Esempio n. 1
0
/// This works like CloneAndPruneFunctionInto, except that it does not clone the
/// entire function. Instead it starts at an instruction provided by the caller
/// and copies (and prunes) only the code reachable from that instruction.
void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
                                     const Instruction *StartingInst,
                                     ValueToValueMapTy &VMap,
                                     bool ModuleLevelChanges,
                                     SmallVectorImpl<ReturnInst *> &Returns,
                                     const char *NameSuffix,
                                     ClonedCodeInfo *CodeInfo) {
  assert(NameSuffix && "NameSuffix cannot be null!");

  ValueMapTypeRemapper *TypeMapper = nullptr;
  ValueMaterializer *Materializer = nullptr;

#ifndef NDEBUG
  // If the cloning starts at the beginning of the function, verify that
  // the function arguments are mapped.
  if (!StartingInst)
    for (const Argument &II : OldFunc->args())
      assert(VMap.count(&II) && "No mapping from source argument specified!");
#endif

  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
                            NameSuffix, CodeInfo);
  const BasicBlock *StartingBB;
  if (StartingInst)
    StartingBB = StartingInst->getParent();
  else {
    StartingBB = &OldFunc->getEntryBlock();
    StartingInst = &StartingBB->front();
  }

  // Clone the entry block, and anything recursively reachable from it.
  std::vector<const BasicBlock*> CloneWorklist;
  PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
  while (!CloneWorklist.empty()) {
    const BasicBlock *BB = CloneWorklist.back();
    CloneWorklist.pop_back();
    PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
  }
  
  // Loop over all of the basic blocks in the old function.  If the block was
  // reachable, we have cloned it and the old block is now in the value map:
  // insert it into the new function in the right order.  If not, ignore it.
  //
  // Defer PHI resolution until rest of function is resolved.
  SmallVector<const PHINode*, 16> PHIToResolve;
  for (const BasicBlock &BI : *OldFunc) {
    Value *V = VMap[&BI];
    BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
    if (!NewBB) continue;  // Dead block.

    // Add the new block to the new function.
    NewFunc->getBasicBlockList().push_back(NewBB);

    // Handle PHI nodes specially, as we have to remove references to dead
    // blocks.
    for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
      // PHI nodes may have been remapped to non-PHI nodes by the caller or
      // during the cloning process.
      if (const PHINode *PN = dyn_cast<PHINode>(I)) {
        if (isa<PHINode>(VMap[PN]))
          PHIToResolve.push_back(PN);
        else
          break;
      } else {
        break;
      }
    }

    // Finally, remap the terminator instructions, as those can't be remapped
    // until all BBs are mapped.
    RemapInstruction(NewBB->getTerminator(), VMap,
                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
                     TypeMapper, Materializer);
  }
  
  // Defer PHI resolution until rest of function is resolved, PHI resolution
  // requires the CFG to be up-to-date.
  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
    const PHINode *OPN = PHIToResolve[phino];
    unsigned NumPreds = OPN->getNumIncomingValues();
    const BasicBlock *OldBB = OPN->getParent();
    BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);

    // Map operands for blocks that are live and remove operands for blocks
    // that are dead.
    for (; phino != PHIToResolve.size() &&
         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
      OPN = PHIToResolve[phino];
      PHINode *PN = cast<PHINode>(VMap[OPN]);
      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
        Value *V = VMap[PN->getIncomingBlock(pred)];
        if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
          Value *InVal = MapValue(PN->getIncomingValue(pred),
                                  VMap, 
                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
          assert(InVal && "Unknown input value?");
          PN->setIncomingValue(pred, InVal);
          PN->setIncomingBlock(pred, MappedBlock);
        } else {
          PN->removeIncomingValue(pred, false);
          --pred, --e;  // Revisit the next entry.
        }
      } 
    }
    
    // The loop above has removed PHI entries for those blocks that are dead
    // and has updated others.  However, if a block is live (i.e. copied over)
    // but its terminator has been changed to not go to this block, then our
    // phi nodes will have invalid entries.  Update the PHI nodes in this
    // case.
    PHINode *PN = cast<PHINode>(NewBB->begin());
    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
    if (NumPreds != PN->getNumIncomingValues()) {
      assert(NumPreds < PN->getNumIncomingValues());
      // Count how many times each predecessor comes to this block.
      std::map<BasicBlock*, unsigned> PredCount;
      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
           PI != E; ++PI)
        --PredCount[*PI];
      
      // Figure out how many entries to remove from each PHI.
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        ++PredCount[PN->getIncomingBlock(i)];
      
      // At this point, the excess predecessor entries are positive in the
      // map.  Loop over all of the PHIs and remove excess predecessor
      // entries.
      BasicBlock::iterator I = NewBB->begin();
      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
             E = PredCount.end(); PCI != E; ++PCI) {
          BasicBlock *Pred     = PCI->first;
          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
            PN->removeIncomingValue(Pred, false);
        }
      }
    }
    
    // If the loops above have made these phi nodes have 0 or 1 operand,
    // replace them with undef or the input value.  We must do this for
    // correctness, because 0-operand phis are not valid.
    PN = cast<PHINode>(NewBB->begin());
    if (PN->getNumIncomingValues() == 0) {
      BasicBlock::iterator I = NewBB->begin();
      BasicBlock::const_iterator OldI = OldBB->begin();
      while ((PN = dyn_cast<PHINode>(I++))) {
        Value *NV = UndefValue::get(PN->getType());
        PN->replaceAllUsesWith(NV);
        assert(VMap[&*OldI] == PN && "VMap mismatch");
        VMap[&*OldI] = NV;
        PN->eraseFromParent();
        ++OldI;
      }
    }
  }

  // Make a second pass over the PHINodes now that all of them have been
  // remapped into the new function, simplifying the PHINode and performing any
  // recursive simplifications exposed. This will transparently update the
  // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
  // two PHINodes, the iteration over the old PHIs remains valid, and the
  // mapping will just map us to the new node (which may not even be a PHI
  // node).
  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
    if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
      recursivelySimplifyInstruction(PN);

  // Now that the inlined function body has been fully constructed, go through
  // and zap unconditional fall-through branches. This happens all the time when
  // specializing code: code specialization turns conditional branches into
  // uncond branches, and this code folds them.
  Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
  Function::iterator I = Begin;
  while (I != NewFunc->end()) {
    // Check if this block has become dead during inlining or other
    // simplifications. Note that the first block will appear dead, as it has
    // not yet been wired up properly.
    if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
                       I->getSinglePredecessor() == &*I)) {
      BasicBlock *DeadBB = &*I++;
      DeleteDeadBlock(DeadBB);
      continue;
    }

    // We need to simplify conditional branches and switches with a constant
    // operand. We try to prune these out when cloning, but if the
    // simplification required looking through PHI nodes, those are only
    // available after forming the full basic block. That may leave some here,
    // and we still want to prune the dead code as early as possible.
    ConstantFoldTerminator(&*I);

    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
    if (!BI || BI->isConditional()) { ++I; continue; }
    
    BasicBlock *Dest = BI->getSuccessor(0);
    if (!Dest->getSinglePredecessor()) {
      ++I; continue;
    }

    // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
    // above should have zapped all of them..
    assert(!isa<PHINode>(Dest->begin()));

    // We know all single-entry PHI nodes in the inlined function have been
    // removed, so we just need to splice the blocks.
    BI->eraseFromParent();
    
    // Make all PHI nodes that referred to Dest now refer to I as their source.
    Dest->replaceAllUsesWith(&*I);

    // Move all the instructions in the succ to the pred.
    I->getInstList().splice(I->end(), Dest->getInstList());
    
    // Remove the dest block.
    Dest->eraseFromParent();
    
    // Do not increment I, iteratively merge all things this block branches to.
  }

  // Make a final pass over the basic blocks from the old function to gather
  // any return instructions which survived folding. We have to do this here
  // because we can iteratively remove and merge returns above.
  for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
                          E = NewFunc->end();
       I != E; ++I)
    if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
      Returns.push_back(RI);
}