void DefaultModelEvaluatorWithSolveFactory<Scalar>::evalModelImpl( const ModelEvaluatorBase::InArgs<Scalar> &inArgs, const ModelEvaluatorBase::OutArgs<Scalar> &outArgs ) const { typedef ModelEvaluatorBase MEB; using Teuchos::rcp; using Teuchos::rcp_const_cast; using Teuchos::rcp_dynamic_cast; using Teuchos::OSTab; THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_BEGIN( "Thyra::DefaultModelEvaluatorWithSolveFactory",inArgs,outArgs ); Teuchos::Time timer(""); typedef Teuchos::VerboseObjectTempState<LinearOpWithSolveFactoryBase<Scalar> > VOTSLOWSF; VOTSLOWSF W_factory_outputTempState(W_factory_,out,verbLevel); // InArgs MEB::InArgs<Scalar> wrappedInArgs = thyraModel->createInArgs(); wrappedInArgs.setArgs(inArgs,true); // OutArgs MEB::OutArgs<Scalar> wrappedOutArgs = thyraModel->createOutArgs(); wrappedOutArgs.setArgs(outArgs,true); RCP<LinearOpWithSolveBase<Scalar> > W; RCP<const LinearOpBase<Scalar> > fwdW; if( outArgs.supports(MEB::OUT_ARG_W) && (W = outArgs.get_W()).get() ) { Thyra::uninitializeOp<Scalar>(*W_factory_, W.ptr(), outArg(fwdW)); { // Handle this case later if we need to! const bool both_W_and_W_op_requested = nonnull(outArgs.get_W_op()); TEUCHOS_TEST_FOR_EXCEPT(both_W_and_W_op_requested); } RCP<LinearOpBase<Scalar> > nonconst_fwdW; if(fwdW.get()) { nonconst_fwdW = rcp_const_cast<LinearOpBase<Scalar> >(fwdW); } else { nonconst_fwdW = thyraModel->create_W_op(); fwdW = nonconst_fwdW; } wrappedOutArgs.set_W_op(nonconst_fwdW); } // Do the evaluation if(out.get() && includesVerbLevel(verbLevel,Teuchos::VERB_LOW)) *out << "\nEvaluating the output functions on model \'" << thyraModel->description() << "\' ...\n"; timer.start(true); thyraModel->evalModel(wrappedInArgs,wrappedOutArgs); timer.stop(); if(out.get() && includesVerbLevel(verbLevel,Teuchos::VERB_LOW)) OSTab(out).o() << "\nTime to evaluate underlying model = " << timer.totalElapsedTime()<<" sec\n"; // Postprocess arguments if(out.get() && includesVerbLevel(verbLevel,Teuchos::VERB_LOW)) *out << "\nPost processing the output objects ...\n"; timer.start(true); if( W.get() ) { Thyra::initializeOp<Scalar>(*W_factory_, fwdW, W.ptr()); W->setVerbLevel(this->getVerbLevel()); W->setOStream(this->getOStream()); } timer.stop(); if(out.get() && includesVerbLevel(verbLevel,Teuchos::VERB_LOW)) OSTab(out).o() << "\nTime to process output objects = " << timer.totalElapsedTime()<<" sec\n"; THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_END(); }
void ModelEvaluatorDefaultBase<Scalar>::evalModel( const ModelEvaluatorBase::InArgs<Scalar> &inArgs, const ModelEvaluatorBase::OutArgs<Scalar> &outArgs ) const { using Teuchos::outArg; typedef ModelEvaluatorBase MEB; lazyInitializeDefaultBase(); const int l_Np = outArgs.Np(); const int l_Ng = outArgs.Ng(); // // A) Assert that the inArgs and outArgs object match this class! // #ifdef TEUCHOS_DEBUG assertInArgsEvalObjects(*this,inArgs); assertOutArgsEvalObjects(*this,outArgs,&inArgs); #endif // // B) Setup the OutArgs object for the underlying implementation's // evalModelImpl(...) function // MEB::OutArgs<Scalar> outArgsImpl = this->createOutArgsImpl(); Array<MultiVectorAdjointPair> DgDp_temp_adjoint_copies; { outArgsImpl.setArgs(outArgs,true); // DfDp(l) if (outArgsImpl.supports(MEB::OUT_ARG_f)) { for ( int l = 0; l < l_Np; ++l ) { const DefaultDerivLinearOpSupport defaultLinearOpSupport = DfDp_default_op_support_[l]; if (defaultLinearOpSupport.provideDefaultLinearOp()) { outArgsImpl.set_DfDp( l, getOutArgImplForDefaultLinearOpSupport( outArgs.get_DfDp(l), defaultLinearOpSupport ) ); } else { // DfDp(l) already set by outArgsImpl.setArgs(...)! } } } // DgDx_dot(j) for ( int j = 0; j < l_Ng; ++j ) { const DefaultDerivLinearOpSupport defaultLinearOpSupport = DgDx_dot_default_op_support_[j]; if (defaultLinearOpSupport.provideDefaultLinearOp()) { outArgsImpl.set_DgDx_dot( j, getOutArgImplForDefaultLinearOpSupport( outArgs.get_DgDx_dot(j), defaultLinearOpSupport ) ); } else { // DgDx_dot(j) already set by outArgsImpl.setArgs(...)! } } // DgDx(j) for ( int j = 0; j < l_Ng; ++j ) { const DefaultDerivLinearOpSupport defaultLinearOpSupport = DgDx_default_op_support_[j]; if (defaultLinearOpSupport.provideDefaultLinearOp()) { outArgsImpl.set_DgDx( j, getOutArgImplForDefaultLinearOpSupport( outArgs.get_DgDx(j), defaultLinearOpSupport ) ); } else { // DgDx(j) already set by outArgsImpl.setArgs(...)! } } // DgDp(j,l) for ( int j = 0; j < l_Ng; ++j ) { const Array<DefaultDerivLinearOpSupport> &DgDp_default_op_support_j = DgDp_default_op_support_[j]; const Array<DefaultDerivMvAdjointSupport> &DgDp_default_mv_support_j = DgDp_default_mv_support_[j]; for ( int l = 0; l < l_Np; ++l ) { const DefaultDerivLinearOpSupport defaultLinearOpSupport = DgDp_default_op_support_j[l]; const DefaultDerivMvAdjointSupport defaultMvAdjointSupport = DgDp_default_mv_support_j[l]; MEB::Derivative<Scalar> DgDp_j_l; if (!outArgs.supports(MEB::OUT_ARG_DgDp,j,l).none()) DgDp_j_l = outArgs.get_DgDp(j,l); if ( defaultLinearOpSupport.provideDefaultLinearOp() && !is_null(DgDp_j_l.getLinearOp()) ) { outArgsImpl.set_DgDp( j, l, getOutArgImplForDefaultLinearOpSupport( DgDp_j_l, defaultLinearOpSupport ) ); } else if ( defaultMvAdjointSupport.provideDefaultAdjoint() && !is_null(DgDp_j_l.getMultiVector()) ) { const RCP<MultiVectorBase<Scalar> > DgDp_j_l_mv = DgDp_j_l.getMultiVector(); if ( defaultMvAdjointSupport.mvAdjointCopyOrientation() == DgDp_j_l.getMultiVectorOrientation() ) { // The orientation of the multi-vector is different so we need to // create a temporary copy to pass to evalModelImpl(...) and then // copy it back again! const RCP<MultiVectorBase<Scalar> > DgDp_j_l_mv_adj = createMembers(DgDp_j_l_mv->domain(), DgDp_j_l_mv->range()->dim()); outArgsImpl.set_DgDp( j, l, MEB::Derivative<Scalar>( DgDp_j_l_mv_adj, getOtherDerivativeMultiVectorOrientation( defaultMvAdjointSupport.mvAdjointCopyOrientation() ) ) ); // Remember these multi-vectors so that we can do the transpose copy // back after the evaluation! DgDp_temp_adjoint_copies.push_back( MultiVectorAdjointPair(DgDp_j_l_mv, DgDp_j_l_mv_adj) ); } else { // The form of the multi-vector is supported by evalModelImpl(..) // and is already set on the outArgsImpl object. } } else { // DgDp(j,l) already set by outArgsImpl.setArgs(...)! } } } // W { RCP<LinearOpWithSolveBase<Scalar> > W; if ( default_W_support_ && !is_null(W=outArgs.get_W()) ) { const RCP<const LinearOpWithSolveFactoryBase<Scalar> > W_factory = this->get_W_factory(); // Extract the underlying W_op object (if it exists) RCP<const LinearOpBase<Scalar> > W_op_const; uninitializeOp<Scalar>(*W_factory, W.ptr(), outArg(W_op_const)); RCP<LinearOpBase<Scalar> > W_op; if (!is_null(W_op_const)) { // Here we remove the const. This is perfectly safe since // w.r.t. this class, we put a non-const object in there and we can // expect to change that object after the fact. That is our // prerogative. W_op = Teuchos::rcp_const_cast<LinearOpBase<Scalar> >(W_op_const); } else { // The W_op object has not been initialized yet so create it. The // next time through, we should not have to do this! W_op = this->create_W_op(); } outArgsImpl.set_W_op(W_op); } } } // // C) Evaluate the underlying model implementation! // this->evalModelImpl( inArgs, outArgsImpl ); // // D) Post-process the output arguments // // Do explicit transposes for DgDp(j,l) if needed const int numMvAdjointCopies = DgDp_temp_adjoint_copies.size(); for ( int adj_copy_i = 0; adj_copy_i < numMvAdjointCopies; ++adj_copy_i ) { const MultiVectorAdjointPair adjPair = DgDp_temp_adjoint_copies[adj_copy_i]; doExplicitMultiVectorAdjoint( *adjPair.mvImplAdjoint, &*adjPair.mvOuter ); } // Update W given W_op and W_factory { RCP<LinearOpWithSolveBase<Scalar> > W; if ( default_W_support_ && !is_null(W=outArgs.get_W()) ) { const RCP<const LinearOpWithSolveFactoryBase<Scalar> > W_factory = this->get_W_factory(); W_factory->setOStream(this->getOStream()); W_factory->setVerbLevel(this->getVerbLevel()); initializeOp<Scalar>(*W_factory, outArgsImpl.get_W_op().getConst(), W.ptr()); } } }