mitk::AffineTransform3D::Pointer mitk::NeedleProjectionFilter::NavigationDataToTransform(const mitk::NavigationData * nd) { mitk::AffineTransform3D::Pointer affineTransform = mitk::AffineTransform3D::New(); affineTransform->SetIdentity(); //calculate the transform from the quaternions static itk::QuaternionRigidTransform<double>::Pointer quatTransform = itk::QuaternionRigidTransform<double>::New(); mitk::NavigationData::OrientationType orientation = nd->GetOrientation(); // convert mitk::ScalarType quaternion to double quaternion because of itk bug vnl_quaternion<double> doubleQuaternion(orientation.x(), orientation.y(), orientation.z(), orientation.r()); quatTransform->SetIdentity(); quatTransform->SetRotation(doubleQuaternion); quatTransform->Modified(); /* because of an itk bug, the transform can not be calculated with float data type. To use it in the mitk geometry classes, it has to be transfered to mitk::ScalarType which is float */ static AffineTransform3D::MatrixType m; mitk::TransferMatrix(quatTransform->GetMatrix(), m); affineTransform->SetMatrix(m); /*set the offset by convert from itkPoint to itkVector and setting offset of transform*/ mitk::Vector3D pos; pos.SetVnlVector(nd->GetPosition().GetVnlVector()); affineTransform->SetOffset(pos); affineTransform->Modified(); return affineTransform; }
void mitk::NavigationDataObjectVisualizationFilter::GenerateData() { /*get each input, lookup the associated BaseData and transfer the data*/ DataObjectPointerArray inputs = this->GetInputs(); //get all inputs for (unsigned int index=0; index < inputs.size(); index++) { //get the needed variables const mitk::NavigationData* nd = this->GetInput(index); assert(nd); mitk::NavigationData* output = this->GetOutput(index); assert(output); //check if the data is valid if (!nd->IsDataValid()) { output->SetDataValid(false); continue; } output->Graft(nd); // copy all information from input to output const mitk::BaseData* data = this->GetRepresentationObject(index); if (data == NULL) { MITK_WARN << "No BaseData associated with input " << index; continue; } //get the transform from data mitk::AffineTransform3D::Pointer affineTransform = data->GetGeometry()->GetIndexToWorldTransform(); if (affineTransform.IsNull()) { MITK_WARN << "AffineTransform IndexToWorldTransform not initialized!"; continue; } //check for offset mitk::AffineTransform3D::Pointer offset = this->GetOffset(index); //store the current scaling to set it after transformation mitk::Vector3D spacing = data->GetGeometry()->GetSpacing(); //clear spacing of data to be able to set it again afterwards ScalarType scale[] = {1.0, 1.0, 1.0}; data->GetGeometry()->SetSpacing(scale); /*now bring quaternion to affineTransform by using vnl_Quaternion*/ affineTransform->SetIdentity(); if (this->GetTransformOrientation(index) == true) { mitk::NavigationData::OrientationType orientation = nd->GetOrientation(); /* because of an itk bug, the transform can not be calculated with float data type. To use it in the mitk geometry classes, it has to be transfered to mitk::ScalarType which is float */ static AffineTransform3D::MatrixType m; //convert quaternion to rotation matrix depending on the rotation mode if(m_RotationMode == RotationStandard) { //calculate the transform from the quaternions static itk::QuaternionRigidTransform<double>::Pointer quatTransform = itk::QuaternionRigidTransform<double>::New(); // convert mitk::ScalarType quaternion to double quaternion because of itk bug vnl_quaternion<double> doubleQuaternion(orientation.x(), orientation.y(), orientation.z(), orientation.r()); quatTransform->SetIdentity(); quatTransform->SetRotation(doubleQuaternion); quatTransform->Modified(); mitk::TransferMatrix(quatTransform->GetMatrix(), m); } else if(m_RotationMode == RotationTransposed) { vnl_matrix_fixed<mitk::ScalarType,3,3> rot = orientation.rotation_matrix_transpose(); for(int i=0; i<3; i++) for (int j=0; j<3; j++) m[i][j] = rot[i][j]; } affineTransform->SetMatrix(m); } if (this->GetTransformPosition(index) == true) { ///*set the offset by convert from itkPoint to itkVector and setting offset of transform*/ mitk::Vector3D pos; pos.SetVnlVector(nd->GetPosition().GetVnlVector()); affineTransform->SetOffset(pos); } affineTransform->Modified(); //set the transform to data if(offset.IsNotNull()) //first use offset if there is one. { mitk::AffineTransform3D::Pointer overallTransform = mitk::AffineTransform3D::New(); overallTransform->SetIdentity(); overallTransform->Compose(offset); overallTransform->Compose(affineTransform); data->GetGeometry()->SetIndexToWorldTransform(overallTransform); } else { data->GetGeometry()->SetIndexToWorldTransform(affineTransform); } //set the original spacing to keep scaling of the geometrical object data->GetGeometry()->SetSpacing(spacing); data->GetGeometry()->Modified(); data->Modified(); output->SetDataValid(true); // operation was successful, therefore data of output is valid. } //m_Measurement->AddMeasurement(10); }