Esempio n. 1
0
void buildPyramid_templ(
	CImagePyramid &obj,
	mrpt::utils::CImage &img,
	const size_t nOctaves,
	const bool smooth_halves,
	const bool convert_grayscale)
{
	ASSERT_ABOVE_(nOctaves,0)

	//TImageSize  img_size = img.getSize();
	obj.images.resize(nOctaves);

	// First octave: Just copy the image:
	if (convert_grayscale && img.isColor())
	{
		// In this case we have to convert to grayscale, so FASTLOAD doesn't really matter:
		img.grayscale(obj.images[0]);
	}
	else
	{
		// No need to convert to grayscale OR image already is grayscale:
		if (FASTLOAD)
		     obj.images[0].copyFastFrom(img);  // Fast copy -> "move", destroying source.
		else obj.images[0] = img;  // Normal copy
	}

	// Rest of octaves, if any:
	for (size_t o=1;o<nOctaves;o++)
	{
		if (smooth_halves)
		     obj.images[o-1].scaleHalfSmooth(obj.images[o]);
		else obj.images[o-1].scaleHalf(obj.images[o]);
	}
}
Esempio n. 2
0
/**  Stage2 operations:
  *   - Detect features on each image and on each scale.
  */
void CStereoOdometryEstimator::stage2_detect_features(
		CStereoOdometryEstimator::TImagePairData::img_data_t	& img_data,
		mrpt::utils::CImage										& gui_image,
		bool													update_dyn_thresholds )
{
	using namespace mrpt::vision;

	m_profiler.enter("_stg2");

	// :: Resize output containers:
	const size_t nOctaves = img_data.pyr.images.size();
	ASSERTDEB_(nOctaves>0)

	vector<size_t> nFeatsPassingKLTPerOctave(nOctaves);
    img_data.pyr_feats.resize(nOctaves);
    img_data.pyr_feats_index.resize(nOctaves);
    img_data.pyr_feats_kps.resize(nOctaves);
    img_data.pyr_feats_desc.resize(nOctaves);

	vector<size_t> kps_to_detect(nOctaves);			// number of kps to detect in each octave
	kps_to_detect[0] = size_t(params_detect.orb_nfeats*(2*nOctaves)/(std::pow(2,nOctaves)-1));
	for( size_t octave = 1; octave < nOctaves; ++octave )
		kps_to_detect[octave] = size_t(round(kps_to_detect[0]/std::pow(2,octave)));

	// :: For the GUI thread
	m_next_gui_info->stats_feats_per_octave.resize(nOctaves); // Reserve size for stats
    m_next_gui_info->stats_FAST_thresholds_per_octave.resize(nOctaves);

	// :: Detection parameters
	// FASTER METHOD --------------------
	// - Evaluate the KLT response of all features to discard those in texture-less zones
    const unsigned int KLT_win	= params_detect.KLT_win;
    const double minimum_KLT_response	= params_detect.minimum_KLT_response;
	// ----------------------------------

	// size_t num_feats_this_octave; 

	// :: Main loop
	for( size_t octave = 0; octave < nOctaves; ++octave )
	{
		// - Image information
        Mat input_im = cv::cvarrToMat(img_data.pyr.images[octave].getAs<IplImage>());
		const mrpt::utils::TImageSize img_size = img_data.pyr.images[octave].getSize();

		// - Profile section name
		const std::string sProfileName = mrpt::format("stg2.detect.oct=%u",static_cast<unsigned int>(octave));

		// - Auxiliar parameters that will store preliminar extracted information (before NMS)
		TKeyPointList	feats_vector;
		Mat				desc_aux;

		// ***********************************
		// KLT method (use ORB feature vector, no descriptor)
		// ***********************************
		if( params_detect.detect_method == TDetectParams::dmKLT )
		{
			m_profiler.enter(sProfileName.c_str());

			// detect Shi&Tomasi keypoints
			goodFeaturesToTrack(
				input_im,					// image
				feats_vector,				// output feature vector
				kps_to_detect[octave],		// params_detect.orb_nfeats,	// number of features to detect
				0.01,						// quality level
				20);						// minimum distance
			
			desc_aux = Mat();				// no descriptor

			m_profiler.leave(sProfileName.c_str());
		}
		// ***********************************
		// ORB method
		// ***********************************
		else if( params_detect.detect_method == TDetectParams::dmORB )
		{
			// ** NOTE ** in this case, nOctaves should be 1 (set in stage1)
			const size_t n_feats_to_extract = 
				params_detect.non_maximal_suppression ? 
					1.5*params_detect.orb_nfeats : 
					params_detect.orb_nfeats; // if non-max-sup is ON extract more features to get approx the number of desired output feats.

			m_profiler.enter(sProfileName.c_str());
			
#if CV_MAJOR_VERSION < 3  // OpenCV < 3.0.0
			ORB orbDetector( 
				n_feats_to_extract,			// number of ORB features to extract
				1.2,						// scale difference
				params_detect.orb_nlevels,  // number of levels
				31,							// edgeThreshold
				0,							// firstLevel
				2,							// WTA_K
				ORB::HARRIS_SCORE,			// scoreType
                31);						// patchSize

			// detect keypoints and descriptors
			orbDetector( input_im, Mat(), feats_vector, desc_aux );  // all the scales in the same call
#else
			Ptr<cv::ORB> orbDetector = cv::ORB::create(
				n_feats_to_extract,			// number of ORB features to extract
				1.2,						// scale difference
				params_detect.orb_nlevels,  // number of levels
				31,							// edgeThreshold
				0,							// firstLevel
				2,							// WTA_K
				ORB::HARRIS_SCORE,			// scoreType
                31,							// patchSize
                m_current_fast_th );		// fast threshold

			orbDetector->detectAndCompute( input_im, Mat(), feats_vector, desc_aux );	// all the scales in the same call
#endif

			m_profiler.enter(sProfileName.c_str());
		}

		// ***********************************
		// FAST+ORB method
		// ***********************************
		else if( params_detect.detect_method == TDetectParams::dmFAST_ORB )
		{
			m_profiler.enter(sProfileName.c_str());
#if CV_MAJOR_VERSION < 3  // OpenCV < 3.0.0
			cv::FastFeatureDetector(m_current_fast_th).detect( input_im, feats_vector );	// detect keypoints
			MRPT_TODO("Perform non-maximal suppression here -- avoids computing ORB descriptors which are going to be rejected")
			ORB().operator()(input_im, Mat(), feats_vector, desc_aux, true );				// extract descriptors
#else
			Ptr<cv::FastFeatureDetector> fastDetector = cv::FastFeatureDetector::create( m_current_fast_th );
			fastDetector->detect( input_im, feats_vector );
			cv::ORB::create()->compute( input_im, feats_vector, desc_aux );
#endif
			m_profiler.leave(sProfileName.c_str());
		}
		// ***********************************
		// FASTER method (no descriptor unless specified otherwise)
		// ***********************************
		else if( params_detect.detect_method == TDetectParams::dmFASTER )
		{
			// Use a dynamic threshold to maintain a target number of features per square pixel.
			if( m_threshold.size() != nOctaves ) 
				m_threshold.assign(nOctaves, params_detect.initial_FAST_threshold);

			m_profiler.enter(sProfileName.c_str());

            CFeatureExtraction::detectFeatures_SSE2_FASTER12(
                img_data.pyr.images[octave],
                img_data.pyr_feats[octave],
                m_threshold[octave],
                false,										// don't append to list, overwrite it
                octave,
                & img_data.pyr_feats_index[octave] );		// row-indexed list of features

            const size_t nFeats = img_data.pyr_feats[octave].size();

			if( update_dyn_thresholds )
            {
                // Compute feature density & adjust dynamic threshold:
                const double feats_density = nFeats / static_cast<double>(img_size.x * img_size.y);

                if( feats_density < 0.8*params_detect.target_feats_per_pixel )
                    m_threshold[octave] = std::max(1, m_threshold[octave]-1);
                else if( feats_density > 1.2*params_detect.target_feats_per_pixel )
                    m_threshold[octave] = m_threshold[octave]+1;

                // Save stats for the GUI:
                m_next_gui_info->stats_feats_per_octave[octave] = nFeats;
                m_next_gui_info->stats_FAST_thresholds_per_octave[octave] = m_threshold[octave];
            }

            // compute KLT response
            const std::string subSectionName = mrpt::format("stg2.detect.klt.oct=%u",static_cast<unsigned int>(octave));
            m_profiler.enter(subSectionName.c_str());

            const TImageSize img_size_min( KLT_win+1, KLT_win+1 );
            const TImageSize img_size_max( img_size.x-KLT_win-1, img_size.y-KLT_win-1 );

            size_t nPassed = 0; // Number of feats in this octave that pass the KLT threshold (for stats only)

            for (size_t i=0;i<img_data.pyr_feats[octave].size();i++)
            {
                TSimpleFeature &f = img_data.pyr_feats[octave][i];
                const TPixelCoord pt = f.pt;
                if (pt.x>=img_size_min.x && pt.y>=img_size_min.y && pt.x<img_size_max.x && pt.y<img_size_max.y) {
                     f.response = img_data.pyr.images[octave].KLT_response(pt.x,pt.y,KLT_win);
                     if (f.response>=minimum_KLT_response) nPassed++;
                }
                else f.response = 0;
            } // end-for

			// convert to TKeyPointList (opencv compatible)
			m_convert_featureList_to_keypointList( img_data.pyr_feats[octave], feats_vector );

			m_profiler.leave(sProfileName.c_str()); // end detect
		}
		else
			THROW_EXCEPTION("	[sVO -- Stg2: Detect] ERROR: Unknown detection method")

		// ***********************************
		// Non-maximal suppression
		// ***********************************
		if( params_detect.non_maximal_suppression )
		{
			if( params_detect.nmsMethod == TDetectParams::nmsmStandard )
			{
				const size_t imgH = input_im.rows;
				const size_t imgW = input_im.cols;
				vector<bool> dummy;
				m_non_max_sup( 
					kps_to_detect[octave], // params_detect.orb_nfeats
					feats_vector, 
					desc_aux, 
					img_data.pyr_feats_kps[octave], 
					img_data.pyr_feats_desc[octave], 
					imgH, imgW,
					dummy );
			}
			else if( params_detect.nmsMethod == TDetectParams::nmsmAdaptive )
			{
				m_adaptive_non_max_sup( 
					kps_to_detect[octave], // params_detect.orb_nfeats*/
					feats_vector, 
					desc_aux, 
					img_data.pyr_feats_kps[octave], 
					img_data.pyr_feats_desc[octave] );
			}
			else
				THROW_EXCEPTION("	[sVO -- Stg2: Detect] Invalid non-maximal-suppression method." );
		} // end-if-non-max-sup
		else
		{
			feats_vector.swap(img_data.pyr_feats_kps[octave]);
			img_data.pyr_feats_desc[octave] = desc_aux;					// this should be fast (just copy the header)
		}

		// update indexes here
		m_update_indexes( img_data, octave, true );

        // gui info
		m_next_gui_info->stats_feats_per_octave[octave] = 
			nFeatsPassingKLTPerOctave[octave] = img_data.pyr_feats_kps[octave].size();

	 } // end-for-octaves

	if( params_gui.show_gui && params_gui.draw_all_raw_feats )
	{
		// (It's almost as efficient to directly draw these small feature marks at this point
		// rather than send all the info to the gui thread and then draw there. A quick test shows
		// a gain of 75us -> 50us only, so don't optimize unless efficiency pushes really hard).
		m_profiler.enter("stg2.draw_feats");

        for (size_t octave=0;octave<nOctaves;octave++)
        {
			const TKeyPointList & f1 = img_data.pyr_feats_kps[octave];
            const size_t n1 = f1.size();

            const bool org_img_color	= gui_image.isColor();
            unsigned char* ptr1			= gui_image.get_unsafe(0,0);
            const size_t img1_stride	= gui_image.getRowStride();
            for(size_t i=0;i<n1;++i)
            {
                const int x=f1[i].pt.x; const int y=f1[i].pt.y;
                unsigned char* ptr = ptr1 + img1_stride*y + (org_img_color ? 3*x:x);
                if (org_img_color) {
                    *ptr++ = 0x00;
                    *ptr++ = 0x00;
                    *ptr++ = 0xFF;
                }
                else {
                    *ptr = 0xFF;
                }
            } // end-for
        } // end-for

		m_profiler.leave("stg2.draw_feats");
	} // end-if

    // for the GUI thread
    string sPassKLT = "", sDetect = "";
    for( size_t i=0;i<nOctaves;i++ )
	{
        sPassKLT += mrpt::format( "%u/",static_cast<unsigned int>(nFeatsPassingKLTPerOctave[i]) );
        sDetect  += mrpt::format( "%u/",static_cast<unsigned int>(img_data.pyr_feats_kps[i].size()) );
	}

    string aux = mrpt::format( "\n%s feats (%s passed KLT)", sDetect.c_str(), sPassKLT.c_str() );
    m_next_gui_info->text_msg_from_detect += aux;

	m_profiler.leave("_stg2");
}