AxisAlignedBoundingBox DatabaseIO::get_bounding_box(const Ioss::ElementBlock *eb) const { if (elementBlockBoundingBoxes.empty()) { // Calculate the bounding boxes for all element blocks... std::vector<double> coordinates; Ioss::NodeBlock * nb = get_region()->get_node_blocks()[0]; nb->get_field_data("mesh_model_coordinates", coordinates); ssize_t nnode = nb->get_property("entity_count").get_int(); ssize_t ndim = nb->get_property("component_degree").get_int(); Ioss::ElementBlockContainer element_blocks = get_region()->get_element_blocks(); size_t nblock = element_blocks.size(); std::vector<double> minmax; minmax.reserve(6 * nblock); for (auto &block : element_blocks) { double xmin, ymin, zmin, xmax, ymax, zmax; if (block->get_database()->int_byte_size_api() == 8) { std::vector<int64_t> connectivity; block->get_field_data("connectivity_raw", connectivity); calc_bounding_box(ndim, nnode, coordinates, connectivity, xmin, ymin, zmin, xmax, ymax, zmax); } else { std::vector<int> connectivity; block->get_field_data("connectivity_raw", connectivity); calc_bounding_box(ndim, nnode, coordinates, connectivity, xmin, ymin, zmin, xmax, ymax, zmax); } minmax.push_back(xmin); minmax.push_back(ymin); minmax.push_back(zmin); minmax.push_back(-xmax); minmax.push_back(-ymax); minmax.push_back(-zmax); } util().global_array_minmax(minmax, Ioss::ParallelUtils::DO_MIN); for (size_t i = 0; i < element_blocks.size(); i++) { Ioss::ElementBlock * block = element_blocks[i]; const std::string & name = block->name(); AxisAlignedBoundingBox bbox(minmax[6 * i + 0], minmax[6 * i + 1], minmax[6 * i + 2], -minmax[6 * i + 3], -minmax[6 * i + 4], -minmax[6 * i + 5]); elementBlockBoundingBoxes[name] = bbox; } } return elementBlockBoundingBoxes[eb->name()]; }
void eliminate_omitted_nodes(RegionVector &part_mesh, std::vector<INT> &global_node_map, std::vector<INT> &local_node_map) { size_t offset = 0; size_t j = 0; size_t part_count = part_mesh.size(); for (size_t p = 0; p < part_count; p++) { bool has_omissions = part_mesh[p]->get_property("block_omission_count").get_int() > 0; Ioss::NodeBlock *nb = part_mesh[p]->get_node_blocks()[0]; size_t loc_size = nb->get_property("entity_count").get_int(); if (has_omissions) { // If there are any omitted element blocks for this part, don't // map the nodes that are only connected to omitted element // blocks. std::vector<char> node_status; nb->get_field_data("node_connectivity_status", node_status); for (size_t i=0; i < node_status.size(); i++) { if (node_status[i] != 1) { local_node_map[offset+i] = j; global_node_map.push_back(j+1); j++; } else { local_node_map[offset+i] = -1; } } } else { for (size_t i=0; i < loc_size; i++) { local_node_map[offset+i] = j; global_node_map.push_back(j+1); j++; } } offset += loc_size; } }
void build_reverse_node_map(Ioss::Region &global, RegionVector &part_mesh, std::vector<INT> &global_node_map, std::vector<INT> &local_node_map) { // Instead of using <set> and <map>, consider using a sorted vector... // Append all local node maps to the global node map. // Sort the global node map // Remove duplicates. // Position within map is now the map... // When building the local-part node to global id, use binary_search... size_t part_count = part_mesh.size(); // Global node map and count. std::vector<std::vector<int> > global_nodes(part_count); size_t tot_size = 0; for (size_t p = 0; p < part_count; p++) { Ioss::NodeBlock *nb = part_mesh[p]->get_node_blocks()[0]; size_t loc_size = nb->get_property("entity_count").get_int(); tot_size += loc_size; global_nodes[p].resize(loc_size); } global_node_map.resize(tot_size); size_t offset = 0; bool any_omitted_nodes = false; for (size_t p = 0; p < part_count; p++) { Ioss::NodeBlock *nb = part_mesh[p]->get_node_blocks()[0]; nb->get_field_data("ids", global_nodes[p]); // If there are any omitted element blocks for this part, set // the global id of any nodes that are only connected to omitted // element blocks to 0. bool has_omissions = part_mesh[p]->get_property("block_omission_count").get_int() > 0; if (has_omissions) { std::vector<char> node_status; nb->get_field_data("node_connectivity_status", node_status); for (size_t i=0; i < node_status.size(); i++) { if (node_status[i] == 1) { any_omitted_nodes = true; global_nodes[p][i] = 0; } } } std::copy(global_nodes[p].begin(), global_nodes[p].end(), &global_node_map[offset]); offset += global_nodes[p].size(); } // Now, sort the global_node_map array and remove duplicates... uniqify(global_node_map); // If any omitted nodes, remove them from the global_node_map. // The id will be 0 if (any_omitted_nodes) { typename std::vector<INT>::iterator pos = std::remove(global_node_map.begin(), global_node_map.end(), 0); global_node_map.erase(pos, global_node_map.end()); } size_t output_node_count = global_node_map.size(); // See whether the node numbers are contiguous. If so, we can map // the nodes back to their original location. Since the nodes are // sorted and there are no duplicates, we just need to see if the id // at global_node_map.size() == global_node_map.size(); size_t max_id = global_node_map[output_node_count-1]; bool is_contiguous = max_id == output_node_count; std::cerr << "Node map " << (is_contiguous ? "is" : "is not") << " contiguous.\n"; // Create the map that maps from a local part node to the // global map. This combines the mapping local part node to // 'global id' and then 'global id' to global position. The // mapping is now a direct lookup instead of a lookup followed by // a reverse map. typedef typename std::vector<INT>::iterator V_INT_iterator; V_INT_iterator cur_pos = global_node_map.begin(); for (size_t p = 0; p < part_count; p++) { size_t noffset = part_mesh[p]->get_property("node_offset").get_int(); size_t node_count = global_nodes[p].size(); for (size_t i = 0; i < node_count; i++) { INT global_node = global_nodes[p][i]; if (global_node > 0) { if (cur_pos == global_node_map.end() || *cur_pos != global_node) { std::pair<V_INT_iterator, V_INT_iterator> iter = std::equal_range(global_node_map.begin(), global_node_map.end(), global_node); if (iter.first == iter.second) { INT n = global_node; std::cerr << n << "\n"; SMART_ASSERT(iter.first != iter.second); } cur_pos = iter.first; } size_t nodal_value = cur_pos - global_node_map.begin(); local_node_map[noffset+i] = nodal_value; ++cur_pos; } else { local_node_map[noffset+i] = -1; } } } // Update the nodal ids to give a unique, non-repeating set. If contiguous, then // there is nothing to do. If not contiguous, then need to determine if there are any // repeats (id reuse) and if so, generate a new id for the repeated uses. if (!is_contiguous) { bool repeat_found = false; INT id_last = global_node_map[0]; for (size_t i=1; i < output_node_count; i++) { if (global_node_map[i] == id_last) { global_node_map[i] = ++max_id; repeat_found = true; } else { id_last = global_node_map[i]; } } if (repeat_found) { std::cerr << "Duplicate node ids were found. Their ids have been renumbered to remove duplicates.\n"; } } }