Esempio n. 1
0
/// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
/// 'Old', change the code and CFG so that it branches to 'New' instead.
void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
                                               MachineBasicBlock *New) {
  assert(Old != New && "Cannot replace self with self!");

  MachineBasicBlock::instr_iterator I = instr_end();
  while (I != instr_begin()) {
    --I;
    if (!I->isTerminator()) break;

    // Scan the operands of this machine instruction, replacing any uses of Old
    // with New.
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
      if (I->getOperand(i).isMBB() &&
          I->getOperand(i).getMBB() == Old)
        I->getOperand(i).setMBB(New);
  }

  // Update the successor information.
  replaceSuccessor(Old, New);
}
Esempio n. 2
0
void SparcCodeEmitter::emitInstruction(MachineBasicBlock::instr_iterator MI,
                                      MachineBasicBlock &MBB) {
  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << *MI);

  MCE.processDebugLoc(MI->getDebugLoc(), true);

  ++NumEmitted;

  switch (MI->getOpcode()) {
  default: {
    emitWord(getBinaryCodeForInstr(*MI));
    break;
  }
  case TargetOpcode::INLINEASM: {
    // We allow inline assembler nodes with empty bodies - they can
    // implicitly define registers, which is ok for JIT.
    if (MI->getOperand(0).getSymbolName()[0]) {
      report_fatal_error("JIT does not support inline asm!");
    }
    break;
  }
  case TargetOpcode::CFI_INSTRUCTION:
    break;
  case TargetOpcode::EH_LABEL: {
    MCE.emitLabel(MI->getOperand(0).getMCSymbol());
    break;
  }
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL: {
    // Do nothing.
    break;
  }
  case SP::GETPCX: {
    report_fatal_error("JIT does not support pseudo instruction GETPCX yet!");
    break;
  }
  }

  MCE.processDebugLoc(MI->getDebugLoc(), false);
}
Esempio n. 3
0
 ClauseFile
 MakeALUClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I)
     const {
   MachineBasicBlock::iterator ClauseHead = I;
   std::vector<MachineInstr *> ClauseContent;
   I++;
   for (MachineBasicBlock::instr_iterator E = MBB.instr_end(); I != E;) {
     if (IsTrivialInst(I)) {
       ++I;
       continue;
     }
     if (!I->isBundle() && !TII->isALUInstr(I->getOpcode()))
       break;
     std::vector<int64_t> Literals;
     if (I->isBundle()) {
       MachineInstr *DeleteMI = I;
       MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
       while (++BI != E && BI->isBundledWithPred()) {
         BI->unbundleFromPred();
         for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) {
           MachineOperand &MO = BI->getOperand(i);
           if (MO.isReg() && MO.isInternalRead())
             MO.setIsInternalRead(false);
         }
         getLiteral(BI, Literals);
         ClauseContent.push_back(BI);
       }
       I = BI;
       DeleteMI->eraseFromParent();
     } else {
       getLiteral(I, Literals);
       ClauseContent.push_back(I);
       I++;
     }
     for (unsigned i = 0, e = Literals.size(); i < e; i+=2) {
       unsigned literal0 = Literals[i];
       unsigned literal2 = (i + 1 < e)?Literals[i + 1]:0;
       MachineInstr *MILit = BuildMI(MBB, I, I->getDebugLoc(),
           TII->get(AMDGPU::LITERALS))
           .addImm(literal0)
           .addImm(literal2);
       ClauseContent.push_back(MILit);
     }
   }
   ClauseHead->getOperand(7).setImm(ClauseContent.size() - 1);
   return ClauseFile(ClauseHead, ClauseContent);
 }
bool Filler::delayHasHazard(MachineBasicBlock::instr_iterator MI, bool &SawLoad,
                            bool &SawStore, SmallSet<unsigned, 32> &RegDefs,
                            SmallSet<unsigned, 32> &RegUses) {
  if (MI->isImplicitDef() || MI->isKill())
    return true;

  // Loads or stores cannot be moved past a store to the delay slot
  // and stores cannot be moved past a load.
  if (MI->mayLoad()) {
    if (SawStore)
      return true;
    SawLoad = true;
  }

  if (MI->mayStore()) {
    if (SawStore)
      return true;
    SawStore = true;
    if (SawLoad)
      return true;
  }

  assert((!MI->isCall() && !MI->isReturn()) &&
         "Cannot put calls or returns in delay slot.");

  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = MI->getOperand(I);
    unsigned Reg;

    if (!MO.isReg() || !(Reg = MO.getReg()))
      continue; // skip

    if (MO.isDef()) {
      // check whether Reg is defined or used before delay slot.
      if (isRegInSet(RegDefs, Reg) || isRegInSet(RegUses, Reg))
        return true;
    }
    if (MO.isUse()) {
      // check whether Reg is defined before delay slot.
      if (isRegInSet(RegDefs, Reg))
        return true;
    }
  }
  return false;
}
Esempio n. 5
0
void
MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
  if (this == fromMBB)
    return;

  while (!fromMBB->succ_empty()) {
    MachineBasicBlock *Succ = *fromMBB->succ_begin();
    addSuccessor(Succ);
    fromMBB->removeSuccessor(Succ);

    // Fix up any PHI nodes in the successor.
    for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
           ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
      for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
        MachineOperand &MO = MI->getOperand(i);
        if (MO.getMBB() == fromMBB)
          MO.setMBB(this);
      }
  }
}
// Insert Defs and Uses of MI into the sets RegDefs and RegUses.
void Filler::insertDefsUses(MachineBasicBlock::instr_iterator MI,
                            SmallSet<unsigned, 32> &RegDefs,
                            SmallSet<unsigned, 32> &RegUses) {
  // If MI is a call or return, just examine the explicit non-variadic operands.
  MCInstrDesc MCID = MI->getDesc();
  unsigned E = MI->isCall() || MI->isReturn() ? MCID.getNumOperands()
                                              : MI->getNumOperands();
  for (unsigned I = 0; I != E; ++I) {
    const MachineOperand &MO = MI->getOperand(I);
    unsigned Reg;

    if (!MO.isReg() || !(Reg = MO.getReg()))
      continue;

    if (MO.isDef())
      RegDefs.insert(Reg);
    else if (MO.isUse())
      RegUses.insert(Reg);
  }
}
Esempio n. 7
0
MachineBasicBlock *
MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
  // it in this generic function.
  if (Succ->isLandingPad())
    return nullptr;

  MachineFunction *MF = getParent();
  DebugLoc dl;  // FIXME: this is nowhere

  // Performance might be harmed on HW that implements branching using exec mask
  // where both sides of the branches are always executed.
  if (MF->getTarget().requiresStructuredCFG())
    return nullptr;

  // We may need to update this's terminator, but we can't do that if
  // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
    return nullptr;

  // Avoid bugpoint weirdness: A block may end with a conditional branch but
  // jumps to the same MBB is either case. We have duplicate CFG edges in that
  // case that we can't handle. Since this never happens in properly optimized
  // code, just skip those edges.
  if (TBB && TBB == FBB) {
    DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
                 << getNumber() << '\n');
    return nullptr;
  }

  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
  MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
  DEBUG(dbgs() << "Splitting critical edge:"
        " BB#" << getNumber()
        << " -- BB#" << NMBB->getNumber()
        << " -- BB#" << Succ->getNumber() << '\n');

  LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
  SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
  if (LIS)
    LIS->insertMBBInMaps(NMBB);
  else if (Indexes)
    Indexes->insertMBBInMaps(NMBB);

  // On some targets like Mips, branches may kill virtual registers. Make sure
  // that LiveVariables is properly updated after updateTerminator replaces the
  // terminators.
  LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();

  // Collect a list of virtual registers killed by the terminators.
  SmallVector<unsigned, 4> KilledRegs;
  if (LV)
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I) {
      MachineInstr *MI = I;
      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
           OE = MI->operands_end(); OI != OE; ++OI) {
        if (!OI->isReg() || OI->getReg() == 0 ||
            !OI->isUse() || !OI->isKill() || OI->isUndef())
          continue;
        unsigned Reg = OI->getReg();
        if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
            LV->getVarInfo(Reg).removeKill(MI)) {
          KilledRegs.push_back(Reg);
          DEBUG(dbgs() << "Removing terminator kill: " << *MI);
          OI->setIsKill(false);
        }
      }
    }

  SmallVector<unsigned, 4> UsedRegs;
  if (LIS) {
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I) {
      MachineInstr *MI = I;

      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
           OE = MI->operands_end(); OI != OE; ++OI) {
        if (!OI->isReg() || OI->getReg() == 0)
          continue;

        unsigned Reg = OI->getReg();
        if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
          UsedRegs.push_back(Reg);
      }
    }
  }

  ReplaceUsesOfBlockWith(Succ, NMBB);

  // If updateTerminator() removes instructions, we need to remove them from
  // SlotIndexes.
  SmallVector<MachineInstr*, 4> Terminators;
  if (Indexes) {
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I)
      Terminators.push_back(I);
  }

  updateTerminator();

  if (Indexes) {
    SmallVector<MachineInstr*, 4> NewTerminators;
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I)
      NewTerminators.push_back(I);

    for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
        E = Terminators.end(); I != E; ++I) {
      if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
          NewTerminators.end())
       Indexes->removeMachineInstrFromMaps(*I);
    }
  }

  // Insert unconditional "jump Succ" instruction in NMBB if necessary.
  NMBB->addSuccessor(Succ);
  if (!NMBB->isLayoutSuccessor(Succ)) {
    Cond.clear();
    MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond,
                                                    dl);

    if (Indexes) {
      for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
           I != E; ++I) {
        // Some instructions may have been moved to NMBB by updateTerminator(),
        // so we first remove any instruction that already has an index.
        if (Indexes->hasIndex(I))
          Indexes->removeMachineInstrFromMaps(I);
        Indexes->insertMachineInstrInMaps(I);
      }
    }
  }

  // Fix PHI nodes in Succ so they refer to NMBB instead of this
  for (MachineBasicBlock::instr_iterator
         i = Succ->instr_begin(),e = Succ->instr_end();
       i != e && i->isPHI(); ++i)
    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
      if (i->getOperand(ni+1).getMBB() == this)
        i->getOperand(ni+1).setMBB(NMBB);

  // Inherit live-ins from the successor
  for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
         E = Succ->livein_end(); I != E; ++I)
    NMBB->addLiveIn(*I);

  // Update LiveVariables.
  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
  if (LV) {
    // Restore kills of virtual registers that were killed by the terminators.
    while (!KilledRegs.empty()) {
      unsigned Reg = KilledRegs.pop_back_val();
      for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
        if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
          continue;
        if (TargetRegisterInfo::isVirtualRegister(Reg))
          LV->getVarInfo(Reg).Kills.push_back(I);
        DEBUG(dbgs() << "Restored terminator kill: " << *I);
        break;
      }
    }
    // Update relevant live-through information.
    LV->addNewBlock(NMBB, this, Succ);
  }

  if (LIS) {
    // After splitting the edge and updating SlotIndexes, live intervals may be
    // in one of two situations, depending on whether this block was the last in
    // the function. If the original block was the last in the function, all live
    // intervals will end prior to the beginning of the new split block. If the
    // original block was not at the end of the function, all live intervals will
    // extend to the end of the new split block.

    bool isLastMBB =
      std::next(MachineFunction::iterator(NMBB)) == getParent()->end();

    SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
    SlotIndex PrevIndex = StartIndex.getPrevSlot();
    SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);

    // Find the registers used from NMBB in PHIs in Succ.
    SmallSet<unsigned, 8> PHISrcRegs;
    for (MachineBasicBlock::instr_iterator
         I = Succ->instr_begin(), E = Succ->instr_end();
         I != E && I->isPHI(); ++I) {
      for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
        if (I->getOperand(ni+1).getMBB() == NMBB) {
          MachineOperand &MO = I->getOperand(ni);
          unsigned Reg = MO.getReg();
          PHISrcRegs.insert(Reg);
          if (MO.isUndef())
            continue;

          LiveInterval &LI = LIS->getInterval(Reg);
          VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
          assert(VNI && "PHI sources should be live out of their predecessors.");
          LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
        }
      }
    }

    MachineRegisterInfo *MRI = &getParent()->getRegInfo();
    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
      unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
      if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
        continue;

      LiveInterval &LI = LIS->getInterval(Reg);
      if (!LI.liveAt(PrevIndex))
        continue;

      bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
      if (isLiveOut && isLastMBB) {
        VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
        assert(VNI && "LiveInterval should have VNInfo where it is live.");
        LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
      } else if (!isLiveOut && !isLastMBB) {
        LI.removeSegment(StartIndex, EndIndex);
      }
    }

    // Update all intervals for registers whose uses may have been modified by
    // updateTerminator().
    LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
  }

  if (MachineDominatorTree *MDT =
      P->getAnalysisIfAvailable<MachineDominatorTree>())
    MDT->recordSplitCriticalEdge(this, Succ, NMBB);

  if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
    if (MachineLoop *TIL = MLI->getLoopFor(this)) {
      // If one or the other blocks were not in a loop, the new block is not
      // either, and thus LI doesn't need to be updated.
      if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
        if (TIL == DestLoop) {
          // Both in the same loop, the NMBB joins loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (TIL->contains(DestLoop)) {
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
          TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (DestLoop->contains(TIL)) {
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else {
          // Edge from two loops with no containment relation.  Because these
          // are natural loops, we know that the destination block must be the
          // header of its loop (adding a branch into a loop elsewhere would
          // create an irreducible loop).
          assert(DestLoop->getHeader() == Succ &&
                 "Should not create irreducible loops!");
          if (MachineLoop *P = DestLoop->getParentLoop())
            P->addBasicBlockToLoop(NMBB, MLI->getBase());
        }
      }
    }

  return NMBB;
}
Esempio n. 8
0
/// finalizeBundle - Finalize a machine instruction bundle which includes
/// a sequence of instructions starting from FirstMI to LastMI (exclusive).
/// This routine adds a BUNDLE instruction to represent the bundle, it adds
/// IsInternalRead markers to MachineOperands which are defined inside the
/// bundle, and it copies externally visible defs and uses to the BUNDLE
/// instruction.
void llvm::finalizeBundle(MachineBasicBlock &MBB,
                          MachineBasicBlock::instr_iterator FirstMI,
                          MachineBasicBlock::instr_iterator LastMI) {
  assert(FirstMI != LastMI && "Empty bundle?");
  MIBundleBuilder Bundle(MBB, FirstMI, LastMI);

  const TargetMachine &TM = MBB.getParent()->getTarget();
  const TargetInstrInfo *TII = TM.getSubtargetImpl()->getInstrInfo();
  const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();

  MachineInstrBuilder MIB = BuildMI(*MBB.getParent(), FirstMI->getDebugLoc(),
                                    TII->get(TargetOpcode::BUNDLE));
  Bundle.prepend(MIB);

  SmallVector<unsigned, 32> LocalDefs;
  SmallSet<unsigned, 32> LocalDefSet;
  SmallSet<unsigned, 8> DeadDefSet;
  SmallSet<unsigned, 16> KilledDefSet;
  SmallVector<unsigned, 8> ExternUses;
  SmallSet<unsigned, 8> ExternUseSet;
  SmallSet<unsigned, 8> KilledUseSet;
  SmallSet<unsigned, 8> UndefUseSet;
  SmallVector<MachineOperand*, 4> Defs;
  for (; FirstMI != LastMI; ++FirstMI) {
    for (unsigned i = 0, e = FirstMI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = FirstMI->getOperand(i);
      if (!MO.isReg())
        continue;
      if (MO.isDef()) {
        Defs.push_back(&MO);
        continue;
      }

      unsigned Reg = MO.getReg();
      if (!Reg)
        continue;
      assert(TargetRegisterInfo::isPhysicalRegister(Reg));
      if (LocalDefSet.count(Reg)) {
        MO.setIsInternalRead();
        if (MO.isKill())
          // Internal def is now killed.
          KilledDefSet.insert(Reg);
      } else {
        if (ExternUseSet.insert(Reg)) {
          ExternUses.push_back(Reg);
          if (MO.isUndef())
            UndefUseSet.insert(Reg);
        }
        if (MO.isKill())
          // External def is now killed.
          KilledUseSet.insert(Reg);
      }
    }

    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
      MachineOperand &MO = *Defs[i];
      unsigned Reg = MO.getReg();
      if (!Reg)
        continue;

      if (LocalDefSet.insert(Reg)) {
        LocalDefs.push_back(Reg);
        if (MO.isDead()) {
          DeadDefSet.insert(Reg);
        }
      } else {
        // Re-defined inside the bundle, it's no longer killed.
        KilledDefSet.erase(Reg);
        if (!MO.isDead())
          // Previously defined but dead.
          DeadDefSet.erase(Reg);
      }

      if (!MO.isDead()) {
        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
          unsigned SubReg = *SubRegs;
          if (LocalDefSet.insert(SubReg))
            LocalDefs.push_back(SubReg);
        }
      }
    }

    Defs.clear();
  }

  SmallSet<unsigned, 32> Added;
  for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) {
    unsigned Reg = LocalDefs[i];
    if (Added.insert(Reg)) {
      // If it's not live beyond end of the bundle, mark it dead.
      bool isDead = DeadDefSet.count(Reg) || KilledDefSet.count(Reg);
      MIB.addReg(Reg, getDefRegState(true) | getDeadRegState(isDead) |
                 getImplRegState(true));
    }
  }

  for (unsigned i = 0, e = ExternUses.size(); i != e; ++i) {
    unsigned Reg = ExternUses[i];
    bool isKill = KilledUseSet.count(Reg);
    bool isUndef = UndefUseSet.count(Reg);
    MIB.addReg(Reg, getKillRegState(isKill) | getUndefRegState(isUndef) |
               getImplRegState(true));
  }
}
MachineBasicBlock *
MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
  // it in this generic function.
  if (Succ->isLandingPad())
    return NULL;

  MachineFunction *MF = getParent();
  DebugLoc dl;  // FIXME: this is nowhere

  // We may need to update this's terminator, but we can't do that if
  // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
  MachineBasicBlock *TBB = 0, *FBB = 0;
  SmallVector<MachineOperand, 4> Cond;
  if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
    return NULL;

  // Avoid bugpoint weirdness: A block may end with a conditional branch but
  // jumps to the same MBB is either case. We have duplicate CFG edges in that
  // case that we can't handle. Since this never happens in properly optimized
  // code, just skip those edges.
  if (TBB && TBB == FBB) {
    DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
                 << getNumber() << '\n');
    return NULL;
  }

  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
  MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
  DEBUG(dbgs() << "Splitting critical edge:"
        " BB#" << getNumber()
        << " -- BB#" << NMBB->getNumber()
        << " -- BB#" << Succ->getNumber() << '\n');

  // On some targets like Mips, branches may kill virtual registers. Make sure
  // that LiveVariables is properly updated after updateTerminator replaces the
  // terminators.
  LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();

  // Collect a list of virtual registers killed by the terminators.
  SmallVector<unsigned, 4> KilledRegs;
  if (LV)
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I) {
      MachineInstr *MI = I;
      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
           OE = MI->operands_end(); OI != OE; ++OI) {
        if (!OI->isReg() || OI->getReg() == 0 ||
            !OI->isUse() || !OI->isKill() || OI->isUndef())
          continue;
        unsigned Reg = OI->getReg();
        if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
            LV->getVarInfo(Reg).removeKill(MI)) {
          KilledRegs.push_back(Reg);
          DEBUG(dbgs() << "Removing terminator kill: " << *MI);
          OI->setIsKill(false);
        }
      }
    }

  ReplaceUsesOfBlockWith(Succ, NMBB);
  updateTerminator();

  // Insert unconditional "jump Succ" instruction in NMBB if necessary.
  NMBB->addSuccessor(Succ);
  if (!NMBB->isLayoutSuccessor(Succ)) {
    Cond.clear();
    MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
  }

  // Fix PHI nodes in Succ so they refer to NMBB instead of this
  for (MachineBasicBlock::instr_iterator
         i = Succ->instr_begin(),e = Succ->instr_end();
       i != e && i->isPHI(); ++i)
    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
      if (i->getOperand(ni+1).getMBB() == this)
        i->getOperand(ni+1).setMBB(NMBB);

  // Inherit live-ins from the successor
  for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
         E = Succ->livein_end(); I != E; ++I)
    NMBB->addLiveIn(*I);

  // Update LiveVariables.
  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
  if (LV) {
    // Restore kills of virtual registers that were killed by the terminators.
    while (!KilledRegs.empty()) {
      unsigned Reg = KilledRegs.pop_back_val();
      for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
        if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
          continue;
        if (TargetRegisterInfo::isVirtualRegister(Reg))
          LV->getVarInfo(Reg).Kills.push_back(I);
        DEBUG(dbgs() << "Restored terminator kill: " << *I);
        break;
      }
    }
    // Update relevant live-through information.
    LV->addNewBlock(NMBB, this, Succ);
  }

  if (MachineDominatorTree *MDT =
      P->getAnalysisIfAvailable<MachineDominatorTree>()) {
    // Update dominator information.
    MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);

    bool IsNewIDom = true;
    for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
         PI != E; ++PI) {
      MachineBasicBlock *PredBB = *PI;
      if (PredBB == NMBB)
        continue;
      if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
        IsNewIDom = false;
        break;
      }
    }

    // We know "this" dominates the newly created basic block.
    MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);

    // If all the other predecessors of "Succ" are dominated by "Succ" itself
    // then the new block is the new immediate dominator of "Succ". Otherwise,
    // the new block doesn't dominate anything.
    if (IsNewIDom)
      MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
  }

  if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
    if (MachineLoop *TIL = MLI->getLoopFor(this)) {
      // If one or the other blocks were not in a loop, the new block is not
      // either, and thus LI doesn't need to be updated.
      if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
        if (TIL == DestLoop) {
          // Both in the same loop, the NMBB joins loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (TIL->contains(DestLoop)) {
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
          TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (DestLoop->contains(TIL)) {
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else {
          // Edge from two loops with no containment relation.  Because these
          // are natural loops, we know that the destination block must be the
          // header of its loop (adding a branch into a loop elsewhere would
          // create an irreducible loop).
          assert(DestLoop->getHeader() == Succ &&
                 "Should not create irreducible loops!");
          if (MachineLoop *P = DestLoop->getParentLoop())
            P->addBasicBlockToLoop(NMBB, MLI->getBase());
        }
      }
    }

  return NMBB;
}