
  }
}
Esempio n. 26
0
/// ValueEnumerator - Enumerate module-level information.
ValueEnumerator::ValueEnumerator(const Module *M) {
  InstructionCount = 0;

  // Enumerate the global variables.
  for (Module::const_global_iterator I = M->global_begin(),
         E = M->global_end(); I != E; ++I)
    EnumerateValue(I);

  // Enumerate the functions.
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    EnumerateValue(I);
    EnumerateAttributes(cast<Function>(I)->getAttributes());
  }

  // Enumerate the aliases.
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    EnumerateValue(I);

  // Remember what is the cutoff between globalvalue's and other constants.
  unsigned FirstConstant = Values.size();

  // Enumerate the global variable initializers.
  for (Module::const_global_iterator I = M->global_begin(),
         E = M->global_end(); I != E; ++I)
    if (I->hasInitializer())
      EnumerateValue(I->getInitializer());

  // Enumerate the aliasees.
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    EnumerateValue(I->getAliasee());

  // Enumerate types used by the type symbol table.
  EnumerateTypeSymbolTable(M->getTypeSymbolTable());

  // Insert constants that are named at module level into the slot pool so that
  // the module symbol table can refer to them...
  EnumerateValueSymbolTable(M->getValueSymbolTable());

  // Enumerate types used by function bodies and argument lists.
  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {

    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I)
      EnumerateType(I->getType());

    MetadataContext &TheMetadata = F->getContext().getMetadata();
    typedef SmallVector<std::pair<unsigned, TrackingVH<MDNode> >, 2> MDMapTy;
    MDMapTy MDs;
    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
             OI != E; ++OI)
          EnumerateOperandType(*OI);
        EnumerateType(I->getType());
        if (const CallInst *CI = dyn_cast<CallInst>(I))
          EnumerateAttributes(CI->getAttributes());
        else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
          EnumerateAttributes(II->getAttributes());

        // Enumerate metadata attached with this instruction.
        MDs.clear();
        TheMetadata.getMDs(I, MDs);
        for (MDMapTy::const_iterator MI = MDs.begin(), ME = MDs.end(); MI != ME;
             ++MI)
          EnumerateMetadata(MI->second);
      }
  }

  // Optimize constant ordering.
  OptimizeConstants(FirstConstant, Values.size());

  // Sort the type table by frequency so that most commonly used types are early
  // in the table (have low bit-width).
  std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);

  // Partition the Type ID's so that the single-value types occur before the
  // aggregate types.  This allows the aggregate types to be dropped from the
  // type table after parsing the global variable initializers.
  std::partition(Types.begin(), Types.end(), isSingleValueType);

  // Now that we rearranged the type table, rebuild TypeMap.
  for (unsigned i = 0, e = Types.size(); i != e; ++i)
    TypeMap[Types[i].first] = i+1;
}
Esempio n. 27
0
void CZeroInfo::depthFirstGatherer() {
  // Adding the pointer values among the arguments to the alias graph
  // We treat them as pointers to global targets.

  for (Function::const_arg_iterator I = TheFunction.arg_begin(), 
	 E = TheFunction.arg_end(); I != E; ++I) {
    if (I->getType()->getTypeID() == Type::PointerTyID) 
      PointerAliasGraph.addEdge(I, PointsToTarget::GlobalTarget);
  }

  df_iterator<const Function*> It = df_begin(&TheFunction), End = df_end(&TheFunction);
  for ( ; It != End; It++) {
    const BasicBlock *BB = *It;
    
    // Look for store instructions sequentially in the basic block
    // updating pointer alias graphs for the other instructions
    BasicBlock::const_iterator iterBB;
    for (iterBB = BB->begin(); iterBB != BB->end(); ++iterBB) {
      const Instruction& I = *iterBB;

      // NOTE!!! Removed the if (I) clause here
      // 
      if (I.hasName() && 
	  I.getType()->getTypeID() == Type::PointerTyID) {
	// Each of these cases needs to modify the alias graph appropriately
	if (isa<AllocaInst>(I)) {
	  PointerAliasGraph.addEdge(&I, &I);
	}
	else if (isa<MallocInst>(I)) {
	  // TODO: We'll be making this illegal and only allowing
	  // calls to rmalloc and rfree.
	  PointerAliasGraph.addEdge(&I, &I);
	}
	else if (isa<LoadInst>(I)) {
	  PointerAliasGraph.addEdge(&I, PointsToTarget::DummyTarget);
	}
	else if (isa<GetElementPtrInst>(I)) {
	  // Check if the operand is a global value, in which case we 
	  // generate an alias to a generic global value.
	  if (!isa<ConstantPointerNull>(I.getOperand(0)))
	    if (isa<GlobalValue>(I.getOperand(0)) || 
		isa<Constant>(I.getOperand(0)))
		PointerAliasGraph.addEdge(&I, PointsToTarget::GlobalTarget);
	    else 
	      PointerAliasGraph.addAlias(&I, I.getOperand(0));
	  else
	    PointerAliasGraph.addEdge(&I, PointsToTarget::DummyTarget);
	}
	else if (isa<PHINode>(I)) {
	  PointerAliasGraph.addEdge(&I, &I);
	}
	else if (isa<CallInst>(I)) {
	  PointerAliasGraph.addEdge(&I, PointsToTarget::GlobalTarget);
	}
	else if (isa<CastInst>(I)) {
	  PointerAliasGraph.addEdge(&I, PointsToTarget::DummyTarget);
	}
      }
      else if (!I.hasName()) {
	if (isa<StoreInst>(I)) {
	  // We only consider stores of scalar pointers.
	  if (I.getNumOperands() <= 2 ||
	      (I.getNumOperands() == 3 &&
	       I.getOperand(2) != getGlobalContext().getConstantInt(Type::Int32Ty, 0))) {
	    if (!isa<ConstantPointerNull>(I.getOperand(1))) {
	      BBPointerLiveInfo[BB][I.getOperand(1)] = true;
	      df_iterator<const Function*> localIt = df_begin(&TheFunction), 
		localEnd = df_end(&TheFunction);
	      for ( ; localIt != localEnd; ++localIt) {
		if (DomTree->dominates((BasicBlock *) BB, 
				      (BasicBlock *) *localIt))
		  BBPointerLiveInfo[*localIt][I.getOperand(1)] = true;
	      }
	    } else {
	      WarningsList += "Stores to null pointers disallowed in CZero\n";
	    }
	  }
	}
      }
    }
  }
}
bool TriCoreCallingConvHook::isRegValPtrType (MachineFunction& _mf) {
	Function::const_arg_iterator FI;
	FI = _mf.getFunction()->arg_begin();
	std::advance(FI,curArg);
	return FI->getType()->isPointerTy()? true : false;
}
Esempio n. 29
0
SDValue
NVPTXTargetLowering::LowerFormalArguments(SDValue Chain,
                                        CallingConv::ID CallConv, bool isVarArg,
                                      const SmallVectorImpl<ISD::InputArg> &Ins,
                                          DebugLoc dl, SelectionDAG &DAG,
                                       SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  const DataLayout *TD = getDataLayout();

  const Function *F = MF.getFunction();
  const AttrListPtr &PAL = F->getAttributes();

  SDValue Root = DAG.getRoot();
  std::vector<SDValue> OutChains;

  bool isKernel = llvm::isKernelFunction(*F);
  bool isABI = (nvptxSubtarget.getSmVersion() >= 20);

  std::vector<Type *> argTypes;
  std::vector<const Argument *> theArgs;
  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
      I != E; ++I) {
    theArgs.push_back(I);
    argTypes.push_back(I->getType());
  }
  assert(argTypes.size() == Ins.size() &&
         "Ins types and function types did not match");

  int idx = 0;
  for (unsigned i=0, e=Ins.size(); i!=e; ++i, ++idx) {
    Type *Ty = argTypes[i];
    EVT ObjectVT = getValueType(Ty);
    assert(ObjectVT == Ins[i].VT &&
           "Ins type did not match function type");

    // If the kernel argument is image*_t or sampler_t, convert it to
    // a i32 constant holding the parameter position. This can later
    // matched in the AsmPrinter to output the correct mangled name.
    if (isImageOrSamplerVal(theArgs[i],
                           (theArgs[i]->getParent() ?
                               theArgs[i]->getParent()->getParent() : 0))) {
      assert(isKernel && "Only kernels can have image/sampler params");
      InVals.push_back(DAG.getConstant(i+1, MVT::i32));
      continue;
    }

    if (theArgs[i]->use_empty()) {
      // argument is dead
      InVals.push_back(DAG.getNode(ISD::UNDEF, dl, ObjectVT));
      continue;
    }

    // In the following cases, assign a node order of "idx+1"
    // to newly created nodes. The SDNOdes for params have to
    // appear in the same order as their order of appearance
    // in the original function. "idx+1" holds that order.
    if (PAL.getParamAttributes(i+1).hasAttribute(Attributes::ByVal) == false) {
      // A plain scalar.
      if (isABI || isKernel) {
        // If ABI, load from the param symbol
        SDValue Arg = getParamSymbol(DAG, idx);
        Value *srcValue = new Argument(PointerType::get(ObjectVT.getTypeForEVT(
            F->getContext()),
            llvm::ADDRESS_SPACE_PARAM));
        SDValue p = DAG.getLoad(ObjectVT, dl, Root, Arg,
                                MachinePointerInfo(srcValue), false, false,
                                false,
                                TD->getABITypeAlignment(ObjectVT.getTypeForEVT(
                                  F->getContext())));
        if (p.getNode())
          DAG.AssignOrdering(p.getNode(), idx+1);
        InVals.push_back(p);
      }
      else {
        // If no ABI, just move the param symbol
        SDValue Arg = getParamSymbol(DAG, idx, ObjectVT);
        SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
        if (p.getNode())
          DAG.AssignOrdering(p.getNode(), idx+1);
        InVals.push_back(p);
      }
      continue;
    }

    // Param has ByVal attribute
    if (isABI || isKernel) {
      // Return MoveParam(param symbol).
      // Ideally, the param symbol can be returned directly,
      // but when SDNode builder decides to use it in a CopyToReg(),
      // machine instruction fails because TargetExternalSymbol
      // (not lowered) is target dependent, and CopyToReg assumes
      // the source is lowered.
      SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
      SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
      if (p.getNode())
        DAG.AssignOrdering(p.getNode(), idx+1);
      if (isKernel)
        InVals.push_back(p);
      else {
        SDValue p2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT,
                    DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, MVT::i32),
                                 p);
        InVals.push_back(p2);
      }
    } else {
      // Have to move a set of param symbols to registers and
      // store them locally and return the local pointer in InVals
      const PointerType *elemPtrType = dyn_cast<PointerType>(argTypes[i]);
      assert(elemPtrType &&
             "Byval parameter should be a pointer type");
      Type *elemType = elemPtrType->getElementType();
      // Compute the constituent parts
      SmallVector<EVT, 16> vtparts;
      SmallVector<uint64_t, 16> offsets;
      ComputeValueVTs(*this, elemType, vtparts, &offsets, 0);
      unsigned totalsize = 0;
      for (unsigned j=0, je=vtparts.size(); j!=je; ++j)
        totalsize += vtparts[j].getStoreSizeInBits();
      SDValue localcopy =  DAG.getFrameIndex(MF.getFrameInfo()->
                                      CreateStackObject(totalsize/8, 16, false),
                                             getPointerTy());
      unsigned sizesofar = 0;
      std::vector<SDValue> theChains;
      for (unsigned j=0, je=vtparts.size(); j!=je; ++j) {
        unsigned numElems = 1;
        if (vtparts[j].isVector()) numElems = vtparts[j].getVectorNumElements();
        for (unsigned k=0, ke=numElems; k!=ke; ++k) {
          EVT tmpvt = vtparts[j];
          if (tmpvt.isVector()) tmpvt = tmpvt.getVectorElementType();
          SDValue arg = DAG.getNode(NVPTXISD::MoveParam, dl, tmpvt,
                                    getParamSymbol(DAG, idx, tmpvt));
          SDValue addr = DAG.getNode(ISD::ADD, dl, getPointerTy(), localcopy,
                                    DAG.getConstant(sizesofar, getPointerTy()));
          theChains.push_back(DAG.getStore(Chain, dl, arg, addr,
                                        MachinePointerInfo(), false, false, 0));
          sizesofar += tmpvt.getStoreSizeInBits()/8;
          ++idx;
        }
      }
      --idx;
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &theChains[0],
                          theChains.size());
      InVals.push_back(localcopy);
    }
  }

  // Clang will check explicit VarArg and issue error if any. However, Clang
  // will let code with
  // implicit var arg like f() pass.
  // We treat this case as if the arg list is empty.
  //if (F.isVarArg()) {
  // assert(0 && "VarArg not supported yet!");
  //}

  if (!OutChains.empty())
    DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                            &OutChains[0], OutChains.size()));

  return Chain;
}
Esempio n. 30
0
Module *llvm::CloneModule(const Module *M,
                          DenseMap<const Value*, Value*> &ValueMap) {
  // First off, we need to create the new module...
  Module *New = new Module(M->getModuleIdentifier());
  New->setDataLayout(M->getDataLayout());
  New->setTargetTriple(M->getTargetTriple());
  New->setModuleInlineAsm(M->getModuleInlineAsm());

  // Copy all of the type symbol table entries over.
  const TypeSymbolTable &TST = M->getTypeSymbolTable();
  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
       TI != TE; ++TI)
    New->addTypeName(TI->first, TI->second);
  
  // Copy all of the dependent libraries over.
  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
    New->addLibrary(*I);

  // Loop over all of the global variables, making corresponding globals in the
  // new module.  Here we add them to the ValueMap and to the new Module.  We
  // don't worry about attributes or initializers, they will come later.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = new GlobalVariable(I->getType()->getElementType(),
                                            false,
                                            GlobalValue::ExternalLinkage, 0,
                                            I->getName(), New);
    GV->setAlignment(I->getAlignment());
    ValueMap[I] = GV;
  }

  // Loop over the functions in the module, making external functions as before
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *NF =
      Function::Create(cast<FunctionType>(I->getType()->getElementType()),
                       GlobalValue::ExternalLinkage, I->getName(), New);
    NF->copyAttributesFrom(I);
    ValueMap[I] = NF;
  }

  // Loop over the aliases in the module
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    ValueMap[I] = new GlobalAlias(I->getType(), GlobalAlias::ExternalLinkage,
                                  I->getName(), NULL, New);
  
  // Now that all of the things that global variable initializer can refer to
  // have been created, loop through and copy the global variable referrers
  // over...  We also set the attributes on the global now.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = cast<GlobalVariable>(ValueMap[I]);
    if (I->hasInitializer())
      GV->setInitializer(cast<Constant>(MapValue(I->getInitializer(),
                                                 ValueMap)));
    GV->setLinkage(I->getLinkage());
    GV->setThreadLocal(I->isThreadLocal());
    GV->setConstant(I->isConstant());
  }

  // Similarly, copy over function bodies now...
  //
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *F = cast<Function>(ValueMap[I]);
    if (!I->isDeclaration()) {
      Function::arg_iterator DestI = F->arg_begin();
      for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end();
           ++J) {
        DestI->setName(J->getName());
        ValueMap[J] = DestI++;
      }

      std::vector<ReturnInst*> Returns;  // Ignore returns cloned...
      CloneFunctionInto(F, I, ValueMap, Returns);
    }

    F->setLinkage(I->getLinkage());
  }

  // And aliases
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I) {
    GlobalAlias *GA = cast<GlobalAlias>(ValueMap[I]);
    GA->setLinkage(I->getLinkage());
    if (const Constant* C = I->getAliasee())
      GA->setAliasee(cast<Constant>(MapValue(C, ValueMap)));
  }
  
  return New;
}