void InstructionReplace::insertStores(llvm::Module& M)
{
	for(llvm::Module::iterator F = M.begin(), ME = M.end(); F != ME; ++F) {
		//if(!F->getFnAttributes().hasAttribute(Attributes::AttrVal::MaskedCopy)) { continue; }
		llvm::Function* Fun = maskedfn[F];
		vector<Value*> outputshares;
		ReturnInst* tbd = NULL;
		auto arg = Fun->arg_begin();
		for(unsigned int i = 0; i <= MaskingOrder; i++) { ++arg; }
		for(unsigned int i = 0; i <= MaskingOrder; i++) { outputshares.push_back(arg++); }
		for(llvm::Function::iterator BB = Fun->begin(),
		    FE = Fun->end();
		    BB != FE;
		    ++BB) {
			for( llvm::BasicBlock::iterator i = BB->begin(); i != BB->end(); i++) {
				if(tbd != NULL) {tbd->eraseFromParent(); tbd = NULL;}
				if(!isa<ReturnInst>(i)) {continue;}
				ReturnInst* ri = cast<ReturnInst>(i);
				IRBuilder<> ib = llvm::IRBuilder<>(BB->getContext());
				ib.SetInsertPoint(i);
				vector<Value*> shares = MaskValue(ri->getReturnValue(), ri);
				for(unsigned int i = 0; i <= MaskingOrder; i++) { ib.CreateStore(shares[i], outputshares[i]); }
				ib.CreateRetVoid();
				tbd = ri;
			}
		}
		if(tbd != NULL) {tbd->eraseFromParent(); tbd = NULL;}
	}
}
void InstructionReplace::phase1(llvm::Module& M)
{
	for(llvm::Module::iterator F = M.begin(), ME = M.end(); F != ME; ++F) {
		for(llvm::Function::iterator BB = F->begin(),
		    FE = F->end();
		    BB != FE;
		    ++BB) {
			TaggedData& td = getAnalysis<TaggedData>(*F);
			if(!td.functionMarked(F)) {continue;}
			cerr << "phase1 " << F->getName().str() << endl;
			CalcDFG& cd = getAnalysis<CalcDFG>(*F);
			cd.setAsTransformed(F.getNodePtrUnchecked());
			for( llvm::BasicBlock::iterator i = BB->begin(); i != BB->end(); i++) {
				if(isa<llvm::DbgInfoIntrinsic>(i)) {continue;}
				if(!cd.shouldBeProtected(i)) { continue; }
				NoCryptoFA::InstructionMetadata* md = NoCryptoFA::known[i];
				if(md->origin != NoCryptoFA::InstructionMetadata::ORIGINAL_PROGRAM && md->origin != NoCryptoFA::InstructionMetadata::MASKED_FUNCTION) { continue; }
				MaskingVisitor mv;
				if(mv.visit(i)) {
					deletionqueue.insert(i);
					md->hasBeenMasked = true;
				}
			}
		}
	}
}
void InstructionReplace::cloneFunctions(llvm::Module& M)
{
	for(llvm::Module::iterator F = M.begin(), ME = M.end(); F != ME; ++F) {
		//if(!F->getFnAttributes().hasAttribute(Attributes::AttrVal::MaskedCopy)) { continue; }
		cerr << "Masking " << F->getName().str();
		assert(F->arg_size() == 1);
		Type* rettype = F->getReturnType();
		auto args = F->arg_begin();
		Argument* a1 = args++;
		Type* paramtype = a1->getType();
		assert(isa<IntegerType>(rettype));
		assert(isa<IntegerType>(paramtype));
		stringstream ss("");
		ss << "__masked__" << F->getName().str();
		llvm::LLVMContext& Ctx = M.getContext();
		llvm::Constant* FunSym;
		std::vector<Type*> paramtypes;
		for(unsigned int i = 0; i <= MaskingOrder; i++) { paramtypes.push_back(paramtype); } //TODO riducibile?
		for(unsigned int i = 0; i <= MaskingOrder; i++) { paramtypes.push_back(rettype->getPointerTo()); }
		llvm::FunctionType* ftype = llvm::FunctionType::get(llvm::Type::getVoidTy(Ctx), llvm::ArrayRef<Type*>(paramtypes), false);
		FunSym = M.getOrInsertFunction(ss.str(), ftype);
		llvm::Function* newF = llvm::cast<llvm::Function>(FunSym);
		maskedfn[F] = newF;
		SmallVector<llvm::ReturnInst*, 4> rets;
		ValueToValueMapTy vmap;
		llvm::BasicBlock* Entry = llvm::BasicBlock::Create(Ctx, "entry", newF);
		llvm::IRBuilder<> ib_entry = llvm::IRBuilder<>(Entry->getContext());
		ib_entry.SetInsertPoint(Entry);
		NoCryptoFA::InstructionMetadata* md = new NoCryptoFA::InstructionMetadata();
		md->hasBeenMasked = true;
		auto arg = newF->arg_begin();
		for(unsigned int i = 0; i <= MaskingOrder; i++) { md->MaskedValues.push_back(arg++); }
		Value* fakevalue = ib_entry.CreateAdd(md->MaskedValues[0], md->MaskedValues[1]);
		md->my_instruction = cast<Instruction>(fakevalue);
		NoCryptoFA::known[ md->my_instruction] = md;
		deletionqueue.insert(md->my_instruction);
		vmap.insert(std::make_pair(a1, fakevalue));
		CloneFunctionInto(newF, F, vmap, true, rets);
		ib_entry.CreateBr(cast<BasicBlock>(vmap[&F->getEntryBlock()]));
		/*
		AttrBuilder toremove;
		//toremove.addAttribute(Attributes::AttrVal::MaskedCopy);
		toremove.addAttribute(Attributes::AttrVal::ZExt);
		toremove.addAttribute(Attributes::AttrVal::SExt);
		toremove.addAttribute(Attributes::AttrVal::NoAlias);
		toremove.addAttribute(Attributes::AttrVal::NoCapture);
		toremove.addAttribute(Attributes::AttrVal::StructRet);
		toremove.addAttribute(Attributes::AttrVal::ByVal);
		toremove.addAttribute(Attributes::AttrVal::Nest);
		newF->removeFnAttr(Attributes::get(Ctx, toremove));
		newF->removeAttribute(0, Attributes::get(Ctx, toremove)); //Thr..ehm,Zero is a magic number! Toglie gli attributi zeroext e simili dal valore di ritorno.
		*/
		TaggedData& td = getAnalysis<TaggedData>(*F);
		//td.markFunction(newF);
		//setFullyMasked(newF);
	}
}
Esempio n. 4
0
bool AddressTakenAnalysis::runOnModule(llvm::Module& M) {
  for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI){
    if(isAddressTaken(FI)) {
      addressTakenFunctions.insert(FI);
    }
  }

  return false;
}
Esempio n. 5
0
bool TimeProfiler::runOnModule(llvm::Module &M)
{
  Function *Main = M.getFunction("main");
  if (Main == 0) {
    errs() << "WARNING: cannot insert edge profiling into a module"
           << " with no main function!\n";
    return false;  // No main, no instrumentation!
  }

  std::vector<CallInst*> Traped;
  Function* wtime = NULL;
  for(auto F = M.begin(), E = M.end(); F!=E; ++F){
     if((*F).getName() == "mpi_wtime_")
        wtime = &*F;
     for(auto I = inst_begin(*F), IE = inst_end(*F); I!=IE; ++I){
        CallInst* CI = dyn_cast<CallInst>(&*I);
        if(CI == NULL) continue;
        Value* CV = const_cast<CallInst*>(CI)->getCalledValue();
        Function* func = dyn_cast<Function>(castoff(CV));
        if(func == NULL)
          errs()<<"No func!\n";
        StringRef str = func->getName();
        if(str.startswith("mpi_"))
        {
           if(str.startswith("mpi_init_")||str.startswith("mpi_comm_rank_")||str.startswith("mpi_comm_size_"))
              continue;
           Traped.push_back(CI);
        }
     }
  }

  IRBuilder<> Builder(M.getContext());

  Type* DoubleTy = Type::getDoubleTy(M.getContext());

  Type*ATy = ArrayType::get(DoubleTy, Traped.size());
  GlobalVariable* Counters = new GlobalVariable(M, ATy, false,
        GlobalVariable::InternalLinkage, Constant::getNullValue(ATy),
        "TimeCounters");

  unsigned I=0;
  for(auto P : Traped){
     ArrayRef<Value*> args;
     CallInst* callTime = CallInst::Create(wtime, args, "", P);

     IncrementTimeCounter(callTime, wtime, I++, Counters, Builder, P);
  }

  InsertPredProfilingInitCall(Main, "llvm_start_time_profiling", Counters);
  return true;
}
Esempio n. 6
0
    bool _removeUnusedFromModule()
    {
        using namespace llvm;
        // do not slice away these functions no matter what
        // FIXME do it a vector and fill it dynamically according
        // to what is the setup (like for sv-comp or general..)
        const char *keep[] = {options.dgOptions.entryFunction.c_str(),
                              "klee_assume", nullptr};

        // when erasing while iterating the slicer crashes
        // so set the to be erased values into container
        // and then erase them
        std::set<Function *> funs;
        std::set<GlobalVariable *> globals;
        std::set<GlobalAlias *> aliases;

        for (auto I = M->begin(), E = M->end(); I != E; ++I) {
            Function *func = &*I;
            if (array_match(func->getName(), keep))
                continue;

            // if the function is unused or we haven't constructed it
            // at all in dependence graph, we can remove it
            // (it may have some uses though - like when one
            // unused func calls the other unused func
            if (func->hasNUses(0))
                funs.insert(func);
        }

        for (auto I = M->global_begin(), E = M->global_end(); I != E; ++I) {
            GlobalVariable *gv = &*I;
            if (gv->hasNUses(0))
                globals.insert(gv);
        }

        for (GlobalAlias& ga : M->getAliasList()) {
            if (ga.hasNUses(0))
                aliases.insert(&ga);
        }

        for (Function *f : funs)
            f->eraseFromParent();
        for (GlobalVariable *gv : globals)
            gv->eraseFromParent();
        for (GlobalAlias *ga : aliases)
            ga->eraseFromParent();

        return (!funs.empty() || !globals.empty() || !aliases.empty());
    }
Esempio n. 7
0
/*!
 * Invoke llvm passes to modify module
 */
void SymbolTableInfo::prePassSchedule(llvm::Module& module)
{
    /// BreakConstantGEPs Pass
    BreakConstantGEPs* p1 = new BreakConstantGEPs();
    p1->runOnModule(module);

    /// MergeFunctionRets Pass
    UnifyFunctionExitNodes* p2 = new UnifyFunctionExitNodes();
    for (Module::iterator it = module.begin(), eit = module.end(); it != eit; ++it) {
        Function& fun = *it;
        if(fun.isDeclaration())
            continue;
        p2->runOnFunction(fun);
    }
}
void InstructionReplace::phase2(llvm::Module& M)
{
	for(llvm::Module::iterator F = M.begin(), ME = M.end(); F != ME; ++F) {
		for(llvm::Function::iterator BB = F->begin(),
		    FE = F->end();
		    BB != FE;
		    ++BB) {
			TaggedData& td = getAnalysis<TaggedData>(*F);
			if(!td.functionMarked(F)) {continue;}
			for( llvm::BasicBlock::iterator i = BB->begin(); i != BB->end(); i++) {
				NoCryptoFA::InstructionMetadata* md = NoCryptoFA::known[i];
				if(!md->hasBeenMasked) { continue; }
				for(Instruction::use_iterator u = i->use_begin(); u != i->use_end(); ++u) {
					Instruction* utilizzatore = cast<Instruction>(u.getUse().getUser());
					NoCryptoFA::InstructionMetadata* usemd = NoCryptoFA::known[utilizzatore];
					if(usemd->MaskedValues.empty()) {
						Unmask(i);
					}
				}
			}
		}
	}
}
Esempio n. 9
0
// based on llc code, University of Illinois Open Source License
static void codegenModule(llvm::TargetMachine &Target, llvm::Module& m,
                          llvm::raw_fd_ostream& out, llvm::TargetMachine::CodeGenFileType fileType)
{
    using namespace llvm;

    // Build up all of the passes that we want to do to the module.
    FunctionPassManager Passes(&m);

#if LDC_LLVM_VER >= 302
    if (const DataLayout *DL = Target.getDataLayout())
        Passes.add(new DataLayout(*DL));
    else
        Passes.add(new DataLayout(&m));
#else
    if (const TargetData *TD = Target.getTargetData())
        Passes.add(new TargetData(*TD));
    else
        Passes.add(new TargetData(&m));
#endif

#if LDC_LLVM_VER >= 303
    Target.addAnalysisPasses(Passes);
#endif

    llvm::formatted_raw_ostream fout(out);
    if (Target.addPassesToEmitFile(Passes, fout, fileType, codeGenOptLevel()))
        llvm_unreachable("no support for asm output");

    Passes.doInitialization();

    // Run our queue of passes all at once now, efficiently.
    for (llvm::Module::iterator I = m.begin(), E = m.end(); I != E; ++I)
        if (!I->isDeclaration())
            Passes.run(*I);

    Passes.doFinalization();
}
Esempio n. 10
0
/*!
 *  This method identify which is value sym and which is object sym
 */
void SymbolTableInfo::buildMemModel(llvm::Module& module) {
    analysisUtil::increaseStackSize();

    prePassSchedule(module);

    mod = &module;

    maxFieldLimit = maxFieldNumLimit;

    // Object #0 is black hole the object that may point to any object
    assert(totalSymNum == BlackHole && "Something changed!");
    symTyMap.insert(std::make_pair(totalSymNum++, BlackHole));
    createBlkOrConstantObj(BlackHole);

    // Object #1 always represents the constant
    assert(totalSymNum == ConstantObj && "Something changed!");
    symTyMap.insert(std::make_pair(totalSymNum++, ConstantObj));
    createBlkOrConstantObj(ConstantObj);

    // Pointer #2 always represents the pointer points-to black hole.
    assert(totalSymNum == BlkPtr && "Something changed!");
    symTyMap.insert(std::make_pair(totalSymNum++, BlkPtr));

    // Pointer #3 always represents the null pointer.
    assert(totalSymNum == NullPtr && "Something changed!");
    symTyMap.insert(std::make_pair(totalSymNum, NullPtr));

    // Add symbols for all the globals .
    for (Module::global_iterator I = module.global_begin(), E =
                module.global_end(); I != E; ++I) {
        collectSym(&*I);
    }

    // Add symbols for all the global aliases
    for (Module::alias_iterator I = module.alias_begin(), E =
                module.alias_end(); I != E; I++) {
        collectSym(&*I);
    }

    // Add symbols for all of the functions and the instructions in them.
    for (Module::iterator F = module.begin(), E = module.end(); F != E; ++F) {
        collectSym(&*F);
        collectRet(&*F);
        if (F->getFunctionType()->isVarArg())
            collectVararg(&*F);

        // Add symbols for all formal parameters.
        for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
                I != E; ++I) {
            collectSym(&*I);
        }

        // collect and create symbols inside the function body
        for (inst_iterator II = inst_begin(&*F), E = inst_end(&*F); II != E; ++II) {
            const Instruction *inst = &*II;
            collectSym(inst);

            // initialization for some special instructions
            //{@
            if (const StoreInst *st = dyn_cast<StoreInst>(inst)) {
                collectSym(st->getPointerOperand());
                collectSym(st->getValueOperand());
            }

            else if (const LoadInst *ld = dyn_cast<LoadInst>(inst)) {
                collectSym(ld->getPointerOperand());
            }

            else if (const PHINode *phi = dyn_cast<PHINode>(inst)) {
                for (u32_t i = 0; i < phi->getNumIncomingValues(); ++i) {
                    collectSym(phi->getIncomingValue(i));
                }
            }

            else if (const GetElementPtrInst *gep = dyn_cast<GetElementPtrInst>(
                    inst)) {
                collectSym(gep->getPointerOperand());
            }

            else if (const SelectInst *sel = dyn_cast<SelectInst>(inst)) {
                collectSym(sel->getTrueValue());
                collectSym(sel->getFalseValue());
            }

            else if (const CastInst *cast = dyn_cast<CastInst>(inst)) {
                collectSym(cast->getOperand(0));
            }
            else if (const ReturnInst *ret = dyn_cast<ReturnInst>(inst)) {
                if(ret->getReturnValue())
                    collectSym(ret->getReturnValue());
            }
            else if (isCallSite(inst) && isInstrinsicDbgInst(inst)==false) {

                CallSite cs = analysisUtil::getLLVMCallSite(inst);
                callSiteSet.insert(cs);
                for (CallSite::arg_iterator it = cs.arg_begin();
                        it != cs.arg_end(); ++it) {
                    collectSym(*it);
                }
                // Calls to inline asm need to be added as well because the callee isn't
                // referenced anywhere else.
                const Value *Callee = cs.getCalledValue();
                collectSym(Callee);

                //TODO handle inlineAsm
                ///if (isa<InlineAsm>(Callee))

            }
            //@}
        }
    }
}
/// ValueEnumerator - Enumerate module-level information.
ValueEnumerator::ValueEnumerator(const llvm::Module &M,
                                 bool ShouldPreserveUseListOrder)
    : HasMDString(false), HasDILocation(false),
    ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
  assert(!ShouldPreserveUseListOrder &&
         "not supported UseListOrders = predictUseListOrder(M)");

  // Enumerate the global variables.
  for (llvm::Module::const_global_iterator I = M.global_begin(), E = M.global_end();
       I != E; ++I)
    EnumerateValue(I);

  // Enumerate the functions.
  for (llvm::Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    EnumerateValue(I);
    EnumerateAttributes(cast<Function>(I)->getAttributes());
  }

  // Enumerate the aliases.
  for (llvm::Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
       I != E; ++I)
    EnumerateValue(I);

  // Remember what is the cutoff between globalvalue's and other constants.
  unsigned FirstConstant = Values.size();

  // Enumerate the global variable initializers.
  for (llvm::Module::const_global_iterator I = M.global_begin(), E = M.global_end();
       I != E; ++I)
    if (I->hasInitializer())
      EnumerateValue(I->getInitializer());

  // Enumerate the aliasees.
  for (llvm::Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
       I != E; ++I)
    EnumerateValue(I->getAliasee());

  // Enumerate the metadata type.
  //
  // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
  // only encodes the metadata type when it's used as a value.
  EnumerateType(Type::getMetadataTy(M.getContext()));

  // Insert constants and metadata that are named at module level into the slot
  // pool so that the module symbol table can refer to them...
  EnumerateValueSymbolTable(M.getValueSymbolTable());
  EnumerateNamedMetadata(M);

  SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;

  // Enumerate types used by function bodies and argument lists.
  for (const Function &F : M) {
    for (const Argument &A : F.args())
      EnumerateType(A.getType());

    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB) {
        for (const Use &Op : I.operands()) {
          auto *MD = dyn_cast<MetadataAsValue>(&Op);
          if (!MD) {
            EnumerateOperandType(Op);
            continue;
          }

          // Local metadata is enumerated during function-incorporation.
          if (isa<LocalAsMetadata>(MD->getMetadata()))
            continue;

          EnumerateMetadata(MD->getMetadata());
        }
        EnumerateType(I.getType());
        if (const CallInst *CI = dyn_cast<CallInst>(&I))
          EnumerateAttributes(CI->getAttributes());
        else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
          EnumerateAttributes(II->getAttributes());

        // Enumerate metadata attached with this instruction.
        MDs.clear();
        I.getAllMetadataOtherThanDebugLoc(MDs);
        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
          EnumerateMetadata(MDs[i].second);

#if LLVM_VERSION >= 37
        if (I.getDebugLoc()) {
          MDNode* Scope = I.getDebugLoc().getScope();
          if (Scope) EnumerateMetadata(Scope);
          DILocation *IA = I.getDebugLoc().getInlinedAt();
          if (IA) EnumerateMetadata(IA);
        }
#else
        if (!I.getDebugLoc().isUnknown()) {
          MDNode *Scope, *IA;
          I.getDebugLoc().getScopeAndInlinedAt(Scope, IA, I.getContext());
          if (Scope) EnumerateMetadata(Scope);
          if (IA) EnumerateMetadata(IA);
        }
#endif
      }
  }

  // Optimize constant ordering.
  OptimizeConstants(FirstConstant, Values.size());
}