Esempio n. 1
0
bool IA_IAPI::cleansStack() const
{
    Instruction::Ptr ci = curInsn();
	if (ci->getCategory() != c_ReturnInsn) return false;
    std::vector<Operand> ops;
	ci->getOperands(ops);
	return (ops.size() > 1);
}
Esempio n. 2
0
static Address ThunkAdjustment(Address afterThunk, MachRegister reg, ParseAPI::Block *b) {
    // After the call to thunk, there is usually
    // an add insturction like ADD ebx, OFFSET to adjust
    // the value coming out of thunk.
   
    const unsigned char* buf = (const unsigned char*) (b->obj()->cs()->getPtrToInstruction(afterThunk));
    InstructionDecoder dec(buf, b->end() - b->start(), b->obj()->cs()->getArch());
    Instruction::Ptr nextInsn = dec.decode();
    // It has to be an add
    if (nextInsn->getOperation().getID() != e_add) return 0;
    vector<Operand> operands;
    nextInsn->getOperands(operands);
    RegisterAST::Ptr regAST = boost::dynamic_pointer_cast<RegisterAST>(operands[0].getValue());
    // The first operand should be a register
    if (regAST == 0) return 0;
    if (regAST->getID() != reg) return 0;
    Result res = operands[1].getValue()->eval();
    // A not defined result means that
    // the second operand is not an immediate
    if (!res.defined) return 0;
    return res.convert<Address>();
}
Esempio n. 3
0
void AssignmentConverter::convert(const Instruction::Ptr I, 
                                  const Address &addr,
				  ParseAPI::Function *func,
                                  ParseAPI::Block *block,
				  std::vector<Assignment::Ptr> &assignments) {
  assignments.clear();
  if (cache(func, addr, assignments)) return;

  // Decompose the instruction into a set of abstract assignments.
  // We don't have the Definition class concept yet, so we'll do the 
  // hard work here. 
  // Two phases:
  // 1) Special-cased for IA32 multiple definition instructions,
  //    based on the opcode of the instruction
  // 2) Generic handling for things like flags and the PC. 

  // Non-PC handling section
  switch(I->getOperation().getID()) {
  case e_push: {
    // SP = SP - 4 
    // *SP = <register>
 
    std::vector<Operand> operands;
    I->getOperands(operands);

    // According to the InstructionAPI, the first operand will be the argument, the second will be ESP.
    assert(operands.size() == 2);

    // The argument can be any of the following:
    // 1) a register (push eax);
    // 2) an immediate value (push $deadbeef)
    // 3) a memory location. 

    std::vector<AbsRegion> oper0;
    aConverter.convertAll(operands[0].getValue(),
                          addr,
                          func,
                          block,
                          oper0);

    handlePushEquivalent(I, addr, func, block, oper0, assignments);
    break;
  }
  case e_call: {
    // This can be seen as a push of the PC...

    std::vector<AbsRegion> pcRegion;
    pcRegion.push_back(Absloc::makePC(func->isrc()->getArch()));
    Absloc sp = Absloc::makeSP(func->isrc()->getArch());
    
    handlePushEquivalent(I, addr, func, block, pcRegion, assignments);

    // Now for the PC definition
    // Assume full intra-dependence of non-flag and non-pc registers. 
    std::vector<AbsRegion> used;
    std::vector<AbsRegion> defined;

    aConverter.convertAll(I,
			  addr,
			  func,
                          block,
			  used,
			  defined);

    Assignment::Ptr a = Assignment::Ptr(new Assignment(I, addr, func, block, pcRegion[0]));
    if (!used.empty()) {
        for(std::vector<AbsRegion>::const_iterator u = used.begin();
            u != used.end();
            ++u)
        {
            if(!(u->contains(pcRegion[0])) &&
                 !(u->contains(sp)))
            {
                a->addInput(*u);
            }
        }
    }
    else {
      a->addInputs(pcRegion);
    }
    assignments.push_back(a);
    break;
  }
  case e_pop: {
    // <reg> = *SP
    // SP = SP + 4/8
    // Amusingly... this doesn't have an intra-instruction dependence. It should to enforce
    // the order that <reg> = *SP happens before SP = SP - 4, but since the input to both 
    // uses of SP in this case are the, well, input values... no "sideways" edges. 
    // However, we still special-case it so that SP doesn't depend on the incoming stack value...
    // Also, we use the same logic for return, defining it as
    // PC = *SP
    // SP = SP + 4/8

    // As with push, eSP shows up as operand 1. 

    std::vector<Operand> operands;
    I->getOperands(operands);

    // According to the InstructionAPI, the first operand will be the explicit register, the second will be ESP.
    assert(operands.size() == 2);

    std::vector<AbsRegion> oper0;
    aConverter.convertAll(operands[0].getValue(),
                          addr,
                          func,
                          block,
                          oper0);

    handlePopEquivalent(I, addr, func, block, oper0, assignments);
    break;
  }
  case e_leave: {
    // a leave is equivalent to:
    // mov ebp, esp
    // pop ebp
    // From a definition POV, we have the following:
    // SP = BP
    // BP = *SP
        
    // BP    STACK[newSP]
    //  |    |
    //  v    v
    // SP -> BP
        
    // This is going to give the stack analysis fits... for now, I think it just reverts the
    // stack depth to 0. 

    // TODO FIXME update stack analysis to make this really work. 
        
    AbsRegion sp(Absloc::makeSP(func->isrc()->getArch()));
    AbsRegion fp(Absloc::makeFP(func->isrc()->getArch()));

    // Should be "we assign SP using FP"
    Assignment::Ptr spA = Assignment::Ptr(new Assignment(I,
							 addr,
							 func,
                                                         block,
							 sp));
    spA->addInput(fp);

    // And now we want "FP = (stack slot -2*wordsize)"
    /*
      AbsRegion stackTop(Absloc(0,
      0,
      func));
    */
    // Actually, I think this is ebp = pop esp === ebp = pop ebp
    Assignment::Ptr fpA = Assignment::Ptr(new Assignment(I,
							 addr,
							 func,
                                                         block,
							 fp));
    //fpA->addInput(aConverter.stack(addr + I->size(), func, false));
    fpA->addInput(aConverter.frame(addr, func, block, false));

    assignments.push_back(spA);
    assignments.push_back(fpA);
    break;
  }
  case e_ret_near:
  case e_ret_far: {
    // PC = *SP
    // SP = SP + 4/8
    // Like pop, except it's all implicit.

    AbsRegion pc = AbsRegion(Absloc::makePC(func->isrc()->getArch()));
    Assignment::Ptr pcA = Assignment::Ptr(new Assignment(I, 
							 addr,
							 func,
                                                         block,
							 pc));
    pcA->addInput(aConverter.stack(addr, func, block, false));

    AbsRegion sp = AbsRegion(Absloc::makeSP(func->isrc()->getArch()));
    Assignment::Ptr spA = Assignment::Ptr(new Assignment(I,
							 addr,
							 func,
                                                         block,
							 sp));
    spA->addInput(sp);

    assignments.push_back(pcA);
    assignments.push_back(spA);
    break;
  }

  case e_xchg: {
    // xchg defines two abslocs, and uses them as appropriate...

    std::vector<Operand> operands;
    I->getOperands(operands);

    // According to the InstructionAPI, the first operand will be the argument, the second will be ESP.
    assert(operands.size() == 2);

    // We use the first to define the second, and vice versa
    std::vector<AbsRegion> oper0;
    aConverter.convertAll(operands[0].getValue(),
                          addr,
                          func,
                          block,
                          oper0);
    
    std::vector<AbsRegion> oper1;
    aConverter.convertAll(operands[1].getValue(),
                          addr,
                          func,
                          block,
                          oper1);

    // Okay. We may have a memory reference in here, which will
    // cause either oper0 or oper1 to have multiple entries (the
    // remainder will be registers). So. Use everything from oper1
    // to define oper0[0], and vice versa.
    
    Assignment::Ptr a = Assignment::Ptr(new Assignment(I, addr, func, block, oper0[0]));
    a->addInputs(oper1);

    Assignment::Ptr b = Assignment::Ptr(new Assignment(I, addr, func, block, oper1[0]));
    b->addInputs(oper0);

    assignments.push_back(a);
    assignments.push_back(b);
    break;
  }


  case power_op_stwu: {
    std::vector<Operand> operands;
    I->getOperands(operands);

    // stwu <a>, <b>, <c>
    // <a> = R1
    // <b> = -16(R1)
    // <c> = R1

    // From this, R1 <= R1 - 16; -16(R1) <= R1
    // So a <= b (without a deref)
    // deref(b) <= c

    std::set<Expression::Ptr> writes;
    I->getMemoryWriteOperands(writes);
    assert(writes.size() == 1);

    Expression::Ptr tmp = *(writes.begin());
    AbsRegion effAddr = aConverter.convert(tmp,
					   addr, 
					   func,
                                           block);
    std::vector<AbsRegion> regions;
    aConverter.convertAll(operands[0].getValue(), addr, func, block, regions);
    AbsRegion RS = regions[0];
    regions.clear();
    aConverter.convertAll(operands[2].getValue(), addr, func, block, regions);
    AbsRegion RA = regions[0];

    Assignment::Ptr mem = Assignment::Ptr(new Assignment(I, 
							 addr,
							 func,
                                                         block,
							 effAddr));
    mem->addInput(RS);
    
    Assignment::Ptr ra = Assignment::Ptr(new Assignment(I,
							addr,
							func,
                                                        block,
							RA));
    ra->addInput(RS);
    assignments.push_back(mem);
    assignments.push_back(ra);
    break;
  }      
        
  default:
    // Assume full intra-dependence of non-flag and non-pc registers. 
    std::vector<AbsRegion> used;
    std::vector<AbsRegion> defined;

    aConverter.convertAll(I,
			  addr,
			  func,
                          block,
			  used,
			  defined);
    for (std::vector<AbsRegion>::const_iterator i = defined.begin();
	 i != defined.end(); ++i) {
       Assignment::Ptr a = Assignment::Ptr(new Assignment(I, addr, func, block, *i));
       a->addInputs(used);
       assignments.push_back(a);
    }
    break;
  }
    

  // Now for flags...
  // According to Matt, the easiest way to represent dependencies for flags on 
  // IA-32/AMD-64 is to have them depend on the inputs to the instruction and 
  // not the outputs of the instruction; therefore, there's no intra-instruction
  // dependence. 

  // PC-handling section
  // Most instructions use the PC to set the PC. This includes calls, relative branches,
  // and the like. So we're basically looking for indirect branches or absolute branches.
  // (are there absolutes on IA-32?).
  // Also, conditional branches and the flag registers they use. 

  if (cacheEnabled_) {
    cache_[func][addr] = assignments;
  }

}
Esempio n. 4
0
void
dyninst_analyze_address_taken(BPatch_addressSpace *handle, DICFG *cfg)
{
	/* XXX: this is the most naive address-taken analysis that can be used by the
         * lbr_analysis_pass. More sophisticated ones can be (and are) plugged in in the pass.
         * This naive solution is provided only for comparison with more sophisticated ones.
	 * 
         * This analysis looks for instruction operands that correspond to known function addresses,
         * and then marks these functions as having their address taken. In particular, we
         * do /not/ look for function pointers stored in (static) memory, or for function
         * pointers that are computed at runtime. 
         */

	SymtabCodeSource *sts;
	CodeObject *co;

	std::vector<BPatch_object*> objs;
	handle->getImage()->getObjects(objs);
	assert(objs.size() > 0);
	const char *bin = objs[0]->pathName().c_str();

	// Create a new binary object 
	sts 	= new SymtabCodeSource((char*)bin);
	co 	= new CodeObject(sts);

	// Parse the binary 
	co->parse(); 

	BPatch_image *image = handle->getImage();
	std::vector<BPatch_module *> *mods = image->getModules();
	std::vector<BPatch_module *>::iterator mods_iter; 
	for (mods_iter = mods->begin(); mods_iter != mods->end(); mods_iter++) {
		std::vector<BPatch_function *> *funcs = (*mods_iter)->getProcedures(false); 
		std::vector<BPatch_function *>::iterator funcs_iter = funcs->begin();
		for(; funcs_iter != funcs->end(); funcs_iter++) {
			co->parse((Address)(*funcs_iter)->getBaseAddr(), true);
			BPatch_flowGraph *fg = (*funcs_iter)->getCFG();
			std::set<BPatch_basicBlock*> blocks;
			fg->getAllBasicBlocks(blocks);
			std::set<BPatch_basicBlock*>::iterator block_iter;
			for (block_iter = blocks.begin(); block_iter != blocks.end(); ++block_iter) {
				BPatch_basicBlock *block = (*block_iter);
				std::vector<Instruction::Ptr> insns;
				block->getInstructions(insns);
				std::vector<Instruction::Ptr>::iterator insn_iter;
				for (insn_iter = insns.begin(); insn_iter != insns.end(); ++insn_iter) {
					Instruction::Ptr ins = *insn_iter;
					std::vector<Operand> ops;
					ins->getOperands(ops);
					std::vector<Operand>::iterator op_iter;
					for (op_iter = ops.begin(); op_iter != ops.end(); ++op_iter) {
						Expression::Ptr expr = (*op_iter).getValue();

						struct OperandAnalyzer : public Dyninst::InstructionAPI::Visitor {
							virtual void visit(BinaryFunction* op) {};
							virtual void visit(Dereference* op) {}
							virtual void visit(Immediate* op) {
								address_t addr;
								ArmsFunction *func;
								switch(op->eval().type) {
								case s32:
									addr = op->eval().val.s32val;
									break;
								case u32:
									addr = op->eval().val.u32val;
									break;
								case s64:
									addr = op->eval().val.s64val;
									break;
								case u64:
									addr = op->eval().val.u64val;
									break;
								default:
									return;
								}
								func = cfg_->find_function(addr);
								if(func) {
									printf("Instruction [%s] references function 0x%jx\n", ins_->format().c_str(), addr);
									func->set_addr_taken();
								}
							}
							virtual void visit(RegisterAST* op) {}
							OperandAnalyzer(DICFG *cfg, Instruction::Ptr ins) {
								cfg_ = cfg;
								ins_ = ins;
							};
							DICFG *cfg_;
							Instruction::Ptr ins_;
						};

						OperandAnalyzer oa(cfg, ins);
						expr->apply(&oa);
					}
				}
			}
		} 
	}
}