int
main(int argc, char* argv[])
{
    const Opm::parameter::ParameterGroup param(argc, argv, false);
    const Opm::GridManager               gm(5, 5);

    const UnstructuredGrid*              g  = gm.c_grid();
    const int                            nc = g->number_of_cells;
    const Opm::BlackoilPropertiesBasic   oldprops(param, 2, nc);
    const Opm::BlackoilPropsAd           props(oldprops);

    typedef AutoDiff::ForwardBlock<double>      ADB;

    Wells* wells = create_wells(2, 2, 5);
    const double inj_frac[] = { 1.0, 0.0 };
    const double prod_frac[] = { 0.0, 0.0 };
    const int num_inj = 3;
    const int inj_cells[num_inj] = { 0, 1, 2 };
    const int num_prod = 2;
    const int prod_cells[num_prod] = { 20, 21 };
    const double WI[3] = { 1e-12, 1e-12, 1e-12 };
    bool ok = add_well(INJECTOR, 0.0, num_inj, inj_frac, inj_cells, WI, "Inj", wells);
    ok = ok && add_well(PRODUCER, 0.0, num_prod, prod_frac, prod_cells, WI, "Prod", wells);
    ok = ok && append_well_controls(BHP, 500.0*Opm::unit::barsa, 0, 0, wells);
    // ok = ok && append_well_controls(BHP, 200.0*Opm::unit::barsa, 0, 1, wells);
    double oildistr[2] = { 0.0, 1.0 };
    ok = ok && append_well_controls(SURFACE_RATE, 1e-3, oildistr, 1, wells);
    if (!ok) {
        THROW("Something went wrong with well init.");
    }
    set_current_control(0, 0, wells);
    set_current_control(1, 0, wells);

    double grav[] = { /*1.0*/ 0.0, 0.0 };
    Opm::DerivedGeology geo(*g, props, grav);
    Opm::LinearSolverFactory linsolver(param);
    Opm::ImpesTPFAAD ps(*g, props, geo, *wells, linsolver);

    Opm::BlackoilState state;
    initStateBasic(*g, oldprops, param, 0.0, state);
    initBlackoilSurfvol(*g, oldprops, state);
    Opm::WellState well_state;
    well_state.init(wells, state);

    ps.solve(1.0, state, well_state);

    std::cout << "Cell pressure:" << std::endl;
    std::copy(state.pressure().begin(), state.pressure().end(), std::ostream_iterator<double>(std::cout, " "));
    std::cout << std::endl;
    std::cout << "Face flux:" << std::endl;
    std::copy(state.faceflux().begin(), state.faceflux().end(), std::ostream_iterator<double>(std::cout, " "));
    std::cout << std::endl;
    std::cout << "Well bhp pressure:" << std::endl;
    std::copy(well_state.bhp().begin(), well_state.bhp().end(), std::ostream_iterator<double>(std::cout, " "));
    std::cout << std::endl;

    return 0;
}
Esempio n. 2
0
int
main(int argc, char* argv[])
try
{
    const Opm::parameter::ParameterGroup param(argc, argv, false);
    const Opm::GridManager               gm(20, 1);

    const UnstructuredGrid*              g  = gm.c_grid();
    const int                            nc = g->number_of_cells;
    const Opm::BlackoilPropertiesBasic   props0(param, 2, nc);
    const Opm::BlackoilPropsAd           props(props0);

    boost::shared_ptr<Wells> wells = createWellConfig();

    double grav[] = { 0.0, 0.0 };
    Opm::DerivedGeology geo(*g, props, grav);

    Opm::LinearSolverFactory linsolver(param);

    Opm::FullyImplicitBlackoilSolver solver(*g, props, geo, 0, *wells, linsolver);

    Opm::BlackoilState state;
    initStateBasic(*g, props0, param, 0.0, state);
    initBlackoilSurfvol(*g, props0, state);

    Opm::WellState well_state;
    well_state.init(wells.get(), state);

    solver.step(1.0, state, well_state);

    std::cout << state.pressure() << '\n'
              << well_state.bhp() << '\n';

    return 0;
}
catch (const std::exception &e) {
    std::cerr << "Program threw an exception: " << e.what() << "\n";
    throw;
}
Esempio n. 3
0
int main()
try
{
    typedef Opm::AutoDiffBlock<double> ADB;
    typedef ADB::V V;
    typedef Eigen::SparseMatrix<double> S;

    Opm::time::StopWatch clock;
    clock.start();
    const Opm::GridManager gm(3,3);//(50, 50, 10);
    const UnstructuredGrid& grid = *gm.c_grid();
    using namespace Opm::unit;
    using namespace Opm::prefix;
    // const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
    //                                        { 1000.0, 800.0 },
    //                                        { 1.0*centi*Poise, 5.0*centi*Poise },
    //                                        0.2, 100*milli*darcy,
    //                                        grid.dimensions, grid.number_of_cells);
    // const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
    //                                        { 1000.0, 1000.0 },
    //                                        { 1.0, 1.0 },
    //                                        1.0, 1.0,
    //                                        grid.dimensions, grid.number_of_cells);
    const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
                                           { 1000.0, 1000.0 },
                                           { 1.0, 30.0 },
                                           1.0, 1.0,
                                           grid.dimensions, grid.number_of_cells);
    V htrans(grid.cell_facepos[grid.number_of_cells]);
    tpfa_htrans_compute(const_cast<UnstructuredGrid*>(&grid), props.permeability(), htrans.data());
    V trans_all(grid.number_of_faces);
    // tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid), htrans.data(), trans_all.data());
    const int nc = grid.number_of_cells;
    std::vector<int> allcells(nc);
    for (int i = 0; i < nc; ++i) {
        allcells[i] = i;
    }
    std::cerr << "Opm core " << clock.secsSinceLast() << std::endl;

    // Define neighbourhood-derived operator matrices.
    const Opm::HelperOps ops(grid);
    const int num_internal = ops.internal_faces.size();
    std::cerr << "Topology matrices " << clock.secsSinceLast() << std::endl;

    typedef Opm::AutoDiffBlock<double> ADB;
    typedef ADB::V V;

    // q
    V q(nc);
    q.setZero();
    q[0] = 1.0;
    q[nc-1] = -1.0;

    // s0 - this is explicit now
    typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol;
    TwoCol s0(nc, 2);
    s0.leftCols<1>().setZero();
    s0.rightCols<1>().setOnes();

    // totmob - explicit as well
    TwoCol kr(nc, 2);
    props.relperm(nc, s0.data(), allcells.data(), kr.data(), 0);
    const V krw = kr.leftCols<1>();
    const V kro = kr.rightCols<1>();
    const double* mu = props.viscosity();
    const V totmob = krw/mu[0] + kro/mu[1];

    // Moved down here because we need total mobility.
    tpfa_eff_trans_compute(const_cast<UnstructuredGrid*>(&grid), totmob.data(),
                           htrans.data(), trans_all.data());
    // Still explicit, and no upwinding!
    V mobtransf(num_internal);
    for (int fi = 0; fi < num_internal; ++fi) {
        mobtransf[fi] = trans_all[ops.internal_faces[fi]];
    }
    std::cerr << "Property arrays " << clock.secsSinceLast() << std::endl;

    // Initial pressure.
    V p0(nc,1);
    p0.fill(200*Opm::unit::barsa);

    // First actual AD usage: defining pressure variable.
    const std::vector<int> bpat = { nc };
    // Could actually write { nc } instead of bpat below,
    // but we prefer a named variable since we will repeat it.
    const ADB p = ADB::variable(0, p0, bpat);
    const ADB ngradp = ops.ngrad*p;
    // We want flux = totmob*trans*(p_i - p_j) for the ij-face.
    const ADB flux = mobtransf*ngradp;
    const ADB residual = ops.div*flux - q;
    std::cerr << "Construct AD residual " << clock.secsSinceLast() << std::endl;

    // It's the residual we want to be zero. We know it's linear in p,
    // so we just need a single linear solve. Since we have formulated
    // ourselves with a residual and jacobian we do this with a single
    // Newton step (hopefully easy to extend later):
    //   p = p0 - J(p0) \ R(p0)
    // Where R(p0) and J(p0) are contained in residual.value() and
    // residual.derived()[0].

#if HAVE_SUITESPARSE_UMFPACK_H
    typedef Eigen::UmfPackLU<S> LinSolver;
#else
    typedef Eigen::BiCGSTAB<S>  LinSolver;
#endif  // HAVE_SUITESPARSE_UMFPACK_H

    LinSolver solver;
    S pmatr;
    residual.derivative()[0].toSparse(pmatr);
    pmatr.coeffRef(0,0) *= 2.0;
    pmatr.makeCompressed();
    solver.compute(pmatr);
    if (solver.info() != Eigen::Success) {
        std::cerr << "Pressure/flow Jacobian decomposition error\n";
        return EXIT_FAILURE;
    }
    // const Eigen::VectorXd dp = solver.solve(residual.value().matrix());
    ADB::V residual_v = residual.value();
    const V dp = solver.solve(residual_v.matrix()).array();
    if (solver.info() != Eigen::Success) {
        std::cerr << "Pressure/flow solve failure\n";
        return EXIT_FAILURE;
    }
    const V p1 = p0 - dp;
    std::cerr << "Solve " << clock.secsSinceLast() << std::endl;
    // std::cout << p1 << std::endl;

    // ------ Transport solve ------

    // Now we'll try to do a transport step as well.
    // Residual formula is
    //   R_w = s_w - s_w^0 + dt/pv * (div v_w)
    // where
    //   v_w = f_w v
    // and f_w is (for now) based on averaged mobilities, not upwind.

    double res_norm = 1e100;
    const V sw0 = s0.leftCols<1>();
    // V sw1 = sw0;
    V sw1 = 0.5*V::Ones(nc,1);
    const V ndp = (ops.ngrad * p1.matrix()).array();
    const V dflux = mobtransf * ndp;
    const Opm::UpwindSelector<double> upwind(grid, ops, dflux);
    const V pv = Eigen::Map<const V>(props.porosity(), nc, 1)
        * Eigen::Map<const V>(grid.cell_volumes, nc, 1);
    const double dt = 0.0005;
    const V dtpv = dt/pv;
    const V qneg = q.min(V::Zero(nc,1));
    const V qpos = q.max(V::Zero(nc,1));

    std::cout.setf(std::ios::scientific);
    std::cout.precision(16);

    int it = 0;
    do {
        const ADB sw = ADB::variable(0, sw1, bpat);
        const std::vector<ADB> pmobc = phaseMobility<ADB>(props, allcells, sw.value());
        const std::vector<ADB> pmobf = upwind.select(pmobc);
        const ADB fw_cell = fluxFunc(pmobc);
        const ADB fw_face = fluxFunc(pmobf);
        const ADB flux1 = fw_face * dflux;
        const ADB qtr_ad = qpos + fw_cell*qneg;
        const ADB transport_residual = sw - sw0 + dtpv*(ops.div*flux1 - qtr_ad);
        res_norm = transport_residual.value().matrix().norm();
        std::cout << "res_norm[" << it << "] = "
                  << res_norm << std::endl;

        S smatr;
        transport_residual.derivative()[0].toSparse(smatr);
        smatr.makeCompressed();
        solver.compute(smatr);
        if (solver.info() != Eigen::Success) {
            std::cerr << "Transport Jacobian decomposition error\n";
            return EXIT_FAILURE;
        }
        ADB::V transport_residual_v = transport_residual.value();
        const V ds = solver.solve(transport_residual_v.matrix()).array();
        if (solver.info() != Eigen::Success) {
            std::cerr << "Transport solve failure\n";
            return EXIT_FAILURE;
        }
        sw1 = sw.value() - ds;
        std::cerr << "Solve for s[" << it << "]: "
                  << clock.secsSinceLast() << '\n';
        sw1 = sw1.min(V::Ones(nc,1)).max(V::Zero(nc,1));

        it += 1;
    } while (res_norm > 1e-7);

    std::cout << "Saturation solution:\n"
              << "function s1 = solution\n"
              << "s1 = [\n" << sw1 << "\n];\n";
}
catch (const std::exception &e) {
    std::cerr << "Program threw an exception: " << e.what() << "\n";
    throw;
}