Esempio n. 1
0
void StereoProcessor::processDisparity(const cv::Mat& left_rect, const cv::Mat& right_rect,
                                       const image_geometry::StereoCameraModel& model,
                                       stereo_msgs::DisparityImage& disparity) const
{
  // Fixed-point disparity is 16 times the true value: d = d_fp / 16.0 = x_l - x_r.
  static const int DPP = 16; // disparities per pixel
  static const double inv_dpp = 1.0 / DPP;

  // Block matcher produces 16-bit signed (fixed point) disparity image
  block_matcher_(left_rect, right_rect, disparity16_);

  // Fill in DisparityImage image data, converting to 32-bit float
  sensor_msgs::Image& dimage = disparity.image;
  dimage.height = disparity16_.rows;
  dimage.width = disparity16_.cols;
  dimage.encoding = sensor_msgs::image_encodings::TYPE_32FC1;
  dimage.step = dimage.width * sizeof(float);
  dimage.data.resize(dimage.step * dimage.height);
  cv::Mat_<float> dmat(dimage.height, dimage.width, (float*)&dimage.data[0], dimage.step);
  // We convert from fixed-point to float disparity and also adjust for any x-offset between
  // the principal points: d = d_fp*inv_dpp - (cx_l - cx_r)
  disparity16_.convertTo(dmat, dmat.type(), inv_dpp, -(model.left().cx() - model.right().cx()));
  ROS_ASSERT(dmat.data == &dimage.data[0]);
  /// @todo is_bigendian? :)

  // Stereo parameters
  disparity.f = model.right().fx();
  disparity.T = model.baseline();

  /// @todo Window of (potentially) valid disparities

  // Disparity search range
  disparity.min_disparity = getMinDisparity();
  disparity.max_disparity = getMinDisparity() + getDisparityRange() - 1;
  disparity.delta_d = inv_dpp;
}
Esempio n. 2
0
void DisparityWideNodelet::imageCb(const ImageConstPtr& l_image_msg,
                               const CameraInfoConstPtr& l_info_msg,
                               const ImageConstPtr& r_image_msg,
                               const CameraInfoConstPtr& r_info_msg)
{
  /// @todo Convert (share) with new cv_bridge
  assert(l_image_msg->encoding == sensor_msgs::image_encodings::MONO8);
  assert(r_image_msg->encoding == sensor_msgs::image_encodings::MONO8);

  // Update the camera model
  model_.fromCameraInfo(l_info_msg, r_info_msg);
  
  // Allocate new disparity image message
  DisparityImagePtr disp_msg = boost::make_shared<DisparityImage>();
  disp_msg->header         = l_info_msg->header;
  disp_msg->image.header   = l_info_msg->header;
  disp_msg->image.height   = l_image_msg->height;
  disp_msg->image.width    = l_image_msg->width;
  disp_msg->image.encoding = sensor_msgs::image_encodings::TYPE_32FC1;
  disp_msg->image.step     = disp_msg->image.width * sizeof(float);
  disp_msg->image.data.resize(disp_msg->image.height * disp_msg->image.step);

  // Stereo parameters
  disp_msg->f = model_.right().fx();
  disp_msg->T = model_.baseline();

  // Compute window of (potentially) valid disparities
  cv::Ptr<CvStereoBMState> params = block_matcher_.state;
  int border   = params->SADWindowSize / 2;
  int left   = params->numberOfDisparities + params->minDisparity + border - 1;
  int wtf = (params->minDisparity >= 0) ? border + params->minDisparity : std::max(border, -params->minDisparity);
  int right  = disp_msg->image.width - 1 - wtf;
  int top    = border;
  int bottom = disp_msg->image.height - 1 - border;
  disp_msg->valid_window.x_offset = left;
  disp_msg->valid_window.y_offset = top;
  disp_msg->valid_window.width    = right - left;
  disp_msg->valid_window.height   = bottom - top;

  // Disparity search range
  disp_msg->min_disparity = params->minDisparity;
  disp_msg->max_disparity = params->minDisparity + params->numberOfDisparities - 1;
  disp_msg->delta_d = 1.0 / 16; // OpenCV uses 16 disparities per pixel

  // Create cv::Mat views onto all buffers
  const cv::Mat_<uint8_t> l_image(l_image_msg->height, l_image_msg->width,
                                  const_cast<uint8_t*>(&l_image_msg->data[0]),
                                  l_image_msg->step);
  const cv::Mat_<uint8_t> r_image(r_image_msg->height, r_image_msg->width,
                                  const_cast<uint8_t*>(&r_image_msg->data[0]),
                                  r_image_msg->step);
  cv::Mat_<float> disp_image(disp_msg->image.height, disp_msg->image.width,
                             reinterpret_cast<float*>(&disp_msg->image.data[0]),
                             disp_msg->image.step);

  // Perform block matching to find the disparities
    block_matcher_(l_image, r_image, disp_image, CV_32F);

  // Adjust for any x-offset between the principal points: d' = d - (cx_l - cx_r)
  double cx_l = model_.left().cx();
  double cx_r = model_.right().cx();
  if (cx_l != cx_r)
    cv::subtract(disp_image, cv::Scalar(cx_l - cx_r), disp_image);

  pub_disparity_.publish(disp_msg);
}
Esempio n. 3
0
  void imageCb(const sensor_msgs::ImageConstPtr& l_image,
               const sensor_msgs::CameraInfoConstPtr& l_cam_info,
               const sensor_msgs::ImageConstPtr& r_image,
               const sensor_msgs::CameraInfoConstPtr& r_cam_info)
  {
    ROS_INFO("In callback, seq = %u", l_cam_info->header.seq);
    
    // Convert ROS messages for use with OpenCV
    cv::Mat left, right;
    try {
      left  = l_bridge_.imgMsgToCv(l_image, "mono8");
      right = r_bridge_.imgMsgToCv(r_image, "mono8");
    }
    catch (sensor_msgs::CvBridgeException& e) {
      ROS_ERROR("Conversion error: %s", e.what());
      return;
    }
    cam_model_.fromCameraInfo(l_cam_info, r_cam_info);

    frame_common::CamParams cam_params;
    cam_params.fx = cam_model_.left().fx();
    cam_params.fy = cam_model_.left().fy();
    cam_params.cx = cam_model_.left().cx();
    cam_params.cy = cam_model_.left().cy();
    cam_params.tx = cam_model_.baseline();

    if (vslam_system_.addFrame(cam_params, left, right)) {
      /// @todo Not rely on broken encapsulation of VslamSystem here
      int size = vslam_system_.sba_.nodes.size();
      if (size % 2 == 0) {
        // publish markers
        sba::drawGraph(vslam_system_.sba_, cam_marker_pub_, point_marker_pub_);
      }

      // Publish VO tracks
      if (vo_tracks_pub_.getNumSubscribers() > 0) {
        frame_common::drawVOtracks(left, vslam_system_.vo_.frames, vo_display_);
        IplImage ipl = vo_display_;
        sensor_msgs::ImagePtr msg = sensor_msgs::CvBridge::cvToImgMsg(&ipl);
        msg->header = l_cam_info->header;
        vo_tracks_pub_.publish(msg, l_cam_info);
      }
      
      // Refine large-scale SBA.
      const int LARGE_SBA_INTERVAL = 10;
      if (size > 4 && size % LARGE_SBA_INTERVAL == 0) {
        ROS_INFO("Running large SBA on %d nodes", size);
        vslam_system_.refine();
      }
      
      if (pointcloud_pub_.getNumSubscribers() > 0 && size % 2 == 0)
        publishRegisteredPointclouds(vslam_system_.sba_, vslam_system_.frames_, pointcloud_pub_);
      
      // Publish odometry data to tf.
      if (0) // TODO: Change this to parameter.
      {
        ros::Time stamp = l_cam_info->header.stamp;
        std::string image_frame = l_cam_info->header.frame_id;
        Eigen::Vector4d trans = -vslam_system_.sba_.nodes.back().trans;
        Eigen::Quaterniond rot = vslam_system_.sba_.nodes.back().qrot.conjugate();
        
        trans.head<3>() = rot.toRotationMatrix()*trans.head<3>(); 
        
        tf_transform_.setOrigin(tf::Vector3(trans(0), trans(1), trans(2)));
        tf_transform_.setRotation(tf::Quaternion(rot.x(), rot.y(), rot.z(), rot.w()) );
        
        tf::Transform simple_transform;
        simple_transform.setOrigin(tf::Vector3(0, 0, 0));
        simple_transform.setRotation(tf::Quaternion(.5, -.5, .5, .5));
        
        tf_broadcast_.sendTransform(tf::StampedTransform(tf_transform_, stamp, image_frame, "visual_odom"));
        tf_broadcast_.sendTransform(tf::StampedTransform(simple_transform, stamp, "visual_odom", "pgraph"));
      
      
        // Publish odometry data on topic.
        if (odom_pub_.getNumSubscribers() > 0)
        {
          tf::StampedTransform base_to_image;
          tf::Transform base_to_visodom;
         
          try
          {
            tf_listener_.lookupTransform(image_frame, "/base_footprint",
                                 stamp, base_to_image);
          }
          catch (tf::TransformException ex)
          {
              ROS_WARN("%s",ex.what());
              return;
          }
                                 
          base_to_visodom = tf_transform_.inverse() * base_to_image;
          
          geometry_msgs::PoseStamped pose;
          nav_msgs::Odometry odom;
          pose.header.frame_id = "/visual_odom";
          pose.pose.position.x = base_to_visodom.getOrigin().x();
          pose.pose.position.y = base_to_visodom.getOrigin().y();
          pose.pose.position.z = base_to_visodom.getOrigin().z();
          pose.pose.orientation.x = base_to_visodom.getRotation().x();
          pose.pose.orientation.y = base_to_visodom.getRotation().y();
          pose.pose.orientation.z = base_to_visodom.getRotation().z();
          pose.pose.orientation.w = base_to_visodom.getRotation().w();
          
          odom.header.stamp = stamp;
          odom.header.frame_id = "/visual_odom";
          odom.child_frame_id = "/base_footprint";
          odom.pose.pose = pose.pose;
          /* odom.pose.covariance[0] = 1;
          odom.pose.covariance[7] = 1;
          odom.pose.covariance[14] = 1;
          odom.pose.covariance[21] = 1;
          odom.pose.covariance[28] = 1;
          odom.pose.covariance[35] = 1; */
          odom_pub_.publish(odom);
        }
      }
    }
  }