mitk::Image::Pointer mitk::CompressedImageContainer::GetImage() { if (m_ByteBuffers.empty()) return nullptr; // uncompress image data, create an Image Image::Pointer image = Image::New(); unsigned int dims[20]; // more than 20 dimensions and bang for (unsigned int dim = 0; dim < m_ImageDimension; ++dim) dims[dim] = m_ImageDimensions[dim]; image->Initialize(*m_PixelType, m_ImageDimension, dims); // this IS needed, right ?? But it does allocate memory -> // does create one big lump of memory (also in windows) unsigned int timeStep(0); for (auto iter = m_ByteBuffers.begin(); iter != m_ByteBuffers.end(); ++iter, ++timeStep) { ImageReadAccessor imgAcc(image, image->GetVolumeData(timeStep)); auto *dest((unsigned char *)imgAcc.GetData()); ::uLongf destLen(m_OneTimeStepImageSizeInBytes); ::Bytef *source(iter->first); ::uLongf sourceLen(iter->second); int zlibRetVal = ::uncompress(dest, &destLen, source, sourceLen); if (itk::Object::GetDebug()) { if (zlibRetVal == Z_OK) { MITK_INFO << "Success, destLen now " << destLen << " bytes" << std::endl; } else { switch (zlibRetVal) { case Z_DATA_ERROR: MITK_ERROR << "compressed data corrupted" << std::endl; break; case Z_MEM_ERROR: MITK_ERROR << "not enough memory" << std::endl; break; case Z_BUF_ERROR: MITK_ERROR << "output buffer too small" << std::endl; break; default: MITK_ERROR << "other, unspecified error" << std::endl; break; } } } } image->SetGeometry(m_ImageGeometry); image->Modified(); return image; }
mitk::Image::Pointer mitk::VolumeDataVtkMapper3D::GetMask() { if (this->m_Mask) { Image::Pointer mask = Image::New(); mask->Initialize(this->m_Mask); mask->SetImportVolume(this->m_Mask->GetScalarPointer(), 0, 0, Image::ReferenceMemory); mask->SetGeometry(this->GetInput()->GetGeometry()); return mask; } return 0; }
void mitk::ImageTimeSelector::GenerateOutputInformation() { Image::ConstPointer input = this->GetInput(); Image::Pointer output = this->GetOutput(); itkDebugMacro(<<"GenerateOutputInformation()"); int dim=(input->GetDimension()<3?input->GetDimension():3); output->Initialize(input->GetPixelType(), dim, input->GetDimensions()); if( (unsigned int) m_TimeNr >= input->GetDimension(3) ) { m_TimeNr = input->GetDimension(3)-1; } // initialize geometry output->SetGeometry(dynamic_cast<Geometry3D*>(input->GetSlicedGeometry(m_TimeNr)->Clone().GetPointer())); output->SetPropertyList(input->GetPropertyList()->Clone()); }
mitk::DataNode::Pointer mitk::Tool::CreateEmptySegmentationNode( Image* original, const std::string& organName, const mitk::Color& color ) { // we NEED a reference image for size etc. if (!original) return NULL; // actually create a new empty segmentation PixelType pixelType(mitk::MakeScalarPixelType<DefaultSegmentationDataType>() ); Image::Pointer segmentation = Image::New(); if (original->GetDimension() == 2) { const unsigned int dimensions[] = { original->GetDimension(0), original->GetDimension(1), 1 }; segmentation->Initialize(pixelType, 3, dimensions); } else { segmentation->Initialize(pixelType, original->GetDimension(), original->GetDimensions()); } unsigned int byteSize = sizeof(DefaultSegmentationDataType); for (unsigned int dim = 0; dim < segmentation->GetDimension(); ++dim) { byteSize *= segmentation->GetDimension(dim); } memset( segmentation->GetData(), 0, byteSize ); if (original->GetTimeSlicedGeometry() ) { AffineGeometryFrame3D::Pointer originalGeometryAGF = original->GetTimeSlicedGeometry()->Clone(); TimeSlicedGeometry::Pointer originalGeometry = dynamic_cast<TimeSlicedGeometry*>( originalGeometryAGF.GetPointer() ); segmentation->SetGeometry( originalGeometry ); } else { Tool::ErrorMessage("Original image does not have a 'Time sliced geometry'! Cannot create a segmentation."); return NULL; } return CreateSegmentationNode( segmentation, organName, color ); }
bool ShowSegmentationAsSmoothedSurface::ThreadedUpdateFunction() { Image::Pointer image; GetPointerParameter("Input", image); float smoothing; GetParameter("Smoothing", smoothing); float decimation; GetParameter("Decimation", decimation); float closing; GetParameter("Closing", closing); int timeNr = 0; GetParameter("TimeNr", timeNr); if (image->GetDimension() == 4) MITK_INFO << "CREATING SMOOTHED POLYGON MODEL (t = " << timeNr << ')'; else MITK_INFO << "CREATING SMOOTHED POLYGON MODEL"; MITK_INFO << " Smoothing = " << smoothing; MITK_INFO << " Decimation = " << decimation; MITK_INFO << " Closing = " << closing; Geometry3D::Pointer geometry = dynamic_cast<Geometry3D *>(image->GetGeometry()->Clone().GetPointer()); // Make ITK image out of MITK image typedef itk::Image<unsigned char, 3> CharImageType; typedef itk::Image<unsigned short, 3> ShortImageType; typedef itk::Image<float, 3> FloatImageType; if (image->GetDimension() == 4) { ImageTimeSelector::Pointer imageTimeSelector = ImageTimeSelector::New(); imageTimeSelector->SetInput(image); imageTimeSelector->SetTimeNr(timeNr); imageTimeSelector->UpdateLargestPossibleRegion(); image = imageTimeSelector->GetOutput(0); } ImageToItk<CharImageType>::Pointer imageToItkFilter = ImageToItk<CharImageType>::New(); try { imageToItkFilter->SetInput(image); } catch (const itk::ExceptionObject &e) { // Most probably the input image type is wrong. Binary images are expected to be // >unsigned< char images. MITK_ERROR << e.GetDescription() << endl; return false; } imageToItkFilter->Update(); CharImageType::Pointer itkImage = imageToItkFilter->GetOutput(); // Get bounding box and relabel MITK_INFO << "Extracting VOI..."; int imageLabel = 1; bool roiFound = false; CharImageType::IndexType minIndex; minIndex.Fill(numeric_limits<CharImageType::IndexValueType>::max()); CharImageType::IndexType maxIndex; maxIndex.Fill(numeric_limits<CharImageType::IndexValueType>::min()); itk::ImageRegionIteratorWithIndex<CharImageType> iter(itkImage, itkImage->GetLargestPossibleRegion()); for (iter.GoToBegin(); !iter.IsAtEnd(); ++iter) { if (iter.Get() == imageLabel) { roiFound = true; iter.Set(1); CharImageType::IndexType currentIndex = iter.GetIndex(); for (unsigned int dim = 0; dim < 3; ++dim) { minIndex[dim] = min(currentIndex[dim], minIndex[dim]); maxIndex[dim] = max(currentIndex[dim], maxIndex[dim]); } } else { iter.Set(0); } } if (!roiFound) { ProgressBar::GetInstance()->Progress(8); MITK_ERROR << "Didn't found segmentation labeled with " << imageLabel << "!" << endl; return false; } ProgressBar::GetInstance()->Progress(1); // Extract and pad bounding box typedef itk::RegionOfInterestImageFilter<CharImageType, CharImageType> ROIFilterType; ROIFilterType::Pointer roiFilter = ROIFilterType::New(); CharImageType::RegionType region; CharImageType::SizeType size; for (unsigned int dim = 0; dim < 3; ++dim) { size[dim] = maxIndex[dim] - minIndex[dim] + 1; } region.SetIndex(minIndex); region.SetSize(size); roiFilter->SetInput(itkImage); roiFilter->SetRegionOfInterest(region); roiFilter->ReleaseDataFlagOn(); roiFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::ConstantPadImageFilter<CharImageType, CharImageType> PadFilterType; PadFilterType::Pointer padFilter = PadFilterType::New(); const PadFilterType::SizeValueType pad[3] = { 10, 10, 10 }; padFilter->SetInput(roiFilter->GetOutput()); padFilter->SetConstant(0); padFilter->SetPadLowerBound(pad); padFilter->SetPadUpperBound(pad); padFilter->ReleaseDataFlagOn(); padFilter->ReleaseDataBeforeUpdateFlagOn(); padFilter->Update(); CharImageType::Pointer roiImage = padFilter->GetOutput(); roiImage->DisconnectPipeline(); roiFilter = nullptr; padFilter = nullptr; // Correct origin of real geometry (changed by cropping and padding) typedef Geometry3D::TransformType TransformType; TransformType::Pointer transform = TransformType::New(); TransformType::OutputVectorType translation; for (unsigned int dim = 0; dim < 3; ++dim) translation[dim] = (int)minIndex[dim] - (int)pad[dim]; transform->SetIdentity(); transform->Translate(translation); geometry->Compose(transform, true); ProgressBar::GetInstance()->Progress(1); // Median MITK_INFO << "Median..."; typedef itk::BinaryMedianImageFilter<CharImageType, CharImageType> MedianFilterType; MedianFilterType::Pointer medianFilter = MedianFilterType::New(); CharImageType::SizeType radius = { 0 }; medianFilter->SetRadius(radius); medianFilter->SetBackgroundValue(0); medianFilter->SetForegroundValue(1); medianFilter->SetInput(roiImage); medianFilter->ReleaseDataFlagOn(); medianFilter->ReleaseDataBeforeUpdateFlagOn(); medianFilter->Update(); ProgressBar::GetInstance()->Progress(1); // Intelligent closing MITK_INFO << "Intelligent closing..."; unsigned int surfaceRatio = (unsigned int)((1.0f - closing) * 100.0f); typedef itk::IntelligentBinaryClosingFilter<CharImageType, ShortImageType> ClosingFilterType; ClosingFilterType::Pointer closingFilter = ClosingFilterType::New(); closingFilter->SetInput(medianFilter->GetOutput()); closingFilter->ReleaseDataFlagOn(); closingFilter->ReleaseDataBeforeUpdateFlagOn(); closingFilter->SetSurfaceRatio(surfaceRatio); closingFilter->Update(); ShortImageType::Pointer closedImage = closingFilter->GetOutput(); closedImage->DisconnectPipeline(); roiImage = nullptr; medianFilter = nullptr; closingFilter = nullptr; ProgressBar::GetInstance()->Progress(1); // Gaussian blur MITK_INFO << "Gauss..."; typedef itk::BinaryThresholdImageFilter<ShortImageType, FloatImageType> BinaryThresholdToFloatFilterType; BinaryThresholdToFloatFilterType::Pointer binThresToFloatFilter = BinaryThresholdToFloatFilterType::New(); binThresToFloatFilter->SetInput(closedImage); binThresToFloatFilter->SetLowerThreshold(1); binThresToFloatFilter->SetUpperThreshold(1); binThresToFloatFilter->SetInsideValue(100); binThresToFloatFilter->SetOutsideValue(0); binThresToFloatFilter->ReleaseDataFlagOn(); binThresToFloatFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::DiscreteGaussianImageFilter<FloatImageType, FloatImageType> GaussianFilterType; // From the following line on, IntelliSense (VS 2008) is broken. Any idea how to fix it? GaussianFilterType::Pointer gaussFilter = GaussianFilterType::New(); gaussFilter->SetInput(binThresToFloatFilter->GetOutput()); gaussFilter->SetUseImageSpacing(true); gaussFilter->SetVariance(smoothing); gaussFilter->ReleaseDataFlagOn(); gaussFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::BinaryThresholdImageFilter<FloatImageType, CharImageType> BinaryThresholdFromFloatFilterType; BinaryThresholdFromFloatFilterType::Pointer binThresFromFloatFilter = BinaryThresholdFromFloatFilterType::New(); binThresFromFloatFilter->SetInput(gaussFilter->GetOutput()); binThresFromFloatFilter->SetLowerThreshold(50); binThresFromFloatFilter->SetUpperThreshold(255); binThresFromFloatFilter->SetInsideValue(1); binThresFromFloatFilter->SetOutsideValue(0); binThresFromFloatFilter->ReleaseDataFlagOn(); binThresFromFloatFilter->ReleaseDataBeforeUpdateFlagOn(); binThresFromFloatFilter->Update(); CharImageType::Pointer blurredImage = binThresFromFloatFilter->GetOutput(); blurredImage->DisconnectPipeline(); closedImage = nullptr; binThresToFloatFilter = nullptr; gaussFilter = nullptr; ProgressBar::GetInstance()->Progress(1); // Fill holes MITK_INFO << "Filling cavities..."; typedef itk::ConnectedThresholdImageFilter<CharImageType, CharImageType> ConnectedThresholdFilterType; ConnectedThresholdFilterType::Pointer connectedThresFilter = ConnectedThresholdFilterType::New(); CharImageType::IndexType corner; corner[0] = 0; corner[1] = 0; corner[2] = 0; connectedThresFilter->SetInput(blurredImage); connectedThresFilter->SetSeed(corner); connectedThresFilter->SetLower(0); connectedThresFilter->SetUpper(0); connectedThresFilter->SetReplaceValue(2); connectedThresFilter->ReleaseDataFlagOn(); connectedThresFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::BinaryThresholdImageFilter<CharImageType, CharImageType> BinaryThresholdFilterType; BinaryThresholdFilterType::Pointer binThresFilter = BinaryThresholdFilterType::New(); binThresFilter->SetInput(connectedThresFilter->GetOutput()); binThresFilter->SetLowerThreshold(0); binThresFilter->SetUpperThreshold(0); binThresFilter->SetInsideValue(50); binThresFilter->SetOutsideValue(0); binThresFilter->ReleaseDataFlagOn(); binThresFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::AddImageFilter<CharImageType, CharImageType, CharImageType> AddFilterType; AddFilterType::Pointer addFilter = AddFilterType::New(); addFilter->SetInput1(blurredImage); addFilter->SetInput2(binThresFilter->GetOutput()); addFilter->ReleaseDataFlagOn(); addFilter->ReleaseDataBeforeUpdateFlagOn(); addFilter->Update(); ProgressBar::GetInstance()->Progress(1); // Surface extraction MITK_INFO << "Surface extraction..."; Image::Pointer filteredImage = Image::New(); CastToMitkImage(addFilter->GetOutput(), filteredImage); filteredImage->SetGeometry(geometry); ImageToSurfaceFilter::Pointer imageToSurfaceFilter = ImageToSurfaceFilter::New(); imageToSurfaceFilter->SetInput(filteredImage); imageToSurfaceFilter->SetThreshold(50); imageToSurfaceFilter->SmoothOn(); imageToSurfaceFilter->SetDecimate(ImageToSurfaceFilter::NoDecimation); m_Surface = imageToSurfaceFilter->GetOutput(0); ProgressBar::GetInstance()->Progress(1); // Mesh decimation if (decimation > 0.0f && decimation < 1.0f) { MITK_INFO << "Quadric mesh decimation..."; vtkQuadricDecimation *quadricDecimation = vtkQuadricDecimation::New(); quadricDecimation->SetInputData(m_Surface->GetVtkPolyData()); quadricDecimation->SetTargetReduction(decimation); quadricDecimation->AttributeErrorMetricOn(); quadricDecimation->GlobalWarningDisplayOff(); quadricDecimation->Update(); vtkCleanPolyData* cleaner = vtkCleanPolyData::New(); cleaner->SetInputConnection(quadricDecimation->GetOutputPort()); cleaner->PieceInvariantOn(); cleaner->ConvertLinesToPointsOn(); cleaner->ConvertStripsToPolysOn(); cleaner->PointMergingOn(); cleaner->Update(); m_Surface->SetVtkPolyData(cleaner->GetOutput()); } ProgressBar::GetInstance()->Progress(1); // Compute Normals vtkPolyDataNormals* computeNormals = vtkPolyDataNormals::New(); computeNormals->SetInputData(m_Surface->GetVtkPolyData()); computeNormals->SetFeatureAngle(360.0f); computeNormals->FlipNormalsOff(); computeNormals->Update(); m_Surface->SetVtkPolyData(computeNormals->GetOutput()); return true; }
void mitk::PicFileReader::GenerateOutputInformation() { Image::Pointer output = this->GetOutput(); if ((output->IsInitialized()) && (this->GetMTime() <= m_ReadHeaderTime.GetMTime())) return; itkDebugMacro(<<"Reading file for GenerateOutputInformation()" << m_FileName); // Check to see if we can read the file given the name or prefix // if ( m_FileName == "" && m_FilePrefix == "" ) { throw itk::ImageFileReaderException(__FILE__, __LINE__, "One of FileName or FilePrefix must be non-empty"); } if( m_FileName != "") { mitkIpPicDescriptor* header=mitkIpPicGetHeader(const_cast<char *>(m_FileName.c_str()), NULL); if ( !header ) { throw itk::ImageFileReaderException(__FILE__, __LINE__, "File could not be read."); } header=MITKipPicGetTags(const_cast<char *>(m_FileName.c_str()), header); int channels = 1; mitkIpPicTSV_t *tsv; if ( (tsv = mitkIpPicQueryTag( header, "SOURCE HEADER" )) != NULL) { if(tsv->n[0]>1e+06) { mitkIpPicTSV_t *tsvSH; tsvSH = mitkIpPicDelTag( header, "SOURCE HEADER" ); mitkIpPicFreeTag(tsvSH); } } if ( (tsv = mitkIpPicQueryTag( header, "ICON80x80" )) != NULL) { mitkIpPicTSV_t *tsvSH; tsvSH = mitkIpPicDelTag( header, "ICON80x80" ); mitkIpPicFreeTag(tsvSH); } if ( (tsv = mitkIpPicQueryTag( header, "VELOCITY" )) != NULL) { ++channels; mitkIpPicDelTag( header, "VELOCITY" ); } if( header == NULL || header->bpe == 0) { itk::ImageFileReaderException e(__FILE__, __LINE__); itk::OStringStream msg; msg << " Could not read file " << m_FileName.c_str(); e.SetDescription(msg.str().c_str()); throw e; return; } // First initialize the geometry of the output image by the pic-header SlicedGeometry3D::Pointer slicedGeometry = mitk::SlicedGeometry3D::New(); PicHelper::InitializeEvenlySpaced(header, header->n[2], slicedGeometry); // if pic image only 3D, the n[3] value is not initialized unsigned int timesteps = 1; if( header->dim > 3 ) timesteps = header->n[3]; TimeSlicedGeometry::Pointer timeSliceGeometry = TimeSlicedGeometry::New(); timeSliceGeometry->InitializeEvenlyTimed(slicedGeometry, timesteps); timeSliceGeometry->ImageGeometryOn(); // Cast the pic descriptor to ImageDescriptor and initialize the output output->Initialize( CastToImageDescriptor(header)); output->SetGeometry( timeSliceGeometry ); mitkIpPicFree ( header ); } else { int numberOfImages=0; m_StartFileIndex=0; mitkIpPicDescriptor* header=NULL; char fullName[1024]; while(m_StartFileIndex<10) { sprintf(fullName, m_FilePattern.c_str(), m_FilePrefix.c_str(), m_StartFileIndex+numberOfImages); FILE * f=fopen(fullName,"r"); if(f==NULL) { //already found an image? if(numberOfImages>0) break; //no? let's increase start ++m_StartFileIndex; } else { fclose(f); //only open the header of the first file found, //@warning what to do when images do not have the same size?? if(header==NULL) { header=mitkIpPicGetHeader(fullName, NULL); header=MITKipPicGetTags(fullName, header); } ++numberOfImages; } } printf("\n numberofimages %d\n",numberOfImages); if(numberOfImages==0) { itk::ImageFileReaderException e(__FILE__, __LINE__); itk::OStringStream msg; msg << "no images found"; e.SetDescription(msg.str().c_str()); throw e; return; } //@FIXME: was ist, wenn die Bilder nicht alle gleich gross sind? if(numberOfImages>1) { printf("\n numberofimages %d > 1\n",numberOfImages); header->dim=3; header->n[2]=numberOfImages; } printf(" \ninitialisize output\n"); output->Initialize( CastToImageDescriptor(header) ); mitkIpPicFree ( header ); } m_ReadHeaderTime.Modified(); }
void mitk::ExtractImageFilter::GenerateData() { Image::ConstPointer input = ImageToImageFilter::GetInput(0); if ( (input->GetDimension() > 4) || (input->GetDimension() < 2) ) { MITK_ERROR << "mitk::ExtractImageFilter:GenerateData works only with 3D and 3D+t images, sorry." << std::endl; itkExceptionMacro("mitk::ExtractImageFilter works only with 3D and 3D+t images, sorry."); return; } else if (input->GetDimension() == 4) { ImageTimeSelector::Pointer timeSelector = ImageTimeSelector::New(); timeSelector->SetInput( input ); timeSelector->SetTimeNr( m_TimeStep ); timeSelector->UpdateLargestPossibleRegion(); input = timeSelector->GetOutput(); } else if (input->GetDimension() == 2) { Image::Pointer resultImage = ImageToImageFilter::GetOutput(); resultImage = const_cast<Image*>(input.GetPointer()); ImageToImageFilter::SetNthOutput( 0, resultImage ); return; } if ( m_SliceDimension >= input->GetDimension() ) { MITK_ERROR << "mitk::ExtractImageFilter:GenerateData m_SliceDimension == " << m_SliceDimension << " makes no sense with an " << input->GetDimension() << "D image." << std::endl; itkExceptionMacro("This is not a sensible value for m_SliceDimension."); return; } AccessFixedDimensionByItk( input, ItkImageProcessing, 3 ); // set a nice geometry for display and point transformations Geometry3D* inputImageGeometry = ImageToImageFilter::GetInput(0)->GetGeometry(); if (!inputImageGeometry) { MITK_ERROR << "In ExtractImageFilter::ItkImageProcessing: Input image has no geometry!" << std::endl; return; } PlaneGeometry::PlaneOrientation orientation = PlaneGeometry::Axial; switch ( m_SliceDimension ) { default: case 2: orientation = PlaneGeometry::Axial; break; case 1: orientation = PlaneGeometry::Frontal; break; case 0: orientation = PlaneGeometry::Sagittal; break; } PlaneGeometry::Pointer planeGeometry = PlaneGeometry::New(); planeGeometry->InitializeStandardPlane( inputImageGeometry, orientation, (ScalarType)m_SliceIndex, true, false ); Image::Pointer resultImage = ImageToImageFilter::GetOutput(); planeGeometry->ChangeImageGeometryConsideringOriginOffset(true); resultImage->SetGeometry( planeGeometry ); }
/*! \brief Copies transformation matrix of one image to another */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Copy Geometry"); parser.setCategory("Preprocessing Tools"); parser.setDescription("Copies transformation matrix of one image to another"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); parser.addArgument("in", "i", mitkCommandLineParser::InputFile, "Input:", "input image", us::Any(), false); parser.addArgument("ref", "r", mitkCommandLineParser::InputFile, "Reference:", "reference image", us::Any(), false); parser.addArgument("alignCentroid", "a", mitkCommandLineParser::Bool, "align centroids", "align centroids", us::Any(), true); parser.addArgument("out", "o", mitkCommandLineParser::OutputFile, "Output:", "output image", us::Any(), false); map<string, us::Any> parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // mandatory arguments string imageName = us::any_cast<string>(parsedArgs["in"]); string refImage = us::any_cast<string>(parsedArgs["ref"]); string outImage = us::any_cast<string>(parsedArgs["out"]); bool originOnly = false; // Show a help message if ( parsedArgs.count("alignCentroid") || parsedArgs.count("a")) { originOnly = true; } try { Image::Pointer source = dynamic_cast<mitk::Image*>(mitk::IOUtil::Load(refImage)[0].GetPointer()); Image::Pointer target = dynamic_cast<mitk::Image*>(mitk::IOUtil::Load(imageName)[0].GetPointer()); if (originOnly) { // Calculate correction to align centroids double c[3]; c[0] = source->GetGeometry()->GetOrigin()[0] + source->GetGeometry()->GetExtent(0)/2.0 - target->GetGeometry()->GetOrigin()[0] - target->GetGeometry()->GetExtent(0)/2.0; c[1] = source->GetGeometry()->GetOrigin()[1] + source->GetGeometry()->GetExtent(1)/2.0 - target->GetGeometry()->GetOrigin()[1] - target->GetGeometry()->GetExtent(1)/2.0; c[2] = source->GetGeometry()->GetOrigin()[2] + source->GetGeometry()->GetExtent(2)/2.0 - target->GetGeometry()->GetOrigin()[2] - target->GetGeometry()->GetExtent(2)/2.0; double newOrigin[3]; newOrigin[0] = target->GetGeometry()->GetOrigin()[0] +c[0]; newOrigin[1] = target->GetGeometry()->GetOrigin()[1] +c[1]; newOrigin[2] = target->GetGeometry()->GetOrigin()[2] +c[2]; target->GetGeometry()->SetOrigin(newOrigin); } else { mitk::BaseGeometry* s_geom = source->GetGeometry(); mitk::BaseGeometry* t_geom = target->GetGeometry(); t_geom->SetIndexToWorldTransform(s_geom->GetIndexToWorldTransform()); target->SetGeometry(t_geom); } mitk::IOUtil::Save(target, outImage); } catch (itk::ExceptionObject e) { std::cout << e; return EXIT_FAILURE; } catch (std::exception e) { std::cout << e.what(); return EXIT_FAILURE; } catch (...) { std::cout << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; }