/** Convert the workspace units using TOF as an intermediate step in the * conversion * @param fromUnit :: The unit of the input workspace * @param outputWS :: The output workspace */ void ConvertUnitsUsingDetectorTable::convertViaTOF( Kernel::Unit_const_sptr fromUnit, API::MatrixWorkspace_sptr outputWS) { using namespace Geometry; // Let's see if we are using a TableWorkspace to override parameters TableWorkspace_sptr paramWS = getProperty("DetectorParameters"); // See if we have supplied a DetectorParameters Workspace // TODO: Check if paramWS is NULL and if so throw an exception // const std::string l1ColumnLabel("l1"); // Let's check all the columns exist and are readable try { auto spectraColumnTmp = paramWS->getColumn("spectra"); auto l1ColumnTmp = paramWS->getColumn("l1"); auto l2ColumnTmp = paramWS->getColumn("l2"); auto twoThetaColumnTmp = paramWS->getColumn("twotheta"); auto efixedColumnTmp = paramWS->getColumn("efixed"); auto emodeColumnTmp = paramWS->getColumn("emode"); } catch (...) { throw Exception::InstrumentDefinitionError( "DetectorParameter TableWorkspace is not defined correctly."); } // Now let's read them into some vectors. auto l1Column = paramWS->getColVector<double>("l1"); auto l2Column = paramWS->getColVector<double>("l2"); auto twoThetaColumn = paramWS->getColVector<double>("twotheta"); auto efixedColumn = paramWS->getColVector<double>("efixed"); auto emodeColumn = paramWS->getColVector<int>("emode"); auto spectraColumn = paramWS->getColVector<int>("spectra"); EventWorkspace_sptr eventWS = boost::dynamic_pointer_cast<EventWorkspace>(outputWS); assert(static_cast<bool>(eventWS) == m_inputEvents); // Sanity check Progress prog(this, 0.2, 1.0, m_numberOfSpectra); int64_t numberOfSpectra_i = static_cast<int64_t>(m_numberOfSpectra); // cast to make openmp happy // Get the unit object for each workspace Kernel::Unit_const_sptr outputUnit = outputWS->getAxis(0)->unit(); std::vector<double> emptyVec; int failedDetectorCount = 0; // ConstColumnVector<int> spectraNumber = paramWS->getVector("spectra"); // TODO: Check why this parallel stuff breaks // Loop over the histograms (detector spectra) // PARALLEL_FOR1(outputWS) for (int64_t i = 0; i < numberOfSpectra_i; ++i) { // Lets find what row this spectrum ID appears in our detector table. // PARALLEL_START_INTERUPT_REGION std::size_t wsid = i; try { double deg2rad = M_PI / 180.; auto det = outputWS->getDetector(i); int specid = det->getID(); // int spectraNumber = static_cast<int>(spectraColumn->toDouble(i)); // wsid = outputWS->getIndexFromSpectrumNumber(spectraNumber); g_log.debug() << "###### Spectra #" << specid << " ==> Workspace ID:" << wsid << std::endl; // Now we need to find the row that contains this spectrum std::vector<int>::iterator specIter; specIter = std::find(spectraColumn.begin(), spectraColumn.end(), specid); if (specIter != spectraColumn.end()) { size_t detectorRow = std::distance(spectraColumn.begin(), specIter); double l1 = l1Column[detectorRow]; double l2 = l2Column[detectorRow]; double twoTheta = twoThetaColumn[detectorRow] * deg2rad; double efixed = efixedColumn[detectorRow]; int emode = emodeColumn[detectorRow]; g_log.debug() << "specId from detector table = " << spectraColumn[detectorRow] << std::endl; // l1 = l1Column->toDouble(detectorRow); // l2 = l2Column->toDouble(detectorRow); // twoTheta = deg2rad * twoThetaColumn->toDouble(detectorRow); // efixed = efixedColumn->toDouble(detectorRow); // emode = static_cast<int>(emodeColumn->toDouble(detectorRow)); g_log.debug() << "###### Spectra #" << specid << " ==> Det Table Row:" << detectorRow << std::endl; g_log.debug() << "\tL1=" << l1 << ",L2=" << l2 << ",TT=" << twoTheta << ",EF=" << efixed << ",EM=" << emode << std::endl; // Make local copies of the units. This allows running the loop in // parallel Unit *localFromUnit = fromUnit->clone(); Unit *localOutputUnit = outputUnit->clone(); /// @todo Don't yet consider hold-off (delta) const double delta = 0.0; // Convert the input unit to time-of-flight localFromUnit->toTOF(outputWS->dataX(wsid), emptyVec, l1, l2, twoTheta, emode, efixed, delta); // Convert from time-of-flight to the desired unit localOutputUnit->fromTOF(outputWS->dataX(wsid), emptyVec, l1, l2, twoTheta, emode, efixed, delta); // EventWorkspace part, modifying the EventLists. if (m_inputEvents) { eventWS->getEventList(wsid) .convertUnitsViaTof(localFromUnit, localOutputUnit); } // Clear unit memory delete localFromUnit; delete localOutputUnit; } else { // Not found g_log.debug() << "Spectrum " << specid << " not found!" << std::endl; failedDetectorCount++; outputWS->maskWorkspaceIndex(wsid); } } catch (Exception::NotFoundError &) { // Get to here if exception thrown when calculating distance to detector failedDetectorCount++; // Since you usually (always?) get to here when there's no attached // detectors, this call is // the same as just zeroing out the data (calling clearData on the // spectrum) outputWS->maskWorkspaceIndex(i); } prog.report("Convert to " + m_outputUnit->unitID()); // PARALLEL_END_INTERUPT_REGION } // loop over spectra // PARALLEL_CHECK_INTERUPT_REGION if (failedDetectorCount != 0) { g_log.information() << "Something went wrong for " << failedDetectorCount << " spectra. Masking spectrum." << std::endl; } if (m_inputEvents) eventWS->clearMRU(); }
/** Convert the workspace units using TOF as an intermediate step in the * conversion * @param fromUnit :: The unit of the input workspace * @param inputWS :: The input workspace * @returns A shared pointer to the output workspace */ MatrixWorkspace_sptr ConvertUnitsUsingDetectorTable::convertViaTOF( Kernel::Unit_const_sptr fromUnit, API::MatrixWorkspace_const_sptr inputWS) { using namespace Geometry; // Let's see if we are using a TableWorkspace to override parameters TableWorkspace_sptr paramWS = getProperty("DetectorParameters"); // See if we have supplied a DetectorParameters Workspace // TODO: Check if paramWS is NULL and if so throw an exception // const std::string l1ColumnLabel("l1"); // Let's check all the columns exist and are readable try { auto spectraColumnTmp = paramWS->getColumn("spectra"); auto l1ColumnTmp = paramWS->getColumn("l1"); auto l2ColumnTmp = paramWS->getColumn("l2"); auto twoThetaColumnTmp = paramWS->getColumn("twotheta"); auto efixedColumnTmp = paramWS->getColumn("efixed"); auto emodeColumnTmp = paramWS->getColumn("emode"); } catch (...) { throw Exception::InstrumentDefinitionError( "DetectorParameter TableWorkspace is not defined correctly."); } // Now let's take a reference to the vectors. const auto &l1Column = paramWS->getColVector<double>("l1"); const auto &l2Column = paramWS->getColVector<double>("l2"); const auto &twoThetaColumn = paramWS->getColVector<double>("twotheta"); const auto &efixedColumn = paramWS->getColVector<double>("efixed"); const auto &emodeColumn = paramWS->getColVector<int>("emode"); const auto &spectraColumn = paramWS->getColVector<int>("spectra"); Progress prog(this, 0.2, 1.0, m_numberOfSpectra); int64_t numberOfSpectra_i = static_cast<int64_t>(m_numberOfSpectra); // cast to make openmp happy // Get the unit object for each workspace Kernel::Unit_const_sptr outputUnit = m_outputUnit; std::vector<double> emptyVec; int failedDetectorCount = 0; // Perform Sanity Validation before creating workspace size_t checkIndex = 0; int checkSpecNo = inputWS->getDetector(checkIndex)->getID(); auto checkSpecIter = std::find(spectraColumn.begin(), spectraColumn.end(), checkSpecNo); if (checkSpecIter != spectraColumn.end()) { size_t detectorRow = std::distance(spectraColumn.begin(), checkSpecIter); // copy the X values for the check auto checkXValues = inputWS->readX(checkIndex); // Convert the input unit to time-of-flight auto checkFromUnit = std::unique_ptr<Unit>(fromUnit->clone()); auto checkOutputUnit = std::unique_ptr<Unit>(outputUnit->clone()); double checkdelta = 0; checkFromUnit->toTOF(checkXValues, emptyVec, l1Column[detectorRow], l2Column[detectorRow], twoThetaColumn[detectorRow], emodeColumn[detectorRow], efixedColumn[detectorRow], checkdelta); // Convert from time-of-flight to the desired unit checkOutputUnit->fromTOF(checkXValues, emptyVec, l1Column[detectorRow], l2Column[detectorRow], twoThetaColumn[detectorRow], emodeColumn[detectorRow], efixedColumn[detectorRow], checkdelta); } // create the output workspace MatrixWorkspace_sptr outputWS = this->setupOutputWorkspace(inputWS); EventWorkspace_sptr eventWS = boost::dynamic_pointer_cast<EventWorkspace>(outputWS); assert(static_cast<bool>(eventWS) == m_inputEvents); // Sanity check // TODO: Check why this parallel stuff breaks // Loop over the histograms (detector spectra) // PARALLEL_FOR_IF(Kernel::threadSafe(*outputWS)) for (int64_t i = 0; i < numberOfSpectra_i; ++i) { // Lets find what row this spectrum Number appears in our detector table. // PARALLEL_START_INTERUPT_REGION std::size_t wsid = i; try { double deg2rad = M_PI / 180.; auto det = outputWS->getDetector(i); int specNo = det->getID(); // int spectraNumber = static_cast<int>(spectraColumn->toDouble(i)); // wsid = outputWS->getIndexFromSpectrumNumber(spectraNumber); g_log.debug() << "###### Spectra #" << specNo << " ==> Workspace ID:" << wsid << '\n'; // Now we need to find the row that contains this spectrum std::vector<int>::const_iterator specIter; specIter = std::find(spectraColumn.begin(), spectraColumn.end(), specNo); if (specIter != spectraColumn.end()) { const size_t detectorRow = std::distance(spectraColumn.begin(), specIter); const double l1 = l1Column[detectorRow]; const double l2 = l2Column[detectorRow]; const double twoTheta = twoThetaColumn[detectorRow] * deg2rad; const double efixed = efixedColumn[detectorRow]; const int emode = emodeColumn[detectorRow]; if (g_log.is(Logger::Priority::PRIO_DEBUG)) { g_log.debug() << "specNo from detector table = " << spectraColumn[detectorRow] << '\n'; g_log.debug() << "###### Spectra #" << specNo << " ==> Det Table Row:" << detectorRow << '\n'; g_log.debug() << "\tL1=" << l1 << ",L2=" << l2 << ",TT=" << twoTheta << ",EF=" << efixed << ",EM=" << emode << '\n'; } // Make local copies of the units. This allows running the loop in // parallel auto localFromUnit = std::unique_ptr<Unit>(fromUnit->clone()); auto localOutputUnit = std::unique_ptr<Unit>(outputUnit->clone()); /// @todo Don't yet consider hold-off (delta) const double delta = 0.0; std::vector<double> values(outputWS->x(wsid).begin(), outputWS->x(wsid).end()); // Convert the input unit to time-of-flight localFromUnit->toTOF(values, emptyVec, l1, l2, twoTheta, emode, efixed, delta); // Convert from time-of-flight to the desired unit localOutputUnit->fromTOF(values, emptyVec, l1, l2, twoTheta, emode, efixed, delta); outputWS->mutableX(wsid) = std::move(values); // EventWorkspace part, modifying the EventLists. if (m_inputEvents) { eventWS->getSpectrum(wsid) .convertUnitsViaTof(localFromUnit.get(), localOutputUnit.get()); } } else { // Not found failedDetectorCount++; outputWS->maskWorkspaceIndex(wsid); } } catch (Exception::NotFoundError &) { // Get to here if exception thrown when calculating distance to detector failedDetectorCount++; // Since you usually (always?) get to here when there's no attached // detectors, this call is // the same as just zeroing out the data (calling clearData on the // spectrum) outputWS->maskWorkspaceIndex(i); } prog.report("Convert to " + m_outputUnit->unitID()); // PARALLEL_END_INTERUPT_REGION } // loop over spectra // PARALLEL_CHECK_INTERUPT_REGION if (failedDetectorCount != 0) { g_log.information() << "Something went wrong for " << failedDetectorCount << " spectra. Masking spectrum.\n"; } if (m_inputEvents) eventWS->clearMRU(); return outputWS; }