Esempio n. 1
0
void run() {

  Image::Header input_SH_header (argument[0]);
  if (input_SH_header.ndim() != 4)
    throw Exception ("input SH image should contain 4 dimensions");
  std::vector<ssize_t> strides (4, 0);
  strides[3] = 1;
  Image::BufferPreload<value_type> input_buf (input_SH_header, strides);

  Math::Vector<value_type> responseSH;
  responseSH.load (argument[1]);
  Math::Vector<value_type> responseRH;
  Math::SH::SH2RH (responseRH, responseSH);

  Ptr<Image::Buffer<bool> > mask_buf;
  Options opt = get_options ("mask");
  if (opt.size()) {
    mask_buf = new Image::Buffer<bool> (opt[0][0]);
    Image::check_dimensions (*mask_buf, input_buf, 0, 3);
  }

  Image::Header output_SH_header (input_SH_header);
  Image::Stride::set_from_command_line (output_SH_header, Image::Stride::contiguous_along_axis (3));
  Image::Buffer<value_type> output_SH_buf (argument[2], output_SH_header);

  SDeconvFunctor sconv (input_buf, output_SH_buf, mask_buf, responseRH);
  Image::ThreadedLoop loop ("performing convolution...", input_buf, 2, 0, 3);
  loop.run (sconv);
}
Esempio n. 2
0
void run()
{
  InputBufferType dwi_buffer (argument[0], Image::Stride::contiguous_along_axis (3));
  Math::Matrix<cost_value_type> grad = DWI::get_valid_DW_scheme<cost_value_type> (dwi_buffer);

  size_t dwi_axis = 3;
  while (dwi_buffer.dim (dwi_axis) < 2) ++dwi_axis;
  INFO ("assuming DW images are stored along axis " + str (dwi_axis));

  Math::Matrix<cost_value_type> bmatrix;
  DWI::grad2bmatrix (bmatrix, grad);

  Math::Matrix<cost_value_type> binv (bmatrix.columns(), bmatrix.rows());
  Math::pinv (binv, bmatrix);

  int method = 1;
  Options opt = get_options ("method");
  if (opt.size()) method = opt[0][0];

  opt = get_options ("regularisation");
  cost_value_type regularisation = 5000.0;
  if (opt.size()) regularisation = opt[0][0];

  opt = get_options ("mask");
  Ptr<MaskBufferType> mask_buffer;
  Ptr<MaskBufferType::voxel_type> mask_vox;
  if (opt.size()){
    mask_buffer = new MaskBufferType (opt[0][0]);
    Image::check_dimensions (*mask_buffer, dwi_buffer, 0, 3);
    mask_vox = new MaskBufferType::voxel_type (*mask_buffer);
  }


  Image::Header dt_header (dwi_buffer);
  dt_header.set_ndim (4);
  dt_header.dim (3) = 6;
  dt_header.datatype() = DataType::Float32;
  dt_header.DW_scheme() = grad;

  OutputBufferType dt_buffer (argument[1], dt_header);

  InputBufferType::voxel_type dwi_vox (dwi_buffer);
  OutputBufferType::voxel_type dt_vox (dt_buffer);

  Image::ThreadedLoop loop ("estimating tensor components...", dwi_vox, 1, 0, 3);
  Processor processor (dwi_vox, dt_vox, mask_vox, bmatrix, binv, method, regularisation, loop.inner_axes()[0], dwi_axis);

  loop.run_outer (processor);
}
Esempio n. 3
0
void run () 
{

  Image::Header H (argument[0]);

  Image::Info info (H);
  info.set_ndim (3);
  Image::BufferScratch<bool> mask (info);
  auto v_mask = mask.voxel();

  std::string mask_path;
  Options opt = get_options ("mask");
  if (opt.size()) {
    mask_path = std::string(opt[0][0]);
    Image::Buffer<bool> in (mask_path);
    if (!Image::dimensions_match (H, in, 0, 3))
      throw Exception ("Input mask image does not match DWI");
    if (!(in.ndim() == 3 || (in.ndim() == 4 && in.dim(3) == 1)))
      throw Exception ("Input mask image must be a 3D image");
    auto v_in = in.voxel();
    Image::copy (v_in, v_mask, 0, 3);
  } else {
    for (auto l = Image::LoopInOrder (v_mask) (v_mask); l; ++l) 
      v_mask.value() = true;
  }

  DWI::CSDeconv<float>::Shared shared (H);

  const size_t lmax = DWI::lmax_for_directions (shared.DW_dirs);
  if (lmax < 4)
    throw Exception ("Cannot run dwi2response with lmax less than 4");
  shared.lmax = lmax;

  Image::BufferPreload<float> dwi (H, Image::Stride::contiguous_along_axis (3));
  DWI::Directions::Set directions (1281);

  Math::Vector<float> response (lmax/2+1);
  response.zero();

  {
    // Initialise response function
    // Use lmax = 2, get the DWI intensity mean and standard deviation within the mask and
    //   use these as the first two coefficients
    auto v_dwi = dwi.voxel();
    double sum = 0.0, sq_sum = 0.0;
    size_t count = 0;
    Image::LoopInOrder loop (dwi, "initialising response function... ", 0, 3);
    for (auto l = loop (v_dwi, v_mask); l; ++l) {
      if (v_mask.value()) {
        for (size_t volume_index = 0; volume_index != shared.dwis.size(); ++volume_index) {
          v_dwi[3] = shared.dwis[volume_index];
          const float value = v_dwi.value();
          sum += value;
          sq_sum += Math::pow2 (value);
          ++count;
        }
      }
    }
    response[0] = sum / double (count);
    response[1] = - 0.5 * std::sqrt ((sq_sum / double(count)) - Math::pow2 (response[0]));
    // Account for scaling in SH basis
    response *= std::sqrt (4.0 * Math::pi);
  }
  INFO ("Initial response function is [" + str(response, 2) + "]");

  // Algorithm termination options
  opt = get_options ("max_iters");
  const size_t max_iters = opt.size() ? int(opt[0][0]) : DWI2RESPONSE_DEFAULT_MAX_ITERS;
  opt = get_options ("max_change");
  const float max_change = 0.01 * (opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_MAX_CHANGE);

  // Should all voxels (potentially within a user-specified mask) be tested at every iteration?
  opt = get_options ("test_all");
  const bool reset_mask = opt.size();

  // Single-fibre voxel selection options
  opt = get_options ("volume_ratio");
  const float volume_ratio = opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_VOLUME_RATIO;
  opt = get_options ("dispersion_multiplier");
  const float dispersion_multiplier = opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_DISPERSION_MULTIPLIER;
  opt = get_options ("integral_multiplier");
  const float integral_multiplier = opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_INTEGRAL_STDEV_MULTIPLIER;

  SFThresholds thresholds (volume_ratio); // Only threshold the lobe volume ratio for now; other two are not yet used

  size_t total_iter = 0;
  bool first_pass = true;
  size_t prev_sf_count = 0;
  {
    bool iterate = true;
    size_t iter = 0;
    ProgressBar progress ("optimising response function... ");
    do {

      ++iter;

      {
        MR::LogLevelLatch latch (0);
        shared.set_response (response);
        shared.init();
      }

      ++progress;

      if (reset_mask) {
        if (mask_path.size()) {
          Image::Buffer<bool> in (mask_path);
          auto v_in = in.voxel();
          Image::copy (v_in, v_mask, 0, 3);
        } else {
          for (auto l = Image::LoopInOrder(v_mask) (v_mask); l; ++l)
            v_mask.value() = true;
        }
        ++progress;
      }

      std::vector<FODSegResult> seg_results;
      {
        FODCalcAndSeg processor (dwi, mask, shared, directions, lmax, seg_results);
        Image::ThreadedLoop loop (mask, 0, 3);
        loop.run (processor);
      }

      ++progress;

      if (!first_pass)
        thresholds.update (seg_results, dispersion_multiplier, integral_multiplier, iter);

      ++progress;

      Response output (lmax);
      mask.zero();
      {
        SFSelector selector (seg_results, thresholds, mask);
        ResponseEstimator estimator (dwi, shared, lmax, output);
        Thread::run_queue (selector, FODSegResult(), Thread::multi (estimator));
      }
      if (!output.get_count())
        throw Exception ("Cannot estimate response function; all voxels have been excluded from selection");
      const Math::Vector<float> new_response = output.result();
      const size_t sf_count = output.get_count();

      ++progress;

      if (App::log_level >= 2)
        std::cerr << "\n";
      INFO ("Iteration " + str(iter) + ", " + str(sf_count) + " SF voxels, new response function: [" + str(new_response, 2) + "]");

      if (sf_count == prev_sf_count) {
        INFO ("terminating due to convergence of single-fibre voxel selection");
        iterate = false;
      }
      if (iter == max_iters) {
        INFO ("terminating due to completing maximum number of iterations");
        iterate = false;
      }
      bool rf_changed = false;
      for (size_t i = 0; i != response.size(); ++i) {
        if (std::abs ((new_response[i] - response[i]) / new_response[i]) > max_change)
          rf_changed = true;
      }
      if (!rf_changed) {
        INFO ("terminating due to negligible changes in the response function coefficients");
        iterate = false;
      }

      if (!iterate && first_pass) {
        iterate = true;
        first_pass = false;
        INFO ("commencing second-pass of response function estimation");
        total_iter = iter;
        iter = 0;
      }

      response = new_response;
      prev_sf_count = sf_count;

      //v_mask.save ("mask_pass_" + str(first_pass?1:2) + "_iter_" + str(iter) + ".mif");

    } while (iterate);

    total_iter += iter;

  }

  CONSOLE ("final response function: [" + str(response, 2) + "] (reached after " + str(total_iter) + " iterations using " + str(prev_sf_count) + " voxels)");
  response.save (argument[1]);

  opt = get_options ("sf");
  if (opt.size())
    v_mask.save (std::string (opt[0][0]));

}