Esempio n. 1
0
void printNetwork(NEAT::FastNetwork<double> &testNetwork)
{
	return;
	
	cout << "Network links:\n";
	cout << testNetwork.getLink("Input0","Hidden1")->weight << endl;
	cout << testNetwork.getLink("Input0","Hidden2")->weight << endl;
	cout << endl;
	
	cout << testNetwork.getLink("Input1","Hidden1")->weight << endl;
	cout << testNetwork.getLink("Input1","Hidden2")->weight << endl;
	cout << endl;
	
	cout << testNetwork.getLink("Input2","Hidden1")->weight << endl;
	cout << testNetwork.getLink("Input2","Hidden2")->weight << endl;
	cout << endl;
	
	cout << testNetwork.getLink("Hidden0","Output0")->weight << endl;
	cout << testNetwork.getLink("Hidden1","Output0")->weight << endl;
	cout << testNetwork.getLink("Hidden2","Output0")->weight << endl;
	cout << endl;
	
	CREATE_PAUSE("");
}
    void ShapesExperiment::printNetworkCPPN(shared_ptr<const NEAT::GeneticIndividual> individual)
    {
      cout << "Printing cppn network" << endl;
      ofstream network_file;        
      network_file.open ("networkCPPN-ThatSolvedTheProblem.txt", ios::trunc );
      
      NEAT::FastNetwork <double> network = individual->spawnFastPhenotypeStack <double>();        //JMC: this creates the network CPPN associated with this individual used to produce the substrate (neural network)

      network_file << "num links:" << network.getLinkCount() << endl;
      network_file << "num nodes:" << network.getNodeCount() << endl;
 
      int numLinks = network.getLinkCount();
      int numNodes = network.getNodeCount();
      ActivationFunction activationFunction;

      //print out which node corresponds to which integer (e.g. so you can translate a fromNode of 1 to "x1"  
      map<string,int> localNodeNameToIndex = *network.getNodeNameToIndex();
      for( map<string,int>::iterator iter = localNodeNameToIndex.begin(); iter != localNodeNameToIndex.end(); iter++ ) {
        network_file << (*iter).first << " is node number: " << (*iter).second << endl;
      }
      
      for (size_t a=0;a<numLinks;a++)
      {
          
          NetworkIndexedLink <double> link = *network.getLink(a);
           
          network_file << link.fromNode << "->" << link.toNode << " : " << link.weight << endl;
      }
      for (size_t a=0;a<numNodes;a++)
      {          
          activationFunction = *network.getActivationFunction(a);           
          network_file << " activation function " << a << ": ";
          if(activationFunction == ACTIVATION_FUNCTION_SIGMOID) network_file << "ACTIVATION_FUNCTION_SIGMOID";
          if(activationFunction == ACTIVATION_FUNCTION_SIN) network_file << "ACTIVATION_FUNCTION_SIN";
          if(activationFunction == ACTIVATION_FUNCTION_COS) network_file << "ACTIVATION_FUNCTION_COS";
          if(activationFunction == ACTIVATION_FUNCTION_GAUSSIAN) network_file << "ACTIVATION_FUNCTION_GAUSSIAN";
          if(activationFunction == ACTIVATION_FUNCTION_SQUARE) network_file << "ACTIVATION_FUNCTION_SQUARE";
          if(activationFunction == ACTIVATION_FUNCTION_ABS_ROOT) network_file << "ACTIVATION_FUNCTION_ABS_ROOT";
          if(activationFunction == ACTIVATION_FUNCTION_LINEAR) network_file << "ACTIVATION_FUNCTION_LINEAR";
          if(activationFunction == ACTIVATION_FUNCTION_ONES_COMPLIMENT) network_file << "ACTIVATION_FUNCTION_ONES_COMPLIMENT";
          if(activationFunction == ACTIVATION_FUNCTION_END) network_file << "ACTIVATION_FUNCTION_END";
          network_file << endl;
      }

      network_file.close();

      return;
    }