Result_t AS_02::MXF::AS02IndexReader::InitFromFile(const Kumu::FileReader& reader, const ASDCP::MXF::RIP& rip, const bool has_header_essence) { typedef std::list<Kumu::mem_ptr<ASDCP::MXF::Partition> > body_part_array_t; body_part_array_t body_part_array; body_part_array_t::const_iterator body_part_iter; ASDCP::MXF::Array<ASDCP::MXF::RIP::Pair>::const_iterator i; Result_t result = m_IndexSegmentData.Capacity(128*Kumu::Kilobyte); // will be grown if needed ui32_t first_body_sid = 0; // create a list of body parts and index parts for ( i = rip.PairArray.begin(); KM_SUCCESS(result) && i != rip.PairArray.end(); ++i ) { if ( i->BodySID == 0 ) continue; if ( first_body_sid == 0 ) { first_body_sid = i->BodySID; } else if ( i->BodySID != first_body_sid ) { DefaultLogSink().Debug("The index assembler is ignoring BodySID %d.\n", i->BodySID); continue; } reader.Seek(i->ByteOffset); ASDCP::MXF::Partition *this_partition = new ASDCP::MXF::Partition(m_Dict); assert(this_partition); result = this_partition->InitFromFile(reader); if ( KM_FAILURE(result) ) { delete this_partition; return result; } if ( this_partition->BodySID != i->BodySID ) { DefaultLogSink().Error("Partition BodySID %d does not match RIP BodySID %d.\n", this_partition->BodySID, i->BodySID); } body_part_array.push_back(0); body_part_array.back().set(this_partition); } if ( body_part_array.empty() ) { DefaultLogSink().Error("File has no partitions with essence data.\n"); return RESULT_AS02_FORMAT; } body_part_iter = body_part_array.begin(); for ( i = rip.PairArray.begin(); KM_SUCCESS(result) && i != rip.PairArray.end(); ++i ) { reader.Seek(i->ByteOffset); ASDCP::MXF::Partition plain_part(m_Dict); result = plain_part.InitFromFile(reader); if ( KM_FAILURE(result) ) return result; if ( plain_part.IndexByteCount > 0 ) { if ( body_part_iter == body_part_array.end() ) { DefaultLogSink().Error("Index and Body partitions do not match.\n"); break; } if ( plain_part.ThisPartition == plain_part.FooterPartition ) { DefaultLogSink().Warn("File footer partition contains index data.\n"); } // slurp up the remainder of the partition ui32_t read_count = 0; assert (plain_part.IndexByteCount <= 0xFFFFFFFFL); ui32_t bytes_this_partition = (ui32_t)plain_part.IndexByteCount; result = m_IndexSegmentData.Capacity(m_IndexSegmentData.Length() + bytes_this_partition); if ( KM_SUCCESS(result) ) result = reader.Read(m_IndexSegmentData.Data() + m_IndexSegmentData.Length(), bytes_this_partition, &read_count); if ( KM_SUCCESS(result) && read_count != bytes_this_partition ) { DefaultLogSink().Error("Short read of index partition: got %u, expecting %u\n", read_count, bytes_this_partition); return RESULT_AS02_FORMAT; } if ( KM_SUCCESS(result) ) { ui64_t current_body_offset = 0; ui64_t current_ec_offset = 0; assert(body_part_iter != body_part_array.end()); assert(!body_part_iter->empty()); ASDCP::MXF::Partition *tmp_partition = body_part_iter->get(); if ( has_header_essence && tmp_partition->ThisPartition == 0 ) { current_body_offset = 0; current_ec_offset = tmp_partition->HeaderByteCount + tmp_partition->ArchiveSize(); } else { current_body_offset = tmp_partition->BodyOffset; current_ec_offset += tmp_partition->ThisPartition + tmp_partition->ArchiveSize(); } result = InitFromBuffer(m_IndexSegmentData.RoData() + m_IndexSegmentData.Length(), bytes_this_partition, current_body_offset, current_ec_offset); m_IndexSegmentData.Length(m_IndexSegmentData.Length() + bytes_this_partition); ++body_part_iter; } } } if ( KM_SUCCESS(result) ) { std::list<InterchangeObject*>::const_iterator ii; for ( ii = m_PacketList->m_List.begin(); ii != m_PacketList->m_List.end(); ++ii ) { IndexTableSegment *segment = dynamic_cast<IndexTableSegment*>(*ii); if ( segment != 0 ) { m_Duration += segment->IndexDuration; } } } #if 0 char identbuf[IdentBufferLen]; std::list<InterchangeObject*>::iterator j; std::vector<ASDCP::MXF::IndexTableSegment::IndexEntry>::iterator k; ui32_t entry_count = 0; for ( j = m_PacketList->m_List.begin(); j != m_PacketList->m_List.end(); ++j ) { assert(*j); ASDCP::MXF::IndexTableSegment* segment = static_cast<ASDCP::MXF::IndexTableSegment*>(*j); fprintf(stderr, " --------------------------------------\n"); fprintf(stderr, " IndexEditRate = %d/%d\n", segment->IndexEditRate.Numerator, segment->IndexEditRate.Denominator); fprintf(stderr, " IndexStartPosition = %s\n", i64sz(segment->IndexStartPosition, identbuf)); fprintf(stderr, " IndexDuration = %s\n", i64sz(segment->IndexDuration, identbuf)); fprintf(stderr, " EditUnitByteCount = %u\n", segment->EditUnitByteCount); fprintf(stderr, " IndexSID = %u\n", segment->IndexSID); fprintf(stderr, " BodySID = %u\n", segment->BodySID); fprintf(stderr, " SliceCount = %hu\n", segment->SliceCount); fprintf(stderr, " PosTableCount = %hu\n", segment->PosTableCount); fprintf(stderr, " RtFileOffset = %s\n", i64sz(segment->RtFileOffset, identbuf)); fprintf(stderr, " RtEntryOffset = %s\n", i64sz(segment->RtEntryOffset, identbuf)); fprintf(stderr, " IndexEntryArray:\n"); for ( k = segment->IndexEntryArray.begin(); k != segment->IndexEntryArray.end(); ++k ) { fprintf(stderr, " 0x%010qx\n", k->StreamOffset); ++entry_count; } } fprintf(stderr, "Actual entries: %d\n", entry_count); #endif return result; }
// TODO: refactor to use InitFromBuffer ASDCP::Result_t ASDCP::KLVFilePacket::InitFromFile(const Kumu::FileReader& Reader) { ui32_t read_count; byte_t tmp_data[tmp_read_size]; ui64_t tmp_size; m_KeyStart = m_ValueStart = 0; m_KLLength = m_ValueLength = 0; m_Buffer.Size(0); Result_t result = Reader.Read(tmp_data, tmp_read_size, &read_count); if ( ASDCP_FAILURE(result) ) return result; if ( read_count < (SMPTE_UL_LENGTH + 1) ) { DefaultLogSink().Error("Short read of Key and Length got %u\n", read_count); return RESULT_READFAIL; } if ( memcmp(tmp_data, SMPTE_UL_START, 4) != 0 ) { DefaultLogSink().Error("Unexpected UL preamble: %02x.%02x.%02x.%02x\n", tmp_data[0], tmp_data[1], tmp_data[2], tmp_data[3]); return RESULT_FAIL; } if ( ! Kumu::read_BER(tmp_data + SMPTE_UL_LENGTH, &tmp_size) ) { DefaultLogSink().Error("BER Length decoding error\n"); return RESULT_FAIL; } if ( tmp_size > MAX_KLV_PACKET_LENGTH ) { Kumu::ui64Printer tmp_size_str(tmp_size); DefaultLogSink().Error("Packet length %s exceeds internal limit\n", tmp_size_str.c_str()); return RESULT_FAIL; } ui32_t remainder = 0; ui32_t ber_len = Kumu::BER_length(tmp_data + SMPTE_UL_LENGTH); m_KLLength = SMPTE_UL_LENGTH + ber_len; assert(tmp_size <= 0xFFFFFFFFL); m_ValueLength = (ui32_t) tmp_size; ui32_t packet_length = m_ValueLength + m_KLLength; result = m_Buffer.Capacity(packet_length); if ( ASDCP_FAILURE(result) ) return result; m_KeyStart = m_Buffer.Data(); m_ValueStart = m_Buffer.Data() + m_KLLength; m_Buffer.Size(packet_length); // is the whole packet in the tmp buf? if ( packet_length <= tmp_read_size ) { assert(packet_length <= read_count); memcpy(m_Buffer.Data(), tmp_data, packet_length); if ( (remainder = read_count - packet_length) != 0 ) { DefaultLogSink().Warn("Repositioning pointer for short packet\n"); Kumu::fpos_t pos = Reader.Tell(); assert(pos > remainder); result = Reader.Seek(pos - remainder); } } else { if ( read_count < tmp_read_size ) { DefaultLogSink().Error("Short read of packet body, expecting %u, got %u\n", m_Buffer.Size(), read_count); return RESULT_READFAIL; } memcpy(m_Buffer.Data(), tmp_data, tmp_read_size); remainder = m_Buffer.Size() - tmp_read_size; if ( remainder > 0 ) { result = Reader.Read(m_Buffer.Data() + tmp_read_size, remainder, &read_count); if ( read_count != remainder ) { DefaultLogSink().Error("Short read of packet body, expecting %u, got %u\n", remainder+tmp_read_size, read_count+tmp_read_size); result = RESULT_READFAIL; } } } return result; }