static int action_flip (int argc, const char *argv[]) { if (ot.postpone_callback (1, action_flip, argc, argv)) return 0; ot.read (); ImageRecRef A = ot.pop(); ot.push (new ImageRec (*A, ot.allsubimages ? -1 : 0, ot.allsubimages ? -1 : 0, true, false)); int subimages = ot.curimg->subimages(); for (int s = 0; s < subimages; ++s) { int miplevels = ot.curimg->miplevels(s); for (int m = 0; m < miplevels; ++m) { const ImageBuf &Aib ((*A)(s,m)); ImageBuf &Rib ((*ot.curimg)(s,m)); ImageBuf::ConstIterator<float> a (Aib); ImageBuf::Iterator<float> r (Rib); int nchans = Rib.nchannels(); int firstscanline = Rib.ymin(); int lastscanline = Rib.ymax(); for ( ; ! r.done(); ++r) { a.pos (r.x(), lastscanline - (r.y() - firstscanline)); for (int c = 0; c < nchans; ++c) r[c] = a[c]; } } } return 0; }
static int action_sub (int argc, const char *argv[]) { if (ot.postpone_callback (2, action_sub, argc, argv)) return 0; ImageRecRef B (ot.pop()); ImageRecRef A (ot.pop()); ot.read (A); ot.read (B); ot.push (new ImageRec (*A, ot.allsubimages ? -1 : 0, ot.allsubimages ? -1 : 0, true, false)); int subimages = ot.curimg->subimages(); for (int s = 0; s < subimages; ++s) { int miplevels = ot.curimg->miplevels(s); for (int m = 0; m < miplevels; ++m) { const ImageBuf &Aib ((*A)(s,m)); const ImageBuf &Bib ((*B)(s,m)); if (! same_size (Aib, Bib)) { // FIXME: some day, there should be options of combining // differing images somehow. std::cerr << "oiiotool: " << argv[0] << " could not combine images of differing sizes\n"; continue; } ImageBuf &Rib ((*ot.curimg)(s,m)); ImageBuf::ConstIterator<float> a (Aib); ImageBuf::ConstIterator<float> b (Bib); ImageBuf::Iterator<float> r (Rib); int nchans = Rib.nchannels(); for ( ; ! r.done(); ++r) { a.pos (r.x(), r.y()); b.pos (r.x(), r.y()); for (int c = 0; c < nchans; ++c) r[c] = a[c] - b[c]; } } } return 0; }
static bool flop_ (ImageBuf &dst, const ImageBuf &src, ROI roi, int nthreads) { ImageBuf::ConstIterator<S, D> s (src, roi); ImageBuf::Iterator<D, D> d (dst, roi); for ( ; ! d.done(); ++d) { s.pos (roi.xend-1 - (d.x() - roi.xbegin), d.y(), d.z()); for (int c = roi.chbegin; c < roi.chend; ++c) d[c] = s[c]; } return true; }
static bool flip_ (ImageBuf &dst, const ImageBuf &src, ROI dst_roi, int nthreads) { ROI src_roi_full = src.roi_full(); ROI dst_roi_full = dst.roi_full(); ImageBuf::ConstIterator<S, D> s (src); ImageBuf::Iterator<D, D> d (dst, dst_roi); for ( ; ! d.done(); ++d) { int yy = d.y() - dst_roi_full.ybegin; s.pos (d.x(), src_roi_full.yend-1 - yy, d.z()); for (int c = dst_roi.chbegin; c < dst_roi.chend; ++c) d[c] = s[c]; } return true; }
static bool rotate270_ (ImageBuf &dst, const ImageBuf &src, ROI dst_roi, int nthreads) { ROI dst_roi_full = dst.roi_full(); ImageBuf::ConstIterator<S, D> s (src); ImageBuf::Iterator<D, D> d (dst, dst_roi); for ( ; ! d.done(); ++d) { s.pos (dst_roi_full.yend - d.y() - 1, d.x(), d.z()); for (int c = dst_roi.chbegin; c < dst_roi.chend; ++c) d[c] = s[c]; } return true; }
static bool convolve_ (ImageBuf &dst, const ImageBuf &src, const ImageBuf &kernel, bool normalize, ROI roi, int nthreads) { if (nthreads != 1 && roi.npixels() >= 1000) { // Lots of pixels and request for multi threads? Parallelize. ImageBufAlgo::parallel_image ( boost::bind(convolve_<DSTTYPE,SRCTYPE>, boost::ref(dst), boost::cref(src), boost::cref(kernel), normalize, _1 /*roi*/, 1 /*nthreads*/), roi, nthreads); return true; } // Serial case float scale = 1.0f; if (normalize) { scale = 0.0f; for (ImageBuf::ConstIterator<float> k (kernel); ! k.done(); ++k) scale += k[0]; scale = 1.0f / scale; } float *sum = ALLOCA (float, roi.chend); ROI kroi = get_roi (kernel.spec()); ImageBuf::Iterator<DSTTYPE> d (dst, roi); ImageBuf::ConstIterator<SRCTYPE> s (src, roi, ImageBuf::WrapClamp); for ( ; ! d.done(); ++d) { for (int c = roi.chbegin; c < roi.chend; ++c) sum[c] = 0.0f; for (ImageBuf::ConstIterator<float> k (kernel, kroi); !k.done(); ++k) { float kval = k[0]; s.pos (d.x() + k.x(), d.y() + k.y(), d.z() + k.z()); for (int c = roi.chbegin; c < roi.chend; ++c) sum[c] += kval * s[c]; } for (int c = roi.chbegin; c < roi.chend; ++c) d[c] = scale * sum[c]; } return true; }
// DEPRECATED version bool ImageBufAlgo::add (ImageBuf &dst, const ImageBuf &A, const ImageBuf &B, int options) { // Sanity checks // dst must be distinct from A and B if ((const void *)&A == (const void *)&dst || (const void *)&B == (const void *)&dst) { dst.error ("destination image must be distinct from source"); return false; } // all three images must have the same number of channels if (A.spec().nchannels != B.spec().nchannels) { dst.error ("channel number mismatch: %d vs. %d", A.spec().nchannels, B.spec().nchannels); return false; } // If dst has not already been allocated, set it to the right size, // make it unconditinally float if (! dst.pixels_valid()) { ImageSpec dstspec = A.spec(); dstspec.set_format (TypeDesc::TypeFloat); dst.alloc (dstspec); } // Clear dst pixels if instructed to do so if (options & ADD_CLEAR_DST) { zero (dst); } ASSERT (A.spec().format == TypeDesc::FLOAT && B.spec().format == TypeDesc::FLOAT && dst.spec().format == TypeDesc::FLOAT); ImageBuf::ConstIterator<float,float> a (A); ImageBuf::ConstIterator<float,float> b (B); ImageBuf::Iterator<float> d (dst); int nchannels = A.nchannels(); // Loop over all pixels in A for ( ; a.valid(); ++a) { // Point the iterators for B and dst to the corresponding pixel if (options & ADD_RETAIN_WINDOWS) { b.pos (a.x(), a.y()); } else { // ADD_ALIGN_WINDOWS: make B line up with A b.pos (a.x()-A.xbegin()+B.xbegin(), a.y()-A.ybegin()+B.ybegin()); } d.pos (a.x(), b.y()); if (! b.valid() || ! d.valid()) continue; // Skip pixels that don't align // Add the pixel for (int c = 0; c < nchannels; ++c) d[c] = a[c] + b[c]; } return true; }
static bool resample_ (ImageBuf &dst, const ImageBuf &src, bool interpolate, ROI roi, int nthreads) { if (nthreads != 1 && roi.npixels() >= 1000) { // Lots of pixels and request for multi threads? Parallelize. ImageBufAlgo::parallel_image ( boost::bind(resample_<DSTTYPE,SRCTYPE>, boost::ref(dst), boost::cref(src), interpolate, _1 /*roi*/, 1 /*nthreads*/), roi, nthreads); return true; } // Serial case const ImageSpec &srcspec (src.spec()); const ImageSpec &dstspec (dst.spec()); int nchannels = src.nchannels(); // Local copies of the source image window, converted to float float srcfx = srcspec.full_x; float srcfy = srcspec.full_y; float srcfw = srcspec.full_width; float srcfh = srcspec.full_height; float dstfx = dstspec.full_x; float dstfy = dstspec.full_y; float dstfw = dstspec.full_width; float dstfh = dstspec.full_height; float dstpixelwidth = 1.0f / dstfw; float dstpixelheight = 1.0f / dstfh; float *pel = ALLOCA (float, nchannels); ImageBuf::Iterator<DSTTYPE> out (dst, roi); ImageBuf::ConstIterator<SRCTYPE> srcpel (src); for (int y = roi.ybegin; y < roi.yend; ++y) { // s,t are NDC space float t = (y-dstfy+0.5f)*dstpixelheight; // src_xf, src_xf are image space float coordinates float src_yf = srcfy + t * srcfh - 0.5f; // src_x, src_y are image space integer coordinates of the floor int src_y; (void) floorfrac (src_yf, &src_y); for (int x = roi.xbegin; x < roi.xend; ++x) { float s = (x-dstfx+0.5f)*dstpixelwidth; float src_xf = srcfx + s * srcfw - 0.5f; int src_x; (void) floorfrac (src_xf, &src_x); if (interpolate) { src.interppixel (src_xf, src_yf, pel); for (int c = roi.chbegin; c < roi.chend; ++c) out[c] = pel[c]; } else { srcpel.pos (src_x, src_y, 0); for (int c = roi.chbegin; c < roi.chend; ++c) out[c] = srcpel[c]; } ++out; } } return true; }
static bool resize_ (ImageBuf &dst, const ImageBuf &src, Filter2D *filter, ROI roi, int nthreads) { if (nthreads != 1 && roi.npixels() >= 1000) { // Lots of pixels and request for multi threads? Parallelize. ImageBufAlgo::parallel_image ( boost::bind(resize_<DSTTYPE,SRCTYPE>, boost::ref(dst), boost::cref(src), filter, _1 /*roi*/, 1 /*nthreads*/), roi, nthreads); return true; } // Serial case const ImageSpec &srcspec (src.spec()); const ImageSpec &dstspec (dst.spec()); int nchannels = dstspec.nchannels; // Local copies of the source image window, converted to float float srcfx = srcspec.full_x; float srcfy = srcspec.full_y; float srcfw = srcspec.full_width; float srcfh = srcspec.full_height; // Ratios of dst/src size. Values larger than 1 indicate that we // are maximizing (enlarging the image), and thus want to smoothly // interpolate. Values less than 1 indicate that we are minimizing // (shrinking the image), and thus want to properly filter out the // high frequencies. float xratio = float(dstspec.full_width) / srcfw; // 2 upsize, 0.5 downsize float yratio = float(dstspec.full_height) / srcfh; float dstfx = dstspec.full_x; float dstfy = dstspec.full_y; float dstfw = dstspec.full_width; float dstfh = dstspec.full_height; float dstpixelwidth = 1.0f / dstfw; float dstpixelheight = 1.0f / dstfh; float *pel = ALLOCA (float, nchannels); float filterrad = filter->width() / 2.0f; // radi,radj is the filter radius, as an integer, in source pixels. We // will filter the source over [x-radi, x+radi] X [y-radj,y+radj]. int radi = (int) ceilf (filterrad/xratio); int radj = (int) ceilf (filterrad/yratio); int xtaps = 2*radi + 1; int ytaps = 2*radj + 1; bool separable = filter->separable(); float *xfiltval = NULL, *yfiltval = NULL; if (separable) { // Allocate temp space to cache the filter weights xfiltval = ALLOCA (float, xtaps); yfiltval = ALLOCA (float, ytaps); } #if 0 std::cerr << "Resizing " << srcspec.full_width << "x" << srcspec.full_height << " to " << dstspec.full_width << "x" << dstspec.full_height << "\n"; std::cerr << "ratios = " << xratio << ", " << yratio << "\n"; std::cerr << "examining src filter support radius of " << radi << " x " << radj << " pixels\n"; std::cerr << "dst range " << roi << "\n"; std::cerr << "separable filter\n"; #endif // We're going to loop over all output pixels we're interested in. // // (s,t) = NDC space coordinates of the output sample we are computing. // This is the "sample point". // (src_xf, src_xf) = source pixel space float coordinates of the // sample we're computing. We want to compute the weighted sum // of all the source image pixels that fall under the filter when // centered at that location. // (src_x, src_y) = image space integer coordinates of the floor, // i.e., the closest pixel in the source image. // src_xf_frac and src_yf_frac are the position within that pixel // of our sample. ImageBuf::Iterator<DSTTYPE> out (dst, roi); for (int y = roi.ybegin; y < roi.yend; ++y) { float t = (y-dstfy+0.5f)*dstpixelheight; float src_yf = srcfy + t * srcfh; int src_y; float src_yf_frac = floorfrac (src_yf, &src_y); // If using separable filters, our vertical set of filter tap // weights will be the same for the whole scanline we're on. Just // compute and normalize them once. float totalweight_y = 0.0f; if (separable) { for (int j = 0; j < ytaps; ++j) { float w = filter->yfilt (yratio * (j-radj-(src_yf_frac-0.5f))); yfiltval[j] = w; totalweight_y += w; } for (int i = 0; i <= ytaps; ++i) yfiltval[i] /= totalweight_y; } for (int x = roi.xbegin; x < roi.xend; ++x) { float s = (x-dstfx+0.5f)*dstpixelwidth; float src_xf = srcfx + s * srcfw; int src_x; float src_xf_frac = floorfrac (src_xf, &src_x); for (int c = 0; c < nchannels; ++c) pel[c] = 0.0f; if (separable) { // Cache and normalize the horizontal filter tap weights // just once for this (x,y) position, reuse for all vertical // taps. float totalweight_x = 0.0f; for (int i = 0; i < xtaps; ++i) { float w = filter->xfilt (xratio * (i-radi-(src_xf_frac-0.5f))); xfiltval[i] = w; totalweight_x += w; } if (totalweight_x != 0.0f) { for (int i = 0; i < xtaps; ++i) // normalize x filter xfiltval[i] /= totalweight_x; // weights ImageBuf::ConstIterator<SRCTYPE> srcpel (src, src_x-radi, src_x+radi+1, src_y-radj, src_y+radj+1, 0, 1, ImageBuf::WrapClamp); for (int j = -radj; j <= radj; ++j) { float wy = yfiltval[j+radj]; if (wy == 0.0f) { // 0 weight for this y tap -- move to next line srcpel.pos (srcpel.x(), srcpel.y()+1, srcpel.z()); continue; } for (int i = 0; i < xtaps; ++i, ++srcpel) { float w = wy * xfiltval[i]; for (int c = 0; c < nchannels; ++c) pel[c] += w * srcpel[c]; } } } // Copy the pixel value (already normalized) to the output. DASSERT (out.x() == x && out.y() == y); if (totalweight_y == 0.0f) { // zero it out for (int c = 0; c < nchannels; ++c) out[c] = 0.0f; } else { for (int c = 0; c < nchannels; ++c) out[c] = pel[c]; } } else { // Non-separable float totalweight = 0.0f; ImageBuf::ConstIterator<SRCTYPE> srcpel (src, src_x-radi, src_x+radi+1, src_y-radi, src_y+radi+1, 0, 1, ImageBuf::WrapClamp); for (int j = -radj; j <= radj; ++j) { for (int i = -radi; i <= radi; ++i, ++srcpel) { float w = (*filter)(xratio * (i-(src_xf_frac-0.5f)), yratio * (j-(src_yf_frac-0.5f))); totalweight += w; if (w == 0.0f) continue; DASSERT (! srcpel.done()); for (int c = 0; c < nchannels; ++c) pel[c] += w * srcpel[c]; } } DASSERT (srcpel.done()); // Rescale pel to normalize the filter and write it to the // output image. DASSERT (out.x() == x && out.y() == y); if (totalweight == 0.0f) { // zero it out for (int c = 0; c < nchannels; ++c) out[c] = 0.0f; } else { for (int c = 0; c < nchannels; ++c) out[c] = pel[c] / totalweight; } } ++out; } } return true; }