Esempio n. 1
0
/*
 *************************************************************************
 *
 * Compute the rotations for the particular block number.  The
 * "local_blocks" argument is basically saying who is the ne
 *
 *************************************************************************
 */
void computeBlocksOctant(
   const hier::Box& bb,
   int local_blocks[6],
   int nblock,
   int nth)
{
   const hier::Index ifirst = bb.lower();
   const hier::Index ilast = bb.upper();

   local_blocks[0] = nblock; // imin stays local
   local_blocks[3] = nblock; // jmin stays local

   static int jmn[3] = { 0, 0, 2 }; // matrix of rotations
   static int jmx[3] = { 1, 1, 1 };
   static int kmn[3] = { 0, 1, 0 };
   static int kmx[3] = { 2, 2, 2 };

   //
   // bounds of the patch zones go from 0 to nth-1
   //
   if (ifirst(1) <= 0) local_blocks[1] = jmn[nblock];
   if (ifirst(2) <= 0) local_blocks[2] = kmn[nblock];

   if (ilast(1) >= nth - 1) local_blocks[4] = jmx[nblock];
   if (ilast(2) >= nth - 1) local_blocks[5] = kmx[nblock];
}
Esempio n. 2
0
void MblkGeometry::setCartesianMetrics(
   const hier::Box& domain,
   const int level_number,
   const int block_number)
{
   if (d_metrics_set[level_number][block_number]) return;

   hier::Index lower(domain.lower());
   hier::Index upper(domain.upper());
   hier::Index diff(upper - lower + hier::Index(lower.getDim(), 1));

   if (static_cast<int>(d_dx.size()) < (level_number + 1)) {
      d_dx.resize(level_number + 1);
   }
   if (static_cast<int>(d_dx[level_number].size()) < d_nblocks) {
      d_dx[level_number].resize(d_nblocks);
   }
   if (static_cast<int>(d_dx[level_number][block_number].size()) < d_dim.getValue()) {
      d_dx[level_number][block_number].resize(d_dim.getValue());
   }

   for (int i = 0; i < d_dim.getValue(); ++i) {
      d_dx[level_number][block_number][i] =
         (d_cart_xhi[block_number][i] - d_cart_xlo[block_number][i]) / (double)diff(i);
   }

   d_metrics_set[level_number][block_number] = true;

}
Esempio n. 3
0
NodeIterator::NodeIterator(
   const hier::Box& box,
   bool begin):
   d_index(box.lower(), hier::IntVector::getZero(box.getDim())),
   d_box(NodeGeometry::toNodeBox(box))
{
   if (!d_box.empty() && !begin) {
      d_index(d_box.getDim().getValue() - 1) =
         d_box.upper(static_cast<tbox::Dimension::dir_t>(d_box.getDim().getValue() - 1)) + 1;
   }
}
Esempio n. 4
0
dcomplex
PatchFaceDataNormOpsComplex::dot(
   const std::shared_ptr<pdat::FaceData<dcomplex> >& data1,
   const std::shared_ptr<pdat::FaceData<dcomplex> >& data2,
   const hier::Box& box,
   const std::shared_ptr<pdat::FaceData<double> >& cvol) const
{
   TBOX_ASSERT(data1 && data2);

   tbox::Dimension::dir_t dimVal = box.getDim().getValue();

   dcomplex retval = dcomplex(0.0, 0.0);
   if (!cvol) {
      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         const hier::Box face_box = pdat::FaceGeometry::toFaceBox(box, d);
         retval += d_array_ops.dot(data1->getArrayData(d),
               data2->getArrayData(d),
               face_box);
      }
   } else {
      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         const hier::Box face_box = pdat::FaceGeometry::toFaceBox(box, d);
         retval += d_array_ops.dotWithControlVolume(
               data1->getArrayData(d),
               data2->getArrayData(d),
               cvol->getArrayData(d),
               face_box);
      }
   }
   return retval;
}
Esempio n. 5
0
double
PatchFaceDataNormOpsComplex::maxNorm(
   const std::shared_ptr<pdat::FaceData<dcomplex> >& data,
   const hier::Box& box,
   const std::shared_ptr<pdat::FaceData<double> >& cvol) const
{
   TBOX_ASSERT(data);

   tbox::Dimension::dir_t dimVal = box.getDim().getValue();

   double retval = 0.0;
   if (!cvol) {
      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         const hier::Box face_box =
            pdat::FaceGeometry::toFaceBox(box, d);
         retval = tbox::MathUtilities<double>::Max(retval,
               d_array_ops.maxNorm(data->getArrayData(d), face_box));
      }
   } else {
      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         const hier::Box face_box =
            pdat::FaceGeometry::toFaceBox(box, d);
         retval = tbox::MathUtilities<double>::Max(retval,
               d_array_ops.maxNormWithControlVolume(
                  data->getArrayData(d), cvol->getArrayData(d), face_box));
      }
   }
   return retval;
}
dcomplex
PatchSideDataNormOpsComplex::integral(
   const boost::shared_ptr<pdat::SideData<dcomplex> >& data,
   const hier::Box& box,
   const boost::shared_ptr<pdat::SideData<double> >& vol) const
{
   TBOX_ASSERT(data);

   int dimVal = box.getDim().getValue();
   dcomplex retval = dcomplex(0.0, 0.0);
   const hier::IntVector& directions = data->getDirectionVector();

   TBOX_ASSERT(directions ==
      hier::IntVector::min(directions, vol->getDirectionVector()));

   for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
      if (directions(d)) {
         retval += d_array_ops.integral(
               data->getArrayData(d),
               vol->getArrayData(d),
               pdat::SideGeometry::toSideBox(box, d));
      }
   }
   return retval;
}
Esempio n. 7
0
double
PatchFaceDataNormOpsComplex::L1Norm(
   const std::shared_ptr<pdat::FaceData<dcomplex> >& data,
   const hier::Box& box,
   const std::shared_ptr<pdat::FaceData<double> >& cvol) const
{
   TBOX_ASSERT(data);
   TBOX_ASSERT_OBJDIM_EQUALITY2(*data, box);

   tbox::Dimension::dir_t dimVal = box.getDim().getValue();

   double retval = 0.0;
   if (!cvol) {
      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         const hier::Box face_box = pdat::FaceGeometry::toFaceBox(box, d);
         retval += d_array_ops.L1Norm(data->getArrayData(d), face_box);
      }
   } else {
      TBOX_ASSERT_OBJDIM_EQUALITY2(*data, *cvol);

      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         const hier::Box face_box = pdat::FaceGeometry::toFaceBox(box, d);
         retval += d_array_ops.L1NormWithControlVolume(data->getArrayData(d),
               cvol->getArrayData(d),
               face_box);
      }
   }
   return retval;
}
Esempio n. 8
0
ArrayDataIterator::ArrayDataIterator(
   const hier::Box& box,
   bool begin):
   d_index(box.lower()),
   d_box(box)
{
   if (!d_box.empty() && !begin) {
      d_index(d_box.getDim().getValue() - 1) =
         d_box.upper(static_cast<tbox::Dimension::dir_t>(d_box.getDim().getValue() - 1)) + 1;
   }
}
Esempio n. 9
0
SideIterator::SideIterator(
   const hier::Box& box,
   const tbox::Dimension::dir_t axis,
   bool begin):
   d_index(box.lower(), axis, SideIndex::Lower),
   d_box(SideGeometry::toSideBox(box, axis))
{
   if (!d_box.empty() && !begin) {
      d_index(d_box.getDim().getValue() - 1) =
         d_box.upper(static_cast<tbox::Dimension::dir_t>(d_box.getDim().getValue() - 1)) + 1;
   }
}
/*
 *************************************************************************
 *
 * Compute the boxes for the stencil around a given patch box
 *
 *************************************************************************
 */
void
FirstLayerCellVariableFillPattern::computeStencilBoxes(
   hier::BoxContainer& stencil_boxes,
   const hier::Box& dst_box) const
{
   TBOX_ASSERT(stencil_boxes.size() == 0);

   hier::Box ghost_box(
      hier::Box::grow(dst_box,
         hier::IntVector::getOne(dst_box.getDim())));
   stencil_boxes.removeIntersections(ghost_box, dst_box);
}
Esempio n. 11
0
size_t
PatchSideDataNormOpsReal<TYPE>::numberOfEntries(
   const boost::shared_ptr<pdat::SideData<TYPE> >& data,
   const hier::Box& box) const
{
   TBOX_ASSERT(data);
   TBOX_ASSERT_OBJDIM_EQUALITY2(*data, box);

   tbox::Dimension::dir_t dimVal = box.getDim().getValue();

   size_t retval = 0;
   const hier::Box ibox = box * data->getGhostBox();
   const hier::IntVector& directions = data->getDirectionVector();
   for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
      if (directions(d)) {
         const hier::Box dbox = pdat::SideGeometry::toSideBox(ibox, d);
         retval += (dbox.size() * data->getDepth());
      }
   }
   return retval;
}
Esempio n. 12
0
CoarsenCopyTransaction::CoarsenCopyTransaction(
   const std::shared_ptr<hier::PatchLevel>& dst_level,
   const std::shared_ptr<hier::PatchLevel>& src_level,
   const std::shared_ptr<hier::BoxOverlap>& overlap,
   const hier::Box& dst_box,
   const hier::Box& src_box,
   const CoarsenClasses::Data** coarsen_data,
   int item_id):
   d_dst_patch_rank(dst_box.getOwnerRank()),
   d_src_patch_rank(src_box.getOwnerRank()),
   d_overlap(overlap),
   d_coarsen_data(coarsen_data),
   d_item_id(item_id),
   d_incoming_bytes(0),
   d_outgoing_bytes(0)
{
   TBOX_ASSERT(dst_level);
   TBOX_ASSERT(src_level);
   TBOX_ASSERT(overlap);
   TBOX_ASSERT_OBJDIM_EQUALITY4(*dst_level,
      *src_level,
      dst_box,
      src_box);
   TBOX_ASSERT(dst_box.getLocalId() >= 0);
   TBOX_ASSERT(src_box.getLocalId() >= 0);
   TBOX_ASSERT(coarsen_data != 0);
   TBOX_ASSERT(item_id >= 0);

   if (d_dst_patch_rank == dst_level->getBoxLevel()->getMPI().getRank()) {
      d_dst_patch = dst_level->getPatch(dst_box.getGlobalId());
   }
   if (d_src_patch_rank == src_level->getBoxLevel()->getMPI().getRank()) {
      d_src_patch = src_level->getPatch(src_box.getGlobalId());
   }
}
Esempio n. 13
0
void
PatchFaceDataNormOpsComplex::abs(
   const std::shared_ptr<pdat::FaceData<double> >& dst,
   const std::shared_ptr<pdat::FaceData<dcomplex> >& src,
   const hier::Box& box) const
{
   TBOX_ASSERT(dst && src);
   TBOX_ASSERT_OBJDIM_EQUALITY3(*dst, *src, box);

   tbox::Dimension::dir_t dimVal = box.getDim().getValue();
   for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
      d_array_ops.abs(dst->getArrayData(d),
         src->getArrayData(d),
         pdat::FaceGeometry::toFaceBox(box, d));
   }
}
Esempio n. 14
0
double
PatchSideDataNormOpsComplex::weightedL2Norm(
   const boost::shared_ptr<pdat::SideData<dcomplex> >& data,
   const boost::shared_ptr<pdat::SideData<dcomplex> >& weight,
   const hier::Box& box,
   const boost::shared_ptr<pdat::SideData<double> >& cvol) const
{
   TBOX_ASSERT(data && weight);
   TBOX_ASSERT_OBJDIM_EQUALITY3(*data, *weight, box);

   int dimVal = box.getDim().getValue();

   double retval = 0.0;
   const hier::IntVector& directions = data->getDirectionVector();

   TBOX_ASSERT(directions ==
      hier::IntVector::min(directions, weight->getDirectionVector()));

   if (!cvol) {
      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         if (directions(d)) {
            const hier::Box side_box = pdat::SideGeometry::toSideBox(box, d);
            double aval = d_array_ops.weightedL2Norm(data->getArrayData(d),
                  weight->getArrayData(d),
                  side_box);
            retval += aval * aval;
         }
      }
   } else {
      TBOX_ASSERT(directions ==
         hier::IntVector::min(directions, cvol->getDirectionVector()));
      TBOX_ASSERT_OBJDIM_EQUALITY2(*data, *cvol);

      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         if (directions(d)) {
            const hier::Box side_box = pdat::SideGeometry::toSideBox(box, d);
            double aval = d_array_ops.weightedL2NormWithControlVolume(
                  data->getArrayData(d),
                  weight->getArrayData(d),
                  cvol->getArrayData(d),
                  side_box);
            retval += aval * aval;
         }
      }
   }
   return sqrt(retval);
}
Esempio n. 15
0
dcomplex
PatchFaceDataNormOpsComplex::integral(
   const std::shared_ptr<pdat::FaceData<dcomplex> >& data,
   const hier::Box& box,
   const std::shared_ptr<pdat::FaceData<double> >& vol) const
{
   TBOX_ASSERT(data);

   tbox::Dimension::dir_t dimVal = box.getDim().getValue();
   dcomplex retval = dcomplex(0.0, 0.0);
   for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
      retval += d_array_ops.integral(data->getArrayData(d),
            vol->getArrayData(d),
            pdat::FaceGeometry::toFaceBox(box, d));
   }
   return retval;
}
Esempio n. 16
0
int
PatchFaceDataNormOpsComplex::numberOfEntries(
   const std::shared_ptr<pdat::FaceData<dcomplex> >& data,
   const hier::Box& box) const
{
   TBOX_ASSERT(data);
   TBOX_ASSERT_OBJDIM_EQUALITY2(*data, box);

   tbox::Dimension::dir_t dimVal = box.getDim().getValue();
   int retval = 0;
   const hier::Box ibox = box * data->getGhostBox();
   const int data_depth = data->getDepth();
   for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
      retval += static_cast<int>((pdat::FaceGeometry::toFaceBox(ibox, d).size()) * data_depth);
   }
   return retval;
}
Esempio n. 17
0
double
PatchFaceDataNormOpsComplex::sumControlVolumes(
   const std::shared_ptr<pdat::FaceData<dcomplex> >& data,
   const std::shared_ptr<pdat::FaceData<double> >& cvol,
   const hier::Box& box) const
{
   TBOX_ASSERT(data && cvol);

   tbox::Dimension::dir_t dimVal = box.getDim().getValue();
   double retval = 0.0;
   for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
      retval += d_array_ops.sumControlVolumes(data->getArrayData(d),
            cvol->getArrayData(d),
            pdat::FaceGeometry::toFaceBox(box, d));
   }
   return retval;
}
Esempio n. 18
0
void MblkGeometry::setSShellMetrics(
   const hier::Box& domain,
   const int level_number)
{
   int b = domain.getBlockId().getBlockValue();
   //
   // Set dx (drad, dth, dphi) for the level
   //
   d_dx.resize(level_number + 1);
   d_dx[level_number].resize(d_nblocks);
   d_dx[level_number][b].resize(d_dim.getValue());

   double nrad = (domain.upper(0) - domain.lower(0) + 1);
   double nth = (domain.upper(1) - domain.lower(1) + 1);
   double nphi = 0;
   if (d_dim == tbox::Dimension(3)) {
      nphi = (domain.upper(2) - domain.lower(2) + 1);
   }

   /*
    * If its a solid shell, its a single block and dx = dr, dth, dphi
    */
   if (d_sshell_type == "SOLID") {

      d_dx[level_number][b][0] = (d_sshell_rmax - d_sshell_rmin) / nrad;
      d_dx[level_number][b][1] =
         2.0 * tbox::MathUtilities<double>::Abs(d_sangle_thmin) / nth;
      if (d_dim == tbox::Dimension(3)) {
         d_dx[level_number][b][2] =
            2.0 * tbox::MathUtilities<double>::Abs(d_sangle_thmin) / nphi;
      }
   } else {
      d_dx[level_number][b][0] = 0.0001;
      d_dx[level_number][b][1] = 0.0001;
      if (d_dim == tbox::Dimension(3)) {
         d_dx[level_number][b][2] = 0.0001;
      }
   }

   /*
    * If its an OCTANT shell, then everything is set in the
    * computeUnitSphereOctant() method so all we do here is allocate
    * space for d_dx.
    */
   d_metrics_set[level_number][0] = true;
}
Esempio n. 19
0
void
PatchSideDataOpsComplex::copyData(
   const std::shared_ptr<pdat::SideData<dcomplex> >& dst,
   const std::shared_ptr<pdat::SideData<dcomplex> >& src,
   const hier::Box& box) const
{
   TBOX_ASSERT(dst && src);
   TBOX_ASSERT(dst->getDirectionVector() == src->getDirectionVector());
   TBOX_ASSERT_OBJDIM_EQUALITY3(*dst, *src, box);

   int dimVal = box.getDim().getValue();
   const hier::IntVector& directions = dst->getDirectionVector();
   for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
      if (directions(d)) {
         dst->getArrayData(d).copy(src->getArrayData(d),
            pdat::SideGeometry::toSideBox(box, d));
      }
   }
}
Esempio n. 20
0
dcomplex
PatchSideDataNormOpsComplex::dot(
   const boost::shared_ptr<pdat::SideData<dcomplex> >& data1,
   const boost::shared_ptr<pdat::SideData<dcomplex> >& data2,
   const hier::Box& box,
   const boost::shared_ptr<pdat::SideData<double> >& cvol) const
{
   TBOX_ASSERT(data1 && data2);
   TBOX_ASSERT(data1->getDirectionVector() == data2->getDirectionVector());

   int dimVal = box.getDim().getValue();

   dcomplex retval = dcomplex(0.0, 0.0);
   const hier::IntVector& directions = data1->getDirectionVector();
   if (!cvol) {
      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         if (directions(d)) {
            const hier::Box side_box = pdat::SideGeometry::toSideBox(box, d);
            retval += d_array_ops.dot(data1->getArrayData(d),
                  data2->getArrayData(d),
                  side_box);
         }
      }
   } else {
      TBOX_ASSERT(directions ==
         hier::IntVector::min(directions, cvol->getDirectionVector()));

      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         if (directions(d)) {
            const hier::Box side_box = pdat::SideGeometry::toSideBox(box, d);
            retval += d_array_ops.dotWithControlVolume(
                  data1->getArrayData(d),
                  data2->getArrayData(d),
                  cvol->getArrayData(d),
                  side_box);
         }
      }
   }
   return retval;
}
/*
 *************************************************************************
 *
 * Compute BoxOverlap that specifies data to be filled by refinement
 * operator.
 *
 *************************************************************************
 */
std::shared_ptr<hier::BoxOverlap>
FirstLayerCellVariableFillPattern::computeFillBoxesOverlap(
   const hier::BoxContainer& fill_boxes,
   const hier::BoxContainer& node_fill_boxes,
   const hier::Box& patch_box,
   const hier::Box& data_box,
   const hier::PatchDataFactory& pdf) const
{
   NULL_USE(pdf);
   NULL_USE(node_fill_boxes);

   hier::BoxContainer stencil_boxes;
   computeStencilBoxes(stencil_boxes, patch_box);

   hier::BoxContainer overlap_boxes(fill_boxes);
   overlap_boxes.intersectBoxes(data_box);
   overlap_boxes.intersectBoxes(stencil_boxes);

   return std::make_shared<CellOverlap>(
             overlap_boxes,
             hier::Transformation(hier::IntVector::getZero(patch_box.getDim())));
}
Esempio n. 22
0
double
PatchSideDataNormOpsComplex::maxNorm(
   const boost::shared_ptr<pdat::SideData<dcomplex> >& data,
   const hier::Box& box,
   const boost::shared_ptr<pdat::SideData<double> >& cvol) const
{
   TBOX_ASSERT(data);

   int dimVal = box.getDim().getValue();

   double retval = 0.0;
   const hier::IntVector& directions = data->getDirectionVector();
   if (!cvol) {
      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         if (directions(d)) {
            const hier::Box side_box =
               pdat::SideGeometry::toSideBox(box, d);
            retval = tbox::MathUtilities<double>::Max(retval,
                  d_array_ops.maxNorm(data->getArrayData(d), side_box));
         }
      }
   } else {
      TBOX_ASSERT(directions ==
         hier::IntVector::min(directions, cvol->getDirectionVector()));

      for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
         if (directions(d)) {
            const hier::Box side_box =
               pdat::SideGeometry::toSideBox(box, d);
            retval = tbox::MathUtilities<double>::Max(retval,
                  d_array_ops.maxNormWithControlVolume(
                     data->getArrayData(d),
                     cvol->getArrayData(d), side_box));
         }
      }
   }
   return retval;
}
Esempio n. 23
0
double
PatchSideDataNormOpsComplex::sumControlVolumes(
   const boost::shared_ptr<pdat::SideData<dcomplex> >& data,
   const boost::shared_ptr<pdat::SideData<double> >& cvol,
   const hier::Box& box) const
{
   TBOX_ASSERT(data && cvol);

   double retval = 0.0;
   const hier::IntVector& directions = data->getDirectionVector();

   TBOX_ASSERT(directions ==
      hier::IntVector::min(directions, cvol->getDirectionVector()));

   int dimVal = box.getDim().getValue();
   for (tbox::Dimension::dir_t d = 0; d < dimVal; ++d) {
      if (directions(d)) {
         retval += d_array_ops.sumControlVolumes(data->getArrayData(d),
               cvol->getArrayData(d),
               pdat::SideGeometry::toSideBox(box, d));
      }
   }
   return retval;
}
Esempio n. 24
0
void MblkGeometry::setWedgeMetrics(
   const hier::Box& domain,
   const int level_number)
{
   int b = domain.getBlockId().getBlockValue();
   //
   // Set dx (dr, dth, dz) for the level
   //
   d_dx.resize(level_number + 1);
   d_dx[level_number].resize(d_nblocks);
   d_dx[level_number][b].resize(d_dim.getValue());

   double nr = (domain.upper(0) - domain.lower(0) + 1);
   double nth = (domain.upper(1) - domain.lower(1) + 1);
   d_dx[level_number][b][0] = (d_wedge_rmax[0] - d_wedge_rmin[0]) / nr;
   d_dx[level_number][b][1] = (d_wedge_thmax - d_wedge_thmin) / nth;

   if (d_dim == tbox::Dimension(3)) {
      double nz = (domain.upper(2) - domain.lower(2) + 1);
      d_dx[level_number][b][2] = (d_wedge_zmax - d_wedge_zmin) / nz;
   }

   d_metrics_set[level_number][b] = true;
}
Esempio n. 25
0
RefineCopyTransaction::RefineCopyTransaction(
   const std::shared_ptr<hier::PatchLevel>& dst_level,
   const std::shared_ptr<hier::PatchLevel>& src_level,
   const std::shared_ptr<hier::BoxOverlap>& overlap,
   const hier::Box& dst_box,
   const hier::Box& src_box,
   const RefineClasses::Data** refine_data,
   int item_id):
   d_dst_patch_rank(dst_box.getOwnerRank()),
   d_src_patch_rank(src_box.getOwnerRank()),
   d_overlap(overlap),
   d_refine_data(refine_data),
   d_item_id(item_id),
   d_incoming_bytes(0),
   d_outgoing_bytes(0)
{
   TBOX_ASSERT(dst_level);
   TBOX_ASSERT(src_level);
   TBOX_ASSERT(overlap);
   TBOX_ASSERT(dst_box.getLocalId() >= 0);
   TBOX_ASSERT(src_box.getLocalId() >= 0);
   TBOX_ASSERT(item_id >= 0);
   TBOX_ASSERT(refine_data[item_id] != 0);
   TBOX_ASSERT_OBJDIM_EQUALITY4(*dst_level,
      *src_level,
      dst_box,
      src_box);

   // Note: s_num_coarsen_items cannot be used at this point!

   if (d_dst_patch_rank == dst_level->getBoxLevel()->getMPI().getRank()) {
      d_dst_patch = dst_level->getPatch(dst_box.getGlobalId());
   }
   if (d_src_patch_rank == dst_level->getBoxLevel()->getMPI().getRank()) {
      d_src_patch = src_level->getPatch(src_box.getGlobalId());
   }
}
void SkeletonOutersideDoubleWeightedAverage::coarsen(
   hier::Patch& coarse,
   const hier::Patch& fine,
   const int dst_component,
   const int src_component,
   const hier::Box& coarse_box,
   const hier::IntVector& ratio) const
{
   boost::shared_ptr<pdat::OuterfaceData<double> > fdata(
      BOOST_CAST<pdat::OuterfaceData<double>, hier::PatchData>(
         fine.getPatchData(src_component)));
   boost::shared_ptr<pdat::OuterfaceData<double> > cdata(
      BOOST_CAST<pdat::OuterfaceData<double>, hier::PatchData>(
         coarse.getPatchData(dst_component)));
   TBOX_ASSERT(fdata);
   TBOX_ASSERT(cdata);
   TBOX_ASSERT(cdata->getDepth() == fdata->getDepth());

   const hier::Index filo = fdata->getGhostBox().lower();
   const hier::Index fihi = fdata->getGhostBox().upper();
   const hier::Index cilo = cdata->getGhostBox().lower();
   const hier::Index cihi = cdata->getGhostBox().upper();

   const boost::shared_ptr<hier::PatchGeometry> fgeom(
      fine.getPatchGeometry());
   const boost::shared_ptr<hier::PatchGeometry> cgeom(
      coarse.getPatchGeometry());

   const hier::Index ifirstc = coarse_box.lower();
   const hier::Index ilastc = coarse_box.upper();

   int flev_num = fine.getPatchLevelNumber();
   int clev_num = coarse.getPatchLevelNumber();

   // deal with levels not in hierarchy
   if (flev_num < 0) flev_num = clev_num + 1;
   if (clev_num < 0) clev_num = flev_num - 1;

   double cdx[SAMRAI::MAX_DIM_VAL];
   double fdx[SAMRAI::MAX_DIM_VAL];
   getDx(clev_num, cdx);
   getDx(flev_num, fdx);

   for (int d = 0; d < cdata->getDepth(); ++d) {
      // loop over lower and upper outerside arrays
      for (int i = 0; i < 2; ++i) {
         if (d_dim == tbox::Dimension(1)) {
            SAMRAI_F77_FUNC(cartwgtavgoutfacedoub1d, CARTWGTAVGOUTFACEDOUB1D) (
               ifirstc(0), ilastc(0),
               filo(0), fihi(0),
               cilo(0), cihi(0),
               &ratio[0],
               fdx,
               cdx,
               fdata->getPointer(0, i, d),
               cdata->getPointer(0, i, d));
         } else if (d_dim == tbox::Dimension(2)) {
            SAMRAI_F77_FUNC(cartwgtavgoutfacedoub2d0, CARTWGTAVGOUTFACEDOUB2D0) (
               ifirstc(0), ifirstc(1), ilastc(0), ilastc(1),
               filo(0), filo(1), fihi(0), fihi(1),
               cilo(0), cilo(1), cihi(0), cihi(1),
               &ratio[0],
               fdx,
               cdx,
               fdata->getPointer(0, i, d),
               cdata->getPointer(0, i, d));
            SAMRAI_F77_FUNC(cartwgtavgoutfacedoub2d1, CARTWGTAVGOUTFACEDOUB2D1) (
               ifirstc(0), ifirstc(1), ilastc(0), ilastc(1),
               filo(0), filo(1), fihi(0), fihi(1),
               cilo(0), cilo(1), cihi(0), cihi(1),
               &ratio[0],
               fdx,
               cdx,
               fdata->getPointer(1, i, d),
               cdata->getPointer(1, i, d));
         } else if (d_dim == tbox::Dimension(3)) {
            SAMRAI_F77_FUNC(cartwgtavgoutfacedoub3d0, CARTWGTAVGOUTFACEDOUB3D0) (
               ifirstc(0), ifirstc(1), ifirstc(2),
               ilastc(0), ilastc(1), ilastc(2),
               filo(0), filo(1), filo(2),
               fihi(0), fihi(1), fihi(2),
               cilo(0), cilo(1), cilo(2),
               cihi(0), cihi(1), cihi(2),
               &ratio[0],
               fdx,
               cdx,
               fdata->getPointer(0, i, d),
               cdata->getPointer(0, i, d));
            SAMRAI_F77_FUNC(cartwgtavgoutfacedoub3d1, CARTWGTAVGOUTFACEDOUB3D1) (
               ifirstc(0), ifirstc(1), ifirstc(2),
               ilastc(0), ilastc(1), ilastc(2),
               filo(0), filo(1), filo(2),
               fihi(0), fihi(1), fihi(2),
               cilo(0), cilo(1), cilo(2),
               cihi(0), cihi(1), cihi(2),
               &ratio[0],
               fdx,
               cdx,
               fdata->getPointer(1, i, d),
               cdata->getPointer(1, i, d));
            SAMRAI_F77_FUNC(cartwgtavgoutfacedoub3d2, CARTWGTAVGOUTFACEDOUB3D2) (
               ifirstc(0), ifirstc(1), ifirstc(2),
               ilastc(0), ilastc(1), ilastc(2),
               filo(0), filo(1), filo(2),
               fihi(0), fihi(1), fihi(2),
               cilo(0), cilo(1), cilo(2),
               cihi(0), cihi(1), cihi(2),
               &ratio[0],
               fdx,
               cdx,
               fdata->getPointer(2, i, d),
               cdata->getPointer(2, i, d));
         } else {
            TBOX_ERROR("SkeletonOutersideDoubleWeightedAverage error...\n"
               << "d_dim > 3 not supported." << endl);
         }
      }
   }
}
void
CellComplexLinearTimeInterpolateOp::timeInterpolate(
   hier::PatchData& dst_data,
   const hier::Box& where,
   const hier::PatchData& src_data_old,
   const hier::PatchData& src_data_new) const
{
   const tbox::Dimension& dim(where.getDim());

   const CellData<dcomplex>* old_dat =
      CPP_CAST<const CellData<dcomplex> *>(&src_data_old);
   const CellData<dcomplex>* new_dat =
      CPP_CAST<const CellData<dcomplex> *>(&src_data_new);
   CellData<dcomplex>* dst_dat =
      CPP_CAST<CellData<dcomplex> *>(&dst_data);

   TBOX_ASSERT(old_dat != 0);
   TBOX_ASSERT(new_dat != 0);
   TBOX_ASSERT(dst_dat != 0);
   TBOX_ASSERT((where * old_dat->getGhostBox()).isSpatiallyEqual(where));
   TBOX_ASSERT((where * new_dat->getGhostBox()).isSpatiallyEqual(where));
   TBOX_ASSERT((where * dst_dat->getGhostBox()).isSpatiallyEqual(where));
   TBOX_ASSERT_OBJDIM_EQUALITY4(dst_data, where, src_data_old, src_data_new);

   const hier::Index& old_ilo = old_dat->getGhostBox().lower();
   const hier::Index& old_ihi = old_dat->getGhostBox().upper();
   const hier::Index& new_ilo = new_dat->getGhostBox().lower();
   const hier::Index& new_ihi = new_dat->getGhostBox().upper();

   const hier::Index& dst_ilo = dst_dat->getGhostBox().lower();
   const hier::Index& dst_ihi = dst_dat->getGhostBox().upper();

   const hier::Index& ifirst = where.lower();
   const hier::Index& ilast = where.upper();

   const double old_time = old_dat->getTime();
   const double new_time = new_dat->getTime();
   const double dst_time = dst_dat->getTime();

   TBOX_ASSERT((old_time < dst_time ||
                tbox::MathUtilities<double>::equalEps(old_time, dst_time)) &&
      (dst_time < new_time ||
       tbox::MathUtilities<double>::equalEps(dst_time, new_time)));

   double tfrac = dst_time - old_time;
   double denom = new_time - old_time;
   if (denom > tbox::MathUtilities<double>::getMin()) {
      tfrac /= denom;
   } else {
      tfrac = 0.0;
   }

   for (int d = 0; d < dst_dat->getDepth(); ++d) {
      if (dim == tbox::Dimension(1)) {
         SAMRAI_F77_FUNC(lintimeintcellcmplx1d, LINTIMEINTCELLCMPLX1D) (ifirst(0),
            ilast(0),
            old_ilo(0), old_ihi(0),
            new_ilo(0), new_ihi(0),
            dst_ilo(0), dst_ihi(0),
            tfrac,
            old_dat->getPointer(d),
            new_dat->getPointer(d),
            dst_dat->getPointer(d));
      } else if (dim == tbox::Dimension(2)) {
         SAMRAI_F77_FUNC(lintimeintcellcmplx2d, LINTIMEINTCELLCMPLX2D) (ifirst(0),
            ifirst(1), ilast(0), ilast(1),
            old_ilo(0), old_ilo(1), old_ihi(0), old_ihi(1),
            new_ilo(0), new_ilo(1), new_ihi(0), new_ihi(1),
            dst_ilo(0), dst_ilo(1), dst_ihi(0), dst_ihi(1),
            tfrac,
            old_dat->getPointer(d),
            new_dat->getPointer(d),
            dst_dat->getPointer(d));
      } else if (dim == tbox::Dimension(3)) {
         SAMRAI_F77_FUNC(lintimeintcellcmplx3d, LINTIMEINTCELLCMPLX3D) (ifirst(0),
            ifirst(1), ifirst(2),
            ilast(0), ilast(1), ilast(2),
            old_ilo(0), old_ilo(1), old_ilo(2),
            old_ihi(0), old_ihi(1), old_ihi(2),
            new_ilo(0), new_ilo(1), new_ilo(2),
            new_ihi(0), new_ihi(1), new_ihi(2),
            dst_ilo(0), dst_ilo(1), dst_ilo(2),
            dst_ihi(0), dst_ihi(1), dst_ihi(2),
            tfrac,
            old_dat->getPointer(d),
            new_dat->getPointer(d),
            dst_dat->getPointer(d));
      } else {
         TBOX_ERROR(
            "CellComplexLinearTimeInterpolateOp::TimeInterpolate dim > 3 not supported"
            << std::endl);
      }

   }
}
void
CartesianCellDoubleConservativeLinearRefine::refine(
   hier::Patch& fine,
   const hier::Patch& coarse,
   const int dst_component,
   const int src_component,
   const hier::Box& fine_box,
   const hier::IntVector& ratio) const
{
   const tbox::Dimension& dim(fine.getDim());
   TBOX_ASSERT_DIM_OBJDIM_EQUALITY3(dim, coarse, fine_box, ratio);

   std::shared_ptr<pdat::CellData<double> > cdata(
      SAMRAI_SHARED_PTR_CAST<pdat::CellData<double>, hier::PatchData>(
         coarse.getPatchData(src_component)));
   std::shared_ptr<pdat::CellData<double> > fdata(
      SAMRAI_SHARED_PTR_CAST<pdat::CellData<double>, hier::PatchData>(
         fine.getPatchData(dst_component)));
   TBOX_ASSERT(cdata);
   TBOX_ASSERT(fdata);
   TBOX_ASSERT(cdata->getDepth() == fdata->getDepth());

   const hier::Box cgbox(cdata->getGhostBox());

   const hier::Index& cilo = cgbox.lower();
   const hier::Index& cihi = cgbox.upper();
   const hier::Index& filo = fdata->getGhostBox().lower();
   const hier::Index& fihi = fdata->getGhostBox().upper();

   const std::shared_ptr<CartesianPatchGeometry> cgeom(
      SAMRAI_SHARED_PTR_CAST<CartesianPatchGeometry, hier::PatchGeometry>(
         coarse.getPatchGeometry()));
   const std::shared_ptr<CartesianPatchGeometry> fgeom(
      SAMRAI_SHARED_PTR_CAST<CartesianPatchGeometry, hier::PatchGeometry>(
         fine.getPatchGeometry()));

   TBOX_ASSERT(cgeom);
   TBOX_ASSERT(fgeom);

   const hier::Box coarse_box = hier::Box::coarsen(fine_box, ratio);
   const hier::Index& ifirstc = coarse_box.lower();
   const hier::Index& ilastc = coarse_box.upper();
   const hier::Index& ifirstf = fine_box.lower();
   const hier::Index& ilastf = fine_box.upper();

   const hier::IntVector tmp_ghosts(dim, 0);
   std::vector<double> diff0(cgbox.numberCells(0) + 1);
   pdat::CellData<double> slope0(cgbox, 1, tmp_ghosts);

   for (int d = 0; d < fdata->getDepth(); ++d) {
      if ((dim == tbox::Dimension(1))) {
         SAMRAI_F77_FUNC(cartclinrefcelldoub1d, CARTCLINREFCELLDOUB1D) (ifirstc(0),
            ilastc(0),
            ifirstf(0), ilastf(0),
            cilo(0), cihi(0),
            filo(0), fihi(0),
            &ratio[0],
            cgeom->getDx(),
            fgeom->getDx(),
            cdata->getPointer(d),
            fdata->getPointer(d),
            &diff0[0], slope0.getPointer());
      } else if ((dim == tbox::Dimension(2))) {

         std::vector<double> diff1(cgbox.numberCells(1) + 1);
         pdat::CellData<double> slope1(cgbox, 1, tmp_ghosts);

         SAMRAI_F77_FUNC(cartclinrefcelldoub2d, CARTCLINREFCELLDOUB2D) (ifirstc(0),
            ifirstc(1), ilastc(0), ilastc(1),
            ifirstf(0), ifirstf(1), ilastf(0), ilastf(1),
            cilo(0), cilo(1), cihi(0), cihi(1),
            filo(0), filo(1), fihi(0), fihi(1),
            &ratio[0],
            cgeom->getDx(),
            fgeom->getDx(),
            cdata->getPointer(d),
            fdata->getPointer(d),
            &diff0[0], slope0.getPointer(),
            &diff1[0], slope1.getPointer());
      } else if ((dim == tbox::Dimension(3))) {

         std::vector<double> diff1(cgbox.numberCells(1) + 1);
         pdat::CellData<double> slope1(cgbox, 1, tmp_ghosts);

         std::vector<double> diff2(cgbox.numberCells(2) + 1);
         pdat::CellData<double> slope2(cgbox, 1, tmp_ghosts);

         SAMRAI_F77_FUNC(cartclinrefcelldoub3d, CARTCLINREFCELLDOUB3D) (ifirstc(0),
            ifirstc(1), ifirstc(2),
            ilastc(0), ilastc(1), ilastc(2),
            ifirstf(0), ifirstf(1), ifirstf(2),
            ilastf(0), ilastf(1), ilastf(2),
            cilo(0), cilo(1), cilo(2),
            cihi(0), cihi(1), cihi(2),
            filo(0), filo(1), filo(2),
            fihi(0), fihi(1), fihi(2),
            &ratio[0],
            cgeom->getDx(),
            fgeom->getDx(),
            cdata->getPointer(d),
            fdata->getPointer(d),
            &diff0[0], slope0.getPointer(),
            &diff1[0], slope1.getPointer(),
            &diff2[0], slope2.getPointer());
      } else {
         TBOX_ERROR("CartesianCellDoubleConservativeLinearRefine error...\n"
            << "dim > 3 not supported." << std::endl);

      }
   }
}
Esempio n. 29
0
void EdgeMultiblockTest::fillSingularityBoundaryConditions(
   hier::Patch& patch,
   const hier::PatchLevel& encon_level,
   std::shared_ptr<const hier::Connector> dst_to_encon,
   const hier::Box& fill_box,
   const hier::BoundaryBox& bbox,
   const std::shared_ptr<hier::BaseGridGeometry>& grid_geometry)
{
   const tbox::Dimension& dim = fill_box.getDim();

   const hier::BoxId& dst_mb_id = patch.getBox().getBoxId();

   const hier::BlockId& patch_blk_id = patch.getBox().getBlockId();

   for (int i = 0; i < static_cast<int>(d_variables.size()); ++i) {

      std::shared_ptr<pdat::EdgeData<double> > edge_data(
         SAMRAI_SHARED_PTR_CAST<pdat::EdgeData<double>, hier::PatchData>(
            patch.getPatchData(d_variables[i], getDataContext())));
      TBOX_ASSERT(edge_data);

      hier::Box sing_fill_box(edge_data->getGhostBox() * fill_box);

      int depth = edge_data->getDepth();

      for (int axis = 0; axis < d_dim.getValue(); ++axis) {
         hier::Box pbox = pdat::EdgeGeometry::toEdgeBox(patch.getBox(), axis);

         hier::Index plower(pbox.lower());
         hier::Index pupper(pbox.upper());

         pdat::EdgeIterator niend(pdat::EdgeGeometry::end(sing_fill_box, axis));
         for (pdat::EdgeIterator ni(pdat::EdgeGeometry::begin(sing_fill_box, axis));
              ni != niend; ++ni) {
            bool use_index = true;
            for (tbox::Dimension::dir_t n = 0; n < d_dim.getValue(); ++n) {
               if (axis != n && bbox.getBox().numberCells(n) == 1) {
                  if ((*ni)(n) == plower(n) || (*ni)(n) == pupper(n)) {
                     use_index = false;
                     break;
                  }
               }
            }
            if (use_index) {
               for (int d = 0; d < depth; ++d) {
                  (*edge_data)(*ni, d) = 0.0;
               }
            }
         }
      }

      int num_encon_used = 0;

      if (grid_geometry->hasEnhancedConnectivity()) {

         hier::Connector::ConstNeighborhoodIterator ni =
            dst_to_encon->findLocal(dst_mb_id);

         if (ni != dst_to_encon->end()) {

            for (hier::Connector::ConstNeighborIterator ei = dst_to_encon->begin(ni);
                 ei != dst_to_encon->end(ni); ++ei) {

               const hier::BlockId& encon_blk_id = ei->getBlockId();
               std::shared_ptr<hier::Patch> encon_patch(
                  encon_level.getPatch(ei->getBoxId()));

               hier::Transformation::RotationIdentifier rotation =
                  hier::Transformation::NO_ROTATE;
               hier::IntVector offset(dim);

               hier::BaseGridGeometry::ConstNeighborIterator itr =
                  grid_geometry->find(patch_blk_id, encon_blk_id);
               if (itr != grid_geometry->end(patch_blk_id)) {
                  rotation = (*itr).getRotationIdentifier();
                  offset = (*itr).getShift(encon_level.getLevelNumber());
               }

               hier::Transformation transformation(rotation, offset,
                                                   encon_blk_id,
                                                   patch_blk_id);
               hier::Box encon_patch_box(encon_patch->getBox());
               transformation.transform(encon_patch_box);

               hier::Box encon_fill_box(encon_patch_box * sing_fill_box);
               if (!encon_fill_box.empty()) {

                  const hier::Transformation::RotationIdentifier back_rotate =
                     hier::Transformation::getReverseRotationIdentifier(
                        rotation, dim);

                  hier::IntVector back_shift(dim);

                  hier::Transformation::calculateReverseShift(
                     back_shift, offset, rotation);

                  hier::Transformation back_trans(back_rotate, back_shift,
                                                  patch_blk_id,
                                                  encon_blk_id);

                  std::shared_ptr<pdat::EdgeData<double> > sing_data(
                     SAMRAI_SHARED_PTR_CAST<pdat::EdgeData<double>, hier::PatchData>(
                        encon_patch->getPatchData(
                           d_variables[i], getDataContext())));
                  TBOX_ASSERT(sing_data);

                  for (int axis = 0; axis < d_dim.getValue(); ++axis) {

                     hier::Box pbox(
                        pdat::EdgeGeometry::toEdgeBox(patch.getBox(), axis));

                     hier::Index plower(pbox.lower());
                     hier::Index pupper(pbox.upper());

                     pdat::EdgeIterator ciend(pdat::EdgeGeometry::end(sing_fill_box, axis));
                     for (pdat::EdgeIterator ci(pdat::EdgeGeometry::begin(sing_fill_box, axis));
                          ci != ciend; ++ci) {
                        bool use_index = true;
                        for (tbox::Dimension::dir_t n = 0; n < d_dim.getValue(); ++n) {
                           if (axis != n && bbox.getBox().numberCells(n) == 1) {
                              if ((*ci)(n) == plower(n) || (*ci)(n) == pupper(n)) {
                                 use_index = false;
                                 break;
                              }
                           }
                        }
                        if (use_index) {

                           pdat::EdgeIndex src_index(*ci);
                           pdat::EdgeGeometry::transform(src_index, back_trans);

                           for (int d = 0; d < depth; ++d) {
                              (*edge_data)(*ci, d) += (*sing_data)(src_index, d);
                           }
                        }
                     }
                  }

                  ++num_encon_used;
               }
            }
         }

      }

      if (num_encon_used) {

         for (int axis = 0; axis < d_dim.getValue(); ++axis) {

            hier::Box pbox =
               pdat::EdgeGeometry::toEdgeBox(patch.getBox(), axis);

            hier::Index plower(pbox.lower());
            hier::Index pupper(pbox.upper());

            pdat::EdgeIterator ciend(pdat::EdgeGeometry::end(sing_fill_box, axis));
            for (pdat::EdgeIterator ci(pdat::EdgeGeometry::begin(sing_fill_box, axis));
                 ci != ciend; ++ci) {
               bool use_index = true;
               for (tbox::Dimension::dir_t n = 0; n < d_dim.getValue(); ++n) {
                  if (axis != n && bbox.getBox().numberCells(n) == 1) {
                     if ((*ci)(n) == plower(n) || (*ci)(n) == pupper(n)) {
                        use_index = false;
                        break;
                     }
                  }
               }
               if (use_index) {
                  for (int d = 0; d < depth; ++d) {
                     (*edge_data)(*ci, d) /= num_encon_used;
                  }
               }
            }
         }

      } else {

         /*
          * In cases of reduced connectivity, there are no other blocks
          * from which to acquire data.
          */

         for (int axis = 0; axis < d_dim.getValue(); ++axis) {

            hier::Box pbox =
               pdat::EdgeGeometry::toEdgeBox(patch.getBox(), axis);

            hier::Index plower(pbox.lower());
            hier::Index pupper(pbox.upper());

            pdat::EdgeIterator ciend(pdat::EdgeGeometry::end(sing_fill_box, axis));
            for (pdat::EdgeIterator ci(pdat::EdgeGeometry::begin(sing_fill_box, axis));
                 ci != ciend; ++ci) {
               bool use_index = true;
               for (tbox::Dimension::dir_t n = 0; n < d_dim.getValue(); ++n) {
                  if (axis != n && bbox.getBox().numberCells(n) == 1) {
                     if ((*ci)(n) == plower(n) || (*ci)(n) == pupper(n)) {
                        use_index = false;
                        break;
                     }
                  }
               }
               if (use_index) {
                  for (int d = 0; d < depth; ++d) {
                     (*edge_data)(*ci, d) =
                        (double)bbox.getLocationIndex() + 200.0;
                  }
               }
            }
         }
      }
   }
}
Esempio n. 30
0
void MblkGeometry::buildSShellGridOnPatch(
   const hier::Patch& patch,
   const hier::Box& domain,
   const int xyz_id,
   const int level_number,
   const int block_number)
{

   bool xyz_allocated = patch.checkAllocated(xyz_id);
   if (!xyz_allocated) {
      TBOX_ERROR("xyz data not allocated" << std::endl);
      //patch.allocatePatchData(xyz_id);
   }

   boost::shared_ptr<pdat::NodeData<double> > xyz(
      BOOST_CAST<pdat::NodeData<double>, hier::PatchData>(
         patch.getPatchData(xyz_id)));

   TBOX_ASSERT(xyz);

   if (d_dim == tbox::Dimension(3)) {

      const hier::Index ifirst = patch.getBox().lower();
      const hier::Index ilast = patch.getBox().upper();
      hier::IntVector nghost_cells = xyz->getGhostCellWidth();

      //int imin = ifirst(0);
      //int imax = ilast(0)  + 1;
      //int jmin = ifirst(1);
      //int jmax = ilast(1)  + 1;
      //int kmin = ifirst(2);
      //int kmax = ilast(2)  + 1;
      //int nx   = imax - imin + 1;
      //int ny   = jmax - jmin + 1;
      //int nxny = nx*ny;

      int nd_imin = ifirst(0) - nghost_cells(0);
      int nd_imax = ilast(0) + 1 + nghost_cells(0);
      int nd_jmin = ifirst(1) - nghost_cells(1);
      int nd_jmax = ilast(1) + 1 + nghost_cells(1);
      int nd_kmin = ifirst(2) - nghost_cells(2);
      int nd_kmax = ilast(2) + 1 + nghost_cells(2);
      int nd_nx = nd_imax - nd_imin + 1;
      int nd_ny = nd_jmax - nd_jmin + 1;
      int nd_nxny = nd_nx * nd_ny;

      double* x = xyz->getPointer(0);
      double* y = xyz->getPointer(1);
      double* z = xyz->getPointer(2);

      bool found = false;

      int nrad = (domain.upper(0) - domain.lower(0) + 1);
      int nth = (domain.upper(1) - domain.lower(1) + 1);
      int nphi = (domain.upper(2) - domain.lower(2) + 1);

      /*
       * If its a solid shell, its a single block and dx = dr, dth, dphi
       */
      if (d_sshell_type == "SOLID") {

         d_dx[level_number][block_number][0] = (d_sshell_rmax - d_sshell_rmin) / (double)nrad;
         d_dx[level_number][block_number][1] =
            2.0 * tbox::MathUtilities<double>::Abs(d_sangle_thmin)
            / (double)nth;
         d_dx[level_number][block_number][2] =
            2.0 * tbox::MathUtilities<double>::Abs(d_sangle_thmin)
            / (double)nphi;

         //
         // step in a radial direction in x and set y and z appropriately
         // for a solid angle we go -th to th and -phi to phi
         //
         for (int k = nd_kmin; k <= nd_kmax; ++k) {
            for (int j = nd_jmin; j <= nd_jmax; ++j) {

               double theta = d_sangle_thmin + j * d_dx[level_number][block_number][1]; // dx used for dth
               double phi = d_sangle_thmin + k * d_dx[level_number][block_number][2];

               double xface = cos(theta) * cos(phi);
               double yface = sin(theta) * cos(phi);
               double zface = sin(phi);

               for (int i = nd_imin; i <= nd_imax; ++i) {

                  int ind = POLY3(i,
                        j,
                        k,
                        nd_imin,
                        nd_jmin,
                        nd_kmin,
                        nd_nx,
                        nd_nxny);

                  double r = d_sshell_rmin + d_dx[level_number][block_number][0] * (i);

                  double xx = r * xface;
                  double yy = r * yface;
                  double zz = r * zface;

                  x[ind] = xx;
                  y[ind] = yy;
                  z[ind] = zz;
               }
            }
         }

         found = true;
      }

      /*
       * If its an octant problem, then its got multiple (three) blocks
       */
      if (d_sshell_type == "OCTANT") {

         double drad = (d_sshell_rmax - d_sshell_rmin) / nrad;

         //
         // as in the solid angle we go along a radial direction in
         // x setting y and z appropriately, but here we have logic for
         // the block we are in.  This is contained in the dispOctant.m
         // matlab code.
         //
         for (int k = nd_kmin; k <= nd_kmax; ++k) {
            for (int j = nd_jmin; j <= nd_jmax; ++j) {

               //
               // compute the position on the unit sphere for our radial line
               //
               double xface, yface, zface;
               computeUnitSphereOctant(block_number, nth, j, k,
                  &xface, &yface, &zface);

               for (int i = nd_imin; i <= nd_imax; ++i) {
                  int ind = POLY3(i,
                        j,
                        k,
                        nd_imin,
                        nd_jmin,
                        nd_kmin,
                        nd_nx,
                        nd_nxny);

                  double r = d_sshell_rmin + drad * (i);

                  double xx = r * xface;
                  double yy = r * yface;
                  double zz = r * zface;

                  x[ind] = xx;
                  y[ind] = yy;
                  z[ind] = zz;
               }
            }
         }
         found = true;
      }

      if (!found) {
         TBOX_ERROR(
            d_object_name << ": "
                          << "spherical shell nodal positions for "
                          << d_sshell_type
                          << " not found" << std::endl);
      }

   }

}