void DotNodeGadget::updateLabel() { const Dot *dot = dotNode(); const Dot::LabelType labelType = (Dot::LabelType)dot->labelTypePlug()->getValue(); if( labelType == Dot::None ) { m_label.clear(); } else if( labelType == Dot::NodeName ) { m_label = dot->getName(); } else if( labelType == Dot::UpstreamNodeName ) { const Node *n = upstreamNode(); m_label = n ? n->getName() : ""; } else { m_label = dot->labelPlug()->getValue(); } Edge labelEdge = RightEdge; if( const Plug *p = dot->inPlug<Plug>() ) { if( noduleTangent( nodule( p ) ).x != 0 ) { labelEdge = TopEdge; } } const Imath::Box3f thisBound = bound(); if( labelEdge == TopEdge ) { const Imath::Box3f labelBound = style()->textBound( Style::LabelText, m_label ); m_labelPosition = V2f( -labelBound.size().x / 2.0, thisBound.max.y + 1.0 ); } else { const Imath::Box3f characterBound = style()->characterBound( Style::LabelText ); m_labelPosition = V2f( thisBound.max.x, thisBound.center().y - characterBound.size().y / 2.0 ); } requestRender(); }
void CameraController::focusOnBounds(const Imath::Box3f& bounds) { using namespace Imath; V3f fwd = m_parameters->forwardUnitVector(); V3f center = bounds.center(); float distance = bounds.size().length() / (2.0f * tan(m_parameters->fovY() / 2)); m_parameters->setEyeTarget(center - fwd * distance, center); }
bool rayPassesNearOrThrough(const V3d& rayOrigin, const V3d& rayDir) const { const double diagRadius = 1.2*bbox.size().length()/2; // Sphere diameter is length of box diagonal const V3d o2c = bbox.center() - rayOrigin; // vector from rayOrigin to box center const double l = o2c.length(); if(l < diagRadius) return true; // rayOrigin lies within bounding sphere // rayOrigin lies outside of bounding sphere const double cosA = o2c.dot(rayDir)/l; // cosine of angle between rayDir and vector from origin to center if(cosA < DBL_MIN) return false; // rayDir points to side or behind with respect to direction from origin to center of box const double sinA = sqrt(1 - cosA*cosA); // sine of angle between rayDir and vector from origin to center return sinA/cosA < diagRadius/l; }
void AuxiliaryNodeGadget::doRenderLayer( Layer layer, const Style *style ) const { if( layer != GraphLayer::Nodes ) { return NodeGadget::doRenderLayer( layer, style ); } Style::State state = getHighlighted() ? Style::HighlightedState : Style::NormalState; style->renderNodeFrame( Box2f( V2f( 0 ), V2f( 0 ) ), m_radius, state, m_userColor.get_ptr() ); Imath::Box3f bound = style->textBound( Style::LabelText, m_label ); Imath::V3f offset = bound.size() / 2.0; glPushMatrix(); glTranslatef( -offset.x, -offset.y, 0.0f ); style->renderText( Style::LabelText, m_label ); glPopMatrix(); }
Imath::M44f computeMeshTransform(const Imath::Box3f& bounds, const Imath::V3i& voxelResolution) { using namespace Imath; M44f meshTransform; // set mesh transform so that the mesh fits within the unit cube. This will // be changed later when we let the user manipulate the mesh transform and // the mesh/volume intersection. V3f voxelMargin = V3f(1.0f) / voxelResolution; // 1 voxel int majorAxis = bounds.majorAxis(); float s = (1.0f - 2.0 * voxelMargin[majorAxis] ) / bounds.size()[majorAxis]; V3f t = -bounds.min + voxelMargin / s; meshTransform.x[0][0] = s ; meshTransform.x[0][1] = 0 ; meshTransform.x[0][2] = 0 ; meshTransform.x[0][3] = t.x * s ; meshTransform.x[1][0] = 0 ; meshTransform.x[1][1] = s ; meshTransform.x[1][2] = 0 ; meshTransform.x[1][3] = t.y * s ; meshTransform.x[2][0] = 0 ; meshTransform.x[2][1] = 0 ; meshTransform.x[2][2] = s ; meshTransform.x[2][3] = t.z * s ; meshTransform.x[3][0] = 0 ; meshTransform.x[3][1] = 0 ; meshTransform.x[3][2] = 0 ; meshTransform.x[3][3] = 1.0f ; return meshTransform; }