/* * Build the PairList. */ void MdPairPotential::buildPairList() { // Recalculate the grid for the internal CellList pairList_.makeGrid(boundary()); // Clear all atoms from the internal CellList pairList_.clear(); // Add every atom in this System to the CellList System::MoleculeIterator molIter; Molecule::AtomIterator atomIter; for (int iSpec=0; iSpec < simulation().nSpecies(); ++iSpec) { for (begin(iSpec, molIter); molIter.notEnd(); ++molIter) { molIter->begin(atomIter); for ( ; atomIter.notEnd(); ++atomIter) { #ifdef MCMD_SHIFT boundary().shift(atomIter->position(), atomIter->shift()); #else boundary().shift(atomIter->position()); #endif pairList_.addAtom(*atomIter); } } } // Use the completed CellList to build the PairList pairList_.build(boundary()); }
/* * Pop and process the next molecule on the workStack (private). */ void ClusterIdentifier::processNextMolecule(Cluster& cluster) { CellList::NeighborArray neighborArray; Molecule::AtomIterator atomIter; ClusterLink* thisLinkPtr; ClusterLink* otherLinkPtr; Atom* otherAtomPtr; Boundary& boundary = system().boundary(); double cutoffSq = cutoff_*cutoff_; double rsq; int thisMolId, otherMolId, otherClusterId; // Pop this molecule off the stack thisLinkPtr = &workStack_.pop(); thisMolId = thisLinkPtr->molecule().id(); if (thisLinkPtr->clusterId() != cluster.id()) { UTIL_THROW("Top ClusterLink not marked with this cluster id"); } /* * Loop over atoms of this molecule. * For each atom of type atomTypeId_, find neighboring molecules. * Add each new neighbor to the cluster, and to the workStack. */ thisLinkPtr->molecule().begin(atomIter); for ( ; atomIter.notEnd(); ++atomIter) { if (atomIter->typeId() == atomTypeId_) { cellList_.getNeighbors(atomIter->position(), neighborArray); for (int i = 0; i < neighborArray.size(); i++) { otherAtomPtr = neighborArray[i]; otherMolId = otherAtomPtr->molecule().id(); if (otherMolId != thisMolId) { rsq = boundary.distanceSq(atomIter->position(), otherAtomPtr->position()); if (rsq < cutoffSq) { otherLinkPtr = &(links_[otherMolId]); assert(&otherLinkPtr->molecule() == &otherAtomPtr->molecule()); otherClusterId = otherLinkPtr->clusterId(); if (otherClusterId == -1) { cluster.addLink(*otherLinkPtr); workStack_.push(*otherLinkPtr); } else if (otherClusterId != cluster.id()) { UTIL_THROW("Cluster Clash!"); } } } } // neighbor atoms } } // atoms }
/* * Evaluate external energy, and add to ensemble. */ void McExternalEnergyAverage::sample(long iStep) { if (!isAtInterval(iStep)) return; double energy = 0.0; System::MoleculeIterator molIter; Molecule::AtomIterator atomIter; for (int iSpec=0; iSpec < system().simulation().nSpecies(); ++iSpec){ for (system().begin(iSpec, molIter); molIter.notEnd(); ++molIter){ for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) { energy += system().externalPotential().energy(atomIter->position(), atomIter->typeId()); } } } accumulator_.sample(energy, outputFile_); }
/* * Build the CellList. */ void McPairPotential::buildCellList() { // Set up a grid of empty cells. cellList_.setup(boundary(), maxPairCutoff()); // Add all atoms to cellList_ System::MoleculeIterator molIter; Molecule::AtomIterator atomIter; for (int iSpec=0; iSpec < simulation().nSpecies(); ++iSpec) { for (begin(iSpec, molIter); molIter.notEnd(); ++molIter) { for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) { boundary().shift(atomIter->position()); cellList_.addAtom(*atomIter); } } } }
/* * Identify all clusters in the system. */ void ClusterIdentifier::identifyClusters() { // Initialize all data structures: // Setup a grid of empty cells cellList_.setup(system().boundary(), cutoff_); // Clear clusters array and all links clusters_.clear(); for (int i = 0; i < links_.capacity(); ++i) { links_[i].clear(); } // Build the cellList, associate Molecule with ClusterLink. // Iterate over molecules of species speciesId_ System::MoleculeIterator molIter; Molecule::AtomIterator atomIter; system().begin(speciesId_, molIter); for ( ; molIter.notEnd(); ++molIter) { // Associate this Molecule with a ClusterLink links_[molIter->id()].setMolecule(*molIter.get()); // Add atoms of type = atomTypeId_ to the CellList for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) { if (atomIter->typeId() == atomTypeId_) { system().boundary().shift(atomIter->position()); cellList_.addAtom(*atomIter); } } } // Identify all clusters Cluster* clusterPtr; ClusterLink* linkPtr; int clusterId = 0; system().begin(speciesId_, molIter); for ( ; molIter.notEnd(); ++molIter) { // Find the link with same index as this molecule linkPtr = &(links_[molIter->id()]); assert (&(linkPtr->molecule()) == molIter.get()); // If this link is not in a cluster, begin a new cluster if (linkPtr->clusterId() == -1) { // Add a new empty cluster to clusters_ array clusters_.resize(clusterId+1); clusterPtr = &clusters_[clusterId]; clusterPtr->clear(); clusterPtr->setId(clusterId); // Identify molecules in this cluster clusterPtr->addLink(*linkPtr); workStack_.push(*linkPtr); while (workStack_.size() > 0) { processNextMolecule(*clusterPtr); } clusterId++; } } // Validity check - throws exception on failure. isValid(); }
/* * Verlet MD NVE integrator step * * This method implements the algorithm: * * vm(n) = v(n) + 0.5*a(n)*dt * x(n+1) = x(n) + vm(n)*dt * * calculate acceleration a(n+1) * * v(n+1) = vm(n) + 0.5*a(n+1)*dt * * where x is position, v is velocity, and a is acceleration. */ void NveVvIntegrator::step() { Vector dv; Vector dr; System::MoleculeIterator molIter; double prefactor; int iSpecies, nSpecies; nSpecies = simulation().nSpecies(); // 1st half velocity Verlet, loop over atoms #if USE_ITERATOR Molecule::AtomIterator atomIter; for (iSpecies=0; iSpecies < nSpecies; ++iSpecies) { system().begin(iSpecies, molIter); for ( ; molIter.notEnd(); ++molIter) { for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) { prefactor = prefactors_[atomIter->typeId()]; dv.multiply(atomIter->force(), prefactor); atomIter->velocity() += dv; dr.multiply(atomIter->velocity(), dt_); atomIter->position() += dr; } } } #else Atom* atomPtr; int ia; for (iSpecies=0; iSpecies < nSpecies; ++iSpecies) { system().begin(iSpecies, molIter); for ( ; molIter.notEnd(); ++molIter) { for (ia=0; ia < molIter->nAtom(); ++ia) { atomPtr = &molIter->atom(ia); prefactor = prefactors_[atomPtr->typeId()]; dv.multiply(atomPtr->force(), prefactor); atomPtr->velocity() += dv; dr.multiply(atomPtr->velocity(), dt_); atomPtr->position() += dr; } } } #endif system().calculateForces(); // 2nd half velocity Verlet, loop over atoms #if USE_ITERATOR for (iSpecies=0; iSpecies < nSpecies; ++iSpecies) { system().begin(iSpecies, molIter); for ( ; molIter.notEnd(); ++molIter) { for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) { prefactor = prefactors_[atomIter->typeId()]; dv.multiply(atomIter->force(), prefactor); atomIter->velocity() += dv; } } } #else for (iSpecies=0; iSpecies < nSpecies; ++iSpecies) { system().begin(iSpecies, molIter); for ( ; molIter.notEnd(); ++molIter) { for (ia=0; ia < molIter->nAtom(); ++ia) { atomPtr = &molIter->atom(ia); prefactor = prefactors_[atomPtr->typeId()]; dv.multiply(atomPtr->force(), prefactor); atomPtr->velocity() += dv; } } } #endif #ifndef INTER_NOPAIR if (!system().pairPotential().isPairListCurrent()) { system().pairPotential().buildPairList(); } #endif }
/* * Generate, attempt and accept or reject a Hybrid MD/MC move. */ bool HybridNphMdMove::move() { System::MoleculeIterator molIter; Molecule::AtomIterator atomIter; double oldEnergy, newEnergy; int iSpec; int nSpec = simulation().nSpecies(); bool accept; if (nphIntegratorPtr_ == NULL) { UTIL_THROW("null integrator pointer"); } // Increment counter for attempted moves incrementNAttempt(); // Store old boundary lengths. Vector oldLengths = system().boundary().lengths(); // Store old atom positions in oldPositions_ array. for (iSpec = 0; iSpec < nSpec; ++iSpec) { mdSystemPtr_->begin(iSpec, molIter); for ( ; molIter.notEnd(); ++molIter) { for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) { oldPositions_[atomIter->id()] = atomIter->position(); } } } // Initialize MdSystem #ifndef INTER_NOPAIR mdSystemPtr_->pairPotential().buildPairList(); #endif mdSystemPtr_->calculateForces(); mdSystemPtr_->setBoltzmannVelocities(energyEnsemble().temperature()); nphIntegratorPtr_->setup(); // generate integrator variables from a Gaussian distribution Random& random = simulation().random(); double temp = system().energyEnsemble().temperature(); double volume = system().boundary().volume(); if (mode_ == Cubic) { // one degree of freedom // barostat_energy = 1/2 (1/W) eta_x^2 double sigma = sqrt(temp/barostatMass_); nphIntegratorPtr_->setEta(0, sigma*random.gaussian()); } else if (mode_ == Tetragonal) { // two degrees of freedom // barostat_energy = 1/2 (1/W) eta_x^2 + 1/2 (1/(2W)) eta_y^2 double sigma1 = sqrt(temp/barostatMass_); nphIntegratorPtr_->setEta(0, sigma1*random.gaussian()); double sigma2 = sqrt(temp/barostatMass_/2.0); nphIntegratorPtr_->setEta(1, sigma2*random.gaussian()); } else if (mode_ == Orthorhombic) { // three degrees of freedom // barostat_energy = 1/2 (1/W) (eta_x^2 + eta_y^2 + eta_z^2) double sigma = sqrt(temp/barostatMass_); nphIntegratorPtr_->setEta(0, sigma*random.gaussian()); nphIntegratorPtr_->setEta(1, sigma*random.gaussian()); nphIntegratorPtr_->setEta(2, sigma*random.gaussian()); } // Store old energy oldEnergy = mdSystemPtr_->potentialEnergy(); oldEnergy += mdSystemPtr_->kineticEnergy(); oldEnergy += system().boundaryEnsemble().pressure()*volume; oldEnergy += nphIntegratorPtr_->barostatEnergy(); // Run a short MD simulation for (int iStep = 0; iStep < nStep_; ++iStep) { nphIntegratorPtr_->step(); } volume = system().boundary().volume(); // Calculate new energy newEnergy = mdSystemPtr_->potentialEnergy(); newEnergy += mdSystemPtr_->kineticEnergy(); newEnergy += system().boundaryEnsemble().pressure()*volume; newEnergy += nphIntegratorPtr_->barostatEnergy(); // Decide whether to accept or reject accept = random.metropolis( boltzmann(newEnergy-oldEnergy) ); // Accept move if (accept) { #ifndef INTER_NOPAIR // Rebuild the McSystem cellList using the new positions. system().pairPotential().buildCellList(); #endif // Increment counter for the number of accepted moves. incrementNAccept(); } else { // Restore old boundary lengths system().boundary().setOrthorhombic(oldLengths); // Restore old atom positions for (iSpec = 0; iSpec < nSpec; ++iSpec) { mdSystemPtr_->begin(iSpec, molIter); for ( ; molIter.notEnd(); ++molIter) { molIter->begin(atomIter); for ( ; atomIter.notEnd(); ++atomIter) { atomIter->position() = oldPositions_[atomIter->id()]; } } } } return accept; }
/** * Generate random molecules */ void Linear::generateMolecules(int nMolecule, DArray<double> exclusionRadius, System& system, BondPotential *bondPotentialPtr, const Boundary &boundary) { int iMol; // Set up a cell list with twice the maxium exclusion radius as the // cell size double maxExclusionRadius = 0.0; for (int iType = 0; iType < system.simulation().nAtomType(); iType++) { if (exclusionRadius[iType] > maxExclusionRadius) maxExclusionRadius = exclusionRadius[iType]; } // the minimum cell size is twice the maxExclusionRadius, // but to save memory, we take 2 times that value CellList cellList; cellList.allocate(system.simulation().atomCapacity(), boundary, 2.0*2.0*maxExclusionRadius); if (nMolecule > capacity()) UTIL_THROW("nMolecule > Species.capacity()!"); Simulation& sim = system.simulation(); for (iMol = 0; iMol < nMolecule; ++iMol) { // Add a new molecule to the system Molecule &newMolecule= sim.getMolecule(id()); system.addMolecule(newMolecule); // Try placing atoms bool moleculeHasBeenPlaced = false; for (int iAttempt = 0; iAttempt< maxPlacementAttempts_; iAttempt++) { // Place first atom Vector pos; system.boundary().randomPosition(system.simulation().random(),pos); Atom &thisAtom = newMolecule.atom(0); // check if the first atom can be placed at the new position CellList::NeighborArray neighbors; cellList.getNeighbors(pos, neighbors); int nNeighbor = neighbors.size(); bool canBePlaced = true; for (int j = 0; j < nNeighbor; ++j) { Atom *jAtomPtr = neighbors[j]; double r = sqrt(system.boundary().distanceSq( jAtomPtr->position(), pos)); if (r < (exclusionRadius[thisAtom.typeId()] + exclusionRadius[jAtomPtr->typeId()])) { canBePlaced = false; break; } } if (canBePlaced) { thisAtom.position() = pos; cellList.addAtom(thisAtom); // Try to recursively place other atoms if (tryPlaceAtom(newMolecule, 0, exclusionRadius, system, cellList, bondPotentialPtr, system.boundary())) { moleculeHasBeenPlaced = true; break; } else { cellList.deleteAtom(thisAtom); } } } if (! moleculeHasBeenPlaced) { std::ostringstream oss; oss << "Failed to place molecule " << newMolecule.id(); UTIL_THROW(oss.str().c_str()); } } #if 0 // Check for (int iMol =0; iMol < nMolecule; ++iMol) { Molecule::AtomIterator atomIter; system.molecule(id(),iMol).begin(atomIter); for (; atomIter.notEnd(); ++atomIter) { for (int jMol =0; jMol < nMolecule; ++jMol) { Molecule::AtomIterator atomIter2; system.molecule(id(),jMol).begin(atomIter2); for (; atomIter2.notEnd(); ++atomIter2 ) { if (atomIter2->id() != atomIter->id()) { double r = sqrt(boundary.distanceSq( atomIter->position(),atomIter2->position())); if (r < (exclusionRadius[atomIter->typeId()]+ exclusionRadius[atomIter2->typeId()])) { std::cout << r << std::endl; UTIL_THROW("ERROR"); } } } } } } #endif }
/* * Nose-Hoover integrator step. * * This implements a reversible Velocity-Verlet MD NVT integrator step. * * Reference: Winkler, Kraus, and Reineker, J. Chem. Phys. 102, 9018 (1995). */ void NvtNhIntegrator::step() { Vector dv; Vector dr; System::MoleculeIterator molIter; double dtHalf = 0.5*dt_; double prefactor; double factor; Molecule::AtomIterator atomIter; int iSpecies, nSpecies; int nAtom; T_target_ = energyEnsemblePtr_->temperature(); nSpecies = simulation().nSpecies(); nAtom = system().nAtom(); factor = exp(-dtHalf*(xi_ + xiDot_*dtHalf)); // 1st half velocity Verlet, loop over atoms for (iSpecies = 0; iSpecies < nSpecies; ++iSpecies) { system().begin(iSpecies, molIter); for ( ; molIter.notEnd(); ++molIter) { molIter->begin(atomIter); for ( ; atomIter.notEnd(); ++atomIter) { atomIter->velocity() *= factor; prefactor = prefactors_[atomIter->typeId()]; dv.multiply(atomIter->force(), prefactor); //dv.multiply(atomIter->force(), dtHalf); atomIter->velocity() += dv; dr.multiply(atomIter->velocity(), dt_); atomIter->position() += dr; } } } // First half of update of xi_ xi_ += xiDot_*dtHalf; #ifndef INTER_NOPAIR // Rebuild the pair list if necessary if (!system().pairPotential().isPairListCurrent()) { system().pairPotential().buildPairList(); } #endif system().calculateForces(); // 2nd half velocity Verlet, loop over atoms for (iSpecies=0; iSpecies < nSpecies; ++iSpecies) { system().begin(iSpecies, molIter); for ( ; molIter.notEnd(); ++molIter) { for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) { prefactor = prefactors_[atomIter->typeId()]; dv.multiply(atomIter->force(), prefactor); atomIter->velocity() += dv; atomIter->velocity() *=factor; } } } // Update xiDot and complete update of xi_ T_kinetic_ = system().kineticEnergy()*2.0/double(3*nAtom); xiDot_ = (T_kinetic_/T_target_ -1.0)*nuT_*nuT_; xi_ += xiDot_*dtHalf; }
/* * Perform replica exchange move. */ bool ReplicaMove::move() { MPI::Request request[4]; MPI::Status status; System::MoleculeIterator molIter; Molecule::AtomIterator atomIter; int iA; int recvPt, sendPt; DArray<int> permutation; permutation.allocate(nProcs_); // Gather all derivatives of the perturbation Hamiltonians and parameters on processor with rank 0 DArray<double> myDerivatives; myDerivatives.allocate(nParameters_); DArray<double> myParameters; myParameters.allocate(nParameters_); for (int i=0; i< nParameters_; i++) { myDerivatives[i] = system().perturbation().derivative(i); myParameters[i] = system().perturbation().parameter(i); } int size = 0; size += memorySize(myDerivatives); size += memorySize(myParameters); if (myId_ != 0) { MemoryOArchive sendCurrent; sendCurrent.allocate(size); sendCurrent << myDerivatives; sendCurrent << myParameters; sendCurrent.send(*communicatorPtr_, 0); } else { DArray< DArray<double> > allDerivatives; DArray< DArray<double> > allParameters; allDerivatives.allocate(nProcs_); allParameters.allocate(nProcs_); allDerivatives[0].allocate(nParameters_); allDerivatives[0] = myDerivatives; allParameters[0].allocate(nParameters_); allParameters[0] = myParameters; for (int i = 1; i<nProcs_; i++) { MemoryIArchive recvPartner; recvPartner.allocate(size); recvPartner.recv(*communicatorPtr_, i); allDerivatives[i].allocate(nParameters_); allParameters[i].allocate(nParameters_); recvPartner >> allDerivatives[i]; recvPartner >> allParameters[i]; } // Now we have the complete matrix U_ij = u_i(x_j), permutate nsampling steps according // to acceptance criterium // start with identity permutation for (int i = 0; i < nProcs_; i++) permutation[i] = i; for (int n =0; n < nSampling_; n++) { swapAttempt_++; // choose a pair i,j, i!= j at random int i = system().simulation().random().uniformInt(0,nProcs_); int j = system().simulation().random().uniformInt(0,nProcs_-1); if (i<=j) j++; // apply acceptance criterium double weight = 0; for (int k = 0; k < nParameters_; k++) { double deltaDerivative = allDerivatives[i][k] - allDerivatives[j][k]; // the permutations operate on the states (the perturbation parameters) weight += (allParameters[permutation[j]][k] - allParameters[permutation[i]][k])*deltaDerivative; } double exponential = exp(-weight); int accept = system().simulation().random(). metropolis(exponential) ? 1 : 0; if (accept) { swapAccept_++; // swap states of pair i,j int tmp = permutation[i]; permutation[i] = permutation[j]; permutation[j] = tmp; } } // send exchange partner information to all other processors for (int i = 0; i < nProcs_; i++) { if (i != 0) communicatorPtr_->Send(&permutation[i], 1, MPI::INT, i, 0); else sendPt = permutation[i]; if (permutation[i] != 0) communicatorPtr_->Send(&i, 1, MPI::INT, permutation[i], 1); else recvPt = i; } } if (myId_ != 0) { // partner id to receive from communicatorPtr_->Recv(&sendPt, 1, MPI::INT, 0, 0); // partner id to send to communicatorPtr_->Recv(&recvPt, 1, MPI::INT, 0, 1); } if (recvPt == myId_ || sendPt == myId_) { // no exchange necessary outputFile_ << sendPt << std::endl; return true; } assert(recvPt != myId_ && sendPt != myId_); Vector myBoundary; myBoundary = system().boundary().lengths(); Vector ptBoundary; // Accomodate new boundary dimensions. request[0] = communicatorPtr_->Irecv(&ptBoundary, 1, MpiTraits<Vector>::type, recvPt, 1); // Send old boundary dimensions. request[1] = communicatorPtr_->Isend(&myBoundary, 1, MpiTraits<Vector>::type, sendPt, 1); request[0].Wait(); request[1].Wait(); system().boundary().setOrthorhombic(ptBoundary); // Pack atomic positions and types. iA = 0; for (int iSpec=0; iSpec < system().simulation().nSpecies(); ++iSpec){ for (system().begin(iSpec, molIter); molIter.notEnd(); ++molIter){ for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) { myPositionPtr_[iA] = atomIter->position(); iA++; } } } // Accomodate new configuration. request[2] = communicatorPtr_->Irecv(ptPositionPtr_, iA, MpiTraits<Vector>::type, recvPt, 2); // Send old configuration. request[3] = communicatorPtr_->Isend(myPositionPtr_, iA, MpiTraits<Vector>::type, sendPt, 2); request[2].Wait(); request[3].Wait(); // Adopt the new atomic positions. iA = 0; for (int iSpec=0; iSpec < system().simulation().nSpecies(); ++iSpec){ for (system().begin(iSpec, molIter); molIter.notEnd(); ++molIter){ for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter){ atomIter->position() = ptPositionPtr_[iA]; ++iA; } } } // Notify component observers. sendRecvPair partners; partners[0] = sendPt; partners[1] = recvPt; Notifier<sendRecvPair>::notifyObservers(partners); // Log information about exchange partner to file outputFile_ << sendPt << std::endl; return true; }
/* * Generate, attempt and accept or reject a Hybrid MD/MC move. */ bool HoomdMove::move() { if ((!HoomdIsInitialized_) || moleculeSetHasChanged_) { initSimulation(); moleculeSetHasChanged_ = false; } // We need to create the Integrator every time since we are starting // with new coordinates, velocities etc. // this does not seem to incur a significant performance decrease createIntegrator(); System::MoleculeIterator molIter; Molecule::AtomIterator atomIter; int nSpec = simulation().nSpecies(); // Increment counter for attempted moves incrementNAttempt(); double oldEnergy, newEnergy; { // Copy atom coordinates into HOOMD ArrayHandle<Scalar4> h_pos(particleDataSPtr_->getPositions(), access_location::host, access_mode::readwrite); ArrayHandle<Scalar4> h_vel(particleDataSPtr_->getVelocities(), access_location::host, access_mode::readwrite); ArrayHandle<unsigned int> h_tag(particleDataSPtr_->getTags(), access_location::host, access_mode::readwrite); ArrayHandle<unsigned int> h_rtag(particleDataSPtr_->getRTags(), access_location::host, access_mode::readwrite); for (int iSpec =0; iSpec < nSpec; ++iSpec) { system().begin(iSpec, molIter); for ( ; molIter.notEnd(); ++ molIter) { for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) { unsigned int idx = (unsigned int) atomIter->id(); Vector& pos = atomIter->position(); h_pos.data[idx].x = pos[0] - lengths_[0]/2.; h_pos.data[idx].y = pos[1] - lengths_[1]/2.; h_pos.data[idx].z = pos[2] - lengths_[2]/2.; int type = atomIter->typeId(); h_vel.data[idx].w = simulation().atomType(type).mass(); h_pos.data[idx].w = __int_as_scalar(type); h_tag.data[idx] = idx; h_rtag.data[idx] = idx; } } } // Generate random velocities generateRandomVelocities(h_vel); } // Notify that the particle order has changed particleDataSPtr_->notifyParticleSort(); // Initialize integrator (calculate forces and potential energy for step 0) integratorSPtr_->prepRun(0); // Calculate oldEnergy thermoSPtr_->compute(0); oldEnergy = thermoSPtr_->getLogValue("kinetic_energy",0); oldEnergy += thermoSPtr_->getLogValue("potential_energy",0); // Integrate nStep_ steps forward for (int iStep = 0; iStep < nStep_; ++iStep) { integratorSPtr_->update(iStep); // do we need to sort the particles? // do not sort at time step 0 to speed up short runs if (! (iStep % sorterPeriod_) && iStep) sorterSPtr_->update(iStep); } // Calculate new energy thermoSPtr_->compute(nStep_); newEnergy = thermoSPtr_->getLogValue("kinetic_energy",nStep_); newEnergy += thermoSPtr_->getLogValue("potential_energy",nStep_); // Decide whether to accept or reject bool accept = random().metropolis( boltzmann(newEnergy-oldEnergy) ); if (accept) { // read back integrated positions ArrayHandle<Scalar4> h_pos(particleDataSPtr_->getPositions(), access_location::host, access_mode::read); ArrayHandle<Scalar4> h_vel(particleDataSPtr_->getVelocities(), access_location::host, access_mode::read); ArrayHandle<unsigned int> h_tag(particleDataSPtr_->getTags(), access_location::host, access_mode::read); ArrayHandle<unsigned int> h_rtag(particleDataSPtr_->getRTags(), access_location::host, access_mode::read); for (int iSpec = 0; iSpec < nSpec; ++iSpec) { system().begin(iSpec, molIter); for ( ; molIter.notEnd(); ++molIter) { for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) { unsigned int idx = h_rtag.data[atomIter->id()]; atomIter->position() = Vector(h_pos.data[idx].x+lengths_[0]/2., h_pos.data[idx].y+lengths_[1]/2., h_pos.data[idx].z+lengths_[2]/2.); } } } system().pairPotential().buildCellList(); incrementNAccept(); } else { // not accepted, do nothing } return accept; }
/* * Perform replica exchange move. */ bool ReplicaMove::move() { MPI::Request request[8]; MPI::Status status; double myWeight, ptWeight, exponential; int isLeft, iAccept, myPort, ptPort; System::MoleculeIterator molIter; Molecule::AtomIterator atomIter; int iA; // Default value for no replica exchange isLeft = -1; iAccept = 0; if ((myId_ < nProcs_ - 1) && (stepCount_ >= myId_) && ((stepCount_ - myId_) % (nProcs_ - 1) ==0)) { // we are exchanging with processor myId_ + 1 isLeft = 1; ptId_ = myId_ + 1; } else if ((myId_ > 0) && (stepCount_ >= myId_ - 1) && ((stepCount_ - (myId_ - 1)) % (nProcs_ -1 ) == 0)) { // we are exchanging with processor myId_ - 1 isLeft = 0; ptId_ = myId_ - 1; } if (isLeft == 0 || isLeft == 1) { // Set the port value for message tag myPort = myId_%2; ptPort = ptId_%2; // Update accumulator repxAttempt_[isLeft] += 1; // Exchange coupling parameters with partner for (int i = 0; i < nParameters_; ++i) { request[0] = communicatorPtr_->Irecv(&ptParam_[i], 1, MPI::DOUBLE, ptId_, TagParam[ptPort]); request[1] = communicatorPtr_->Isend(&myParam_[i], 1, MPI::DOUBLE, ptId_, TagParam[myPort]); // Synchronizing request[0].Wait(); request[1].Wait(); } myWeight = system().perturbation().difference(ptParam_); // Collect tempering weights and make decision if (isLeft == 1) { // Receive energy difference from the right box request[2] = communicatorPtr_->Irecv(&ptWeight, 1, MPI::DOUBLE, ptId_, TagDecision[ptPort]); request[2].Wait(); exponential = exp(-myWeight - ptWeight); } else { // Send energy difference to the left box request[2] = communicatorPtr_->Isend(&myWeight, 1, MPI::DOUBLE, ptId_, TagDecision[myPort]); request[2].Wait(); } // Collect tempering weights and make decision if (isLeft == 1) { // Metropolis test iAccept = system().simulation().random(). metropolis(exponential) ? 1 : 0; // Send decision to the right box request[3] = communicatorPtr_->Isend(&iAccept, 1, MPI::INT, ptId_, TagDecision[myPort]); request[3].Wait(); } else { // Receive decision from the left box request[3] = communicatorPtr_->Irecv(&iAccept, 1, MPI::INT, ptId_, TagDecision[ptPort]); request[3].Wait(); } // Exchange particle configurations if the move is accepted if (iAccept == 1) { // Update accumulator repxAccept_[isLeft] += 1; Vector myBoundary; myBoundary = system().boundary().lengths(); Vector ptBoundary; // Accomodate new boundary dimensions. request[4] = communicatorPtr_->Irecv(&ptBoundary, 1, MpiTraits<Vector>::type, ptId_, TagConfig[ptPort]); // Send old boundary dimensions. request[5] = communicatorPtr_->Isend(&myBoundary, 1, MpiTraits<Vector>::type, ptId_, TagConfig[myPort]); request[4].Wait(); request[5].Wait(); system().boundary().setOrthorhombic(ptBoundary); // Pack atomic positions and types. iA = 0; for (int iSpec=0; iSpec < system().simulation().nSpecies(); ++iSpec){ for (system().begin(iSpec, molIter); molIter.notEnd(); ++molIter){ for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) { myPositionPtr_[iA] = atomIter->position(); iA++; } } } // Accomodate new configuration. request[6] = communicatorPtr_->Irecv(ptPositionPtr_, iA, MpiTraits<Vector>::type, ptId_, TagConfig[ptPort]); // Send old configuration. request[7] = communicatorPtr_->Isend(myPositionPtr_, iA, MpiTraits<Vector>::type, ptId_, TagConfig[myPort]); request[6].Wait(); request[7].Wait(); // Adopt the new atomic positions. iA = 0; for (int iSpec=0; iSpec < system().simulation().nSpecies(); ++iSpec){ for (system().begin(iSpec, molIter); molIter.notEnd(); ++molIter){ for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter){ atomIter->position() = ptPositionPtr_[iA]; ++iA; } } } // Notify component observers. //notifyObservers(ptId_); Notifier<int>::notifyObservers(ptId_); } else { // the move was not accepted, do nothing } } // Output results needed to build exchange profile. if (isLeft == -1) { outputFile_ << "n" << std::endl; } else if ( isLeft != -1 && iAccept == 0) { outputFile_ << myId_ << std::endl; } else if ( isLeft != -1 && iAccept == 1) { outputFile_ << ptId_ << std::endl; } stepCount_++; return (iAccept == 1 ? true : false); }