OSG::NodeTransitPtr createLabeledTorus(OSG::Vec3f trans, int idx) { OSG::NodeTransitPtr node = OSG::Node::create(); OSG::TransformRefPtr xform = OSG::Transform::create(); OSG::Matrix mat; // --- setup transform ------------------ mat.setIdentity(); mat.setTranslate(trans); xform->setMatrix(mat); node->setCore(xform); // --- setup label ---------------------- OSG::NodeRefPtr labelNode = OSG::Node::create(); OSG::LabelRefPtr label = (idx) ? createTextLabel(idx) : createIconLabel(); updateLabelParams(label, idx); labelNode->setCore(label); // --- add torus ------------------------ labelNode->addChild(OSG::makeTorus(.5, 2, 16, 16)); node->addChild(labelNode); return node; }
int main(int argc, char* argv[]) { std::cerr << argv[0] << ". Press 'h' for keys" << std::endl; // Init OSG and glut. OSG::osgInit(argc,argv); { int winid = setupGLUT(&argc, argv); OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); printFontFamilies(); // load the scene OSG::NodeRefPtr scene = OSG::Node::create(); scene->setCore(OSG::Group::create()); // Setup text sample gTextStuff = new TextStuff(); gTextStuff->initialize(); gTextStuff->updateFace(); gTextStuff->updateScene(); scene->addChild(gTextStuff->mRootNode); mgr = new OSG::SimpleSceneManager; // Tell the manager about the window and scene mgr->setWindow(gwin ); mgr->setRoot(scene); // Start it up mgr->showAll(); } glutMainLoop(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); /* open a new scope, because the pointers below should go out of scope before entering glutMainLoop. Otherwise OpenSG will complain about objects being alive after shutdown. */ { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); /* create the scene In the previous example, the colors and positions used the same indices. That might not always be the preferred way, and it might not make sense for other properties, e.g. normals. It is possible to assign a different index for every property. See the indices section below for details. The initial setup is the same as in 06indexgeometry */ OSG::GeoUInt8PropertyRefPtr type = OSG::GeoUInt8Property::create(); type->addValue(GL_POLYGON ); type->addValue(GL_TRIANGLES); type->addValue(GL_QUADS ); OSG::GeoUInt32PropertyRefPtr lens = OSG::GeoUInt32Property::create(); lens->addValue(4); lens->addValue(6); lens->addValue(8); // positions OSG::GeoPnt3fPropertyRefPtr pnts = OSG::GeoPnt3fProperty::create(); // the base pnts->addValue(OSG::Pnt3f(-1, -1, -1)); pnts->addValue(OSG::Pnt3f(-1, -1, 1)); pnts->addValue(OSG::Pnt3f( 1, -1, 1)); pnts->addValue(OSG::Pnt3f( 1, -1, -1)); // the roof base pnts->addValue(OSG::Pnt3f(-1, 0, -1)); pnts->addValue(OSG::Pnt3f(-1, 0, 1)); pnts->addValue(OSG::Pnt3f( 1, 0, 1)); pnts->addValue(OSG::Pnt3f( 1, 0, -1)); // the gable pnts->addValue(OSG::Pnt3f( 0, 1, -1)); pnts->addValue(OSG::Pnt3f( 0, 1, 1)); // colors OSG::GeoVec3fPropertyRefPtr colors = OSG::GeoVec3fProperty::create(); colors->push_back(OSG::Color3f(1, 1, 0)); colors->push_back(OSG::Color3f(1, 0, 0)); colors->push_back(OSG::Color3f(1, 0, 0)); colors->push_back(OSG::Color3f(1, 1, 0)); colors->push_back(OSG::Color3f(0, 1, 1)); colors->push_back(OSG::Color3f(1, 0, 1)); /* A new property: normals. They are used for lighting calculations and have to point away from the surface. Normals are standard vectors. */ OSG::GeoVec3fPropertyRefPtr norms = OSG::GeoVec3fProperty::create(); norms->push_back(OSG::Vec3f(-1, 0, 0)); norms->push_back(OSG::Vec3f( 1, 0, 0)); norms->push_back(OSG::Vec3f( 0, -1, 0)); norms->push_back(OSG::Vec3f( 0, 1, 0)); norms->push_back(OSG::Vec3f( 0, 0, -1)); norms->push_back(OSG::Vec3f( 0, 0, 1)); /* To use more than one index for a geometry, create multiple GeoUInt32Property (or GeoUInt8Property or GeoUInt16Property) objects and add them as index for the corresponding property you want to index. */ OSG::GeoUInt32PropertyRefPtr ind1 = OSG::GeoUInt32Property::create(); OSG::GeoUInt32PropertyRefPtr ind2 = OSG::GeoUInt32Property::create(); // fill first index (will be used for positions) ind1->push_back(0); // polygon ind1->push_back(1); ind1->push_back(2); ind1->push_back(3); ind1->push_back(7); // triangle 1 ind1->push_back(4); ind1->push_back(8); ind1->push_back(5); // triangle 2 ind1->push_back(6); ind1->push_back(9); ind1->push_back(1); // quad 1 ind1->push_back(2); ind1->push_back(6); ind1->push_back(5); ind1->push_back(3); // quad 2 ind1->push_back(0); ind1->push_back(4); ind1->push_back(7); // fill second index (will be used for colors/normals) ind2->push_back(3); // polygon ind2->push_back(3); ind2->push_back(3); ind2->push_back(3); ind2->push_back(4); // triangle 1 ind2->push_back(4); ind2->push_back(4); ind2->push_back(5); // triangle 2 ind2->push_back(5); ind2->push_back(5); ind2->push_back(5); // quad 1 ind2->push_back(5); ind2->push_back(5); ind2->push_back(5); ind2->push_back(4); // quad 2 ind2->push_back(4); ind2->push_back(4); ind2->push_back(4); /* Put it all together into a Geometry NodeCore. */ OSG::GeometryRefPtr geo = OSG::Geometry::create(); geo->setTypes (type); geo->setLengths (lens); /* Set the properties and indices used to index them. Calling geo->setProperty(pnts, Geometry::PositionsIndex) is the same as calling geo->setPositions(pnts), but this way it is more obvious which properties and indices go together. */ geo->setProperty(pnts, OSG::Geometry::PositionsIndex); geo->setIndex (ind1, OSG::Geometry::PositionsIndex); geo->setProperty(norms, OSG::Geometry::NormalsIndex ); geo->setIndex (ind2, OSG::Geometry::NormalsIndex ); geo->setProperty(colors, OSG::Geometry::ColorsIndex ); geo->setIndex (ind2, OSG::Geometry::ColorsIndex ); geo->setMaterial (OSG::getDefaultMaterial()); // put the geometry core into a node OSG::NodeRefPtr n = OSG::Node::create(); n->setCore(geo); // add a transformation to make it move OSG::NodeRefPtr scene = OSG::Node::create(); trans = OSG::Transform::create(); scene->setCore(trans); scene->addChild(n); OSG::commitChanges(); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); // tell the manager what to manage mgr->setWindow(gwin ); mgr->setRoot (scene); // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the scene _scene = OSG::makeCoredNode<OSG::Group>(); // create four lights sharing the same beacon. OSG::TransformRefPtr light_trans; OSG::NodeRefPtr light_beacon = OSG::makeCoredNode<OSG::Transform>(&light_trans); light_trans->editMatrix().setTranslate(0.0, 0.0, 10.0); // red light. OSG::PointLightRefPtr light1_core; OSG::NodeRefPtr light1 = OSG::makeCoredNode<OSG::PointLight>(&light1_core); light1_core->setAmbient(0.0,0.0,0.0,1); light1_core->setDiffuse(1.0,0.0,0.0,1); light1_core->setSpecular(0.8f,0.8f,0.8f,1); light1_core->setBeacon(light_beacon); light1_core->setOn(true); // green light. OSG::PointLightRefPtr light2_core; OSG::NodeRefPtr light2 = OSG::makeCoredNode<OSG::PointLight>(&light2_core); light2_core->setAmbient(0.0,0.0,0.0,1); light2_core->setDiffuse(0.0,1.0,0.0,1); light2_core->setSpecular(0.8f,0.8f,0.8f,1); light2_core->setBeacon(light_beacon); light2_core->setOn(true); // blue light. OSG::PointLightRefPtr light3_core; OSG::NodeRefPtr light3 = OSG::makeCoredNode<OSG::PointLight>(&light3_core); light3_core->setAmbient(0.0,0.0,0.0,1); light3_core->setDiffuse(0.0,0.0,1.0,1); light3_core->setSpecular(0.8f,0.8f,0.8f,1); light3_core->setBeacon(light_beacon); light3_core->setOn(true); // white light. OSG::PointLightRefPtr light4_core; OSG::NodeRefPtr light4 = OSG::makeCoredNode<OSG::PointLight>(&light4_core); light4_core->setAmbient(0.0,0.0,0.0,1); light4_core->setDiffuse(1.0,1.0,1.0,1); light4_core->setSpecular(0.0,0.0,0.0,1); light4_core->setBeacon(light_beacon); light4_core->setOn(true); OSG::NodeRefPtr bottom = OSG::makePlane(25.0, 25.0, 128, 128); // create three spheres. OSG::NodeRefPtr sphere1 = OSG::makeLatLongSphere(50, 50, 1.0); OSG::TransformRefPtr sphere1_trans_core; OSG::NodeRefPtr sphere1_trans = OSG::makeCoredNode<OSG::Transform>(&sphere1_trans_core); sphere1_trans_core->editMatrix().setTranslate(-5.0, 0.0, 5.0); sphere1_trans->addChild(sphere1); OSG::NodeRefPtr sphere2 = OSG::makeLatLongSphere(50, 50, 1.0); OSG::TransformRefPtr sphere2_trans_core; OSG::NodeRefPtr sphere2_trans = OSG::makeCoredNode<OSG::Transform>(&sphere2_trans_core); sphere2_trans_core->editMatrix().setTranslate(0.0, 0.0, 5.0); sphere2_trans->addChild(sphere2); OSG::NodeRefPtr sphere3 = OSG::makeLatLongSphere(50, 50, 1.0); OSG::TransformRefPtr sphere3_trans_core; OSG::NodeRefPtr sphere3_trans = OSG::makeCoredNode<OSG::Transform>(&sphere3_trans_core); sphere3_trans_core->editMatrix().setTranslate(5.0, 0.0, 5.0); sphere3_trans->addChild(sphere3); light1->addChild(sphere1_trans); light2->addChild(sphere2_trans); light3->addChild(sphere3_trans); light4->addChild(bottom); _scene->addChild(light_beacon); _scene->addChild(light1); _scene->addChild(light2); _scene->addChild(light3); _scene->addChild(light4); OSG::commitChanges(); // create the SimpleSceneManager helper _mgr = new OSG::SimpleSceneManager; // tell the manager what to manage _mgr->setWindow(gwin ); _mgr->setRoot (_scene); _mgr->turnHeadlightOff(); // show the whole scene _mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// // Initialize GLUT & OpenSG and set up the scene // int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); mgr->setWindow(gwin); // create a pretty simple graph: a Group with two Transforms as children, // each of which carries a single Geometry. // The scene OSG::NodeRefPtr scene = OSG::Node::create(); // The cylinder and its transformation OSG::NodeRefPtr cyl = OSG::Node::create(); OSG::GeometryRefPtr cylgeo = OSG::makeCylinderGeo( 1.4f, .3f, 24, true, true, true ); cyl->setCore(cylgeo); cyltrans = OSG::Transform::create(); OSG::NodeRefPtr cyltransnode = OSG::Node::create(); cyltransnode->setCore (cyltrans); cyltransnode->addChild(cyl ); // add it to the scene scene->addChild(cyltransnode); // The torus and its transformation OSG::NodeRefPtr torus = OSG::Node::create(); OSG::GeometryRefPtr torusgeo = OSG::makeTorusGeo( .2f, 1, 24, 36 ); torus->setCore(torusgeo); tortrans = OSG::Transform::create(); OSG::NodeRefPtr tortransnode = OSG::Node::create(); tortransnode->setCore (tortrans); tortransnode->addChild(torus ); // add it to the scene scene->addChild(tortransnode); // // create the shader program // OSG::ShaderProgramChunkRefPtr prog_chunk = OSG::ShaderProgramChunk::create(); OSG::ShaderProgramRefPtr vertShader = OSG::ShaderProgram::createVertexShader(); OSG::ShaderProgramRefPtr fragShader = OSG::ShaderProgram::createFragmentShader(); vertShader->setProgram(get_vp_program()); fragShader->setProgram(get_fp_program()); // // binding the unifrom block to a buffer binding point can be performed // either by calling the shaders's addUniformBlock method or by // adding a 'uniform block' variable to a ShaderProgramVariableChunk. // In the following we use both variants for illustration. // fragShader->addUniformBlock("Materials", 1); // block binding point fragShader->addUniformBlock("Lights", 2); // block binding point // // The following is replaced by adding ShaderProgramVariableChunk objects // to the chunk material. See below... // // fragShader->addUniformBlock("GeomState", 3); // block binding point prog_chunk->addShader(vertShader); prog_chunk->addShader(fragShader); // // create uniform buffer objects and corresponding materials // OSG::UniformBufferObjChunkRefPtr ubo_material_database = create_material_database_state(materials); ubo_light_state = create_light_state(lights); OSG::PolygonChunkRefPtr polygon_chunk = OSG::PolygonChunk::create(); polygon_chunk->setFrontMode(GL_FILL); polygon_chunk->setBackMode(GL_FILL); polygon_chunk->setCullFace(GL_NONE); OSG::DepthChunkRefPtr depth_chunk = OSG::DepthChunk::create(); depth_chunk->setEnable(true); OSG::ChunkMaterialRefPtr prog_state = OSG::ChunkMaterial::create(); prog_state->addChunk(ubo_material_database, 1); // buffer binding point 1 prog_state->addChunk(ubo_light_state, 2); // buffer binding point 2 prog_state->addChunk(prog_chunk); prog_state->addChunk(polygon_chunk); prog_state->addChunk(depth_chunk); OSG::ShaderProgramVariableChunkRefPtr shader_var_chunk = OSG::ShaderProgramVariableChunk::create(); shader_var_chunk->addUniformBlock("GeomState", 3); GeomState geom1; geom1.material_index = dist(generator); OSG::ChunkMaterialRefPtr geom1_state = OSG::ChunkMaterial::create(); ubo_geom_state_1 = create_geometry_material_state(geom1); geom1_state->addChunk(ubo_geom_state_1, 3); // buffer binding point 3 geom1_state->addChunk(shader_var_chunk); // block binding point GeomState geom2; geom2.material_index = dist(generator); OSG::ChunkMaterialRefPtr geom2_state = OSG::ChunkMaterial::create(); ubo_geom_state_2 = create_geometry_material_state(geom2); geom2_state->addChunk(ubo_geom_state_2, 3); // buffer binding point 3 geom1_state->addChunk(shader_var_chunk); // block binding point cylgeo ->setMaterial(geom1_state); torusgeo->setMaterial(geom2_state); OSG::MaterialChunkOverrideGroupRefPtr mgrp = OSG::MaterialChunkOverrideGroup::create(); mgrp->setMaterial(prog_state); scene->setCore(mgrp); OSG::commitChanges(); mgr->setRoot(scene); // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { OSG::preloadSharedObject("OSGFileIO"); OSG::preloadSharedObject("OSGTBFileIO"); OSG::preloadSharedObject("OSGImageFileIO"); // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the scene // create a pretty simple graph: a Group with two Transforms as children, // each of which carries a single Geometry. // The scene group OSG::NodeRefPtr scene = OSG::Node::create(); OSG::GroupRefPtr g = OSG::Group::create(); scene->setCore(g); // The cylinder and its transformation OSG::NodeRefPtr cyl = OSG::Node::create(); OSG::GeometryRefPtr cylgeo = OSG::makeCylinderGeo( 1.4f, .3f, 64, true, true, true ); cyl->setCore(cylgeo); cyltrans = OSG::Transform::create(); OSG::NodeRefPtr cyltransnode = OSG::Node::create(); cyltransnode->setCore (cyltrans); cyltransnode->addChild(cyl ); // add it to the scene scene->addChild(cyltransnode); // The torus and its transformation OSG::NodeRefPtr torus = OSG::Node::create(); OSG::GeometryRefPtr torusgeo = OSG::makeTorusGeo( .2f, 1, 32, 64 ); torus->setCore(torusgeo); tortrans = OSG::Transform::create(); OSG::NodeRefPtr tortransnode = OSG::Node::create(); tortransnode->setCore (tortrans); tortransnode->addChild(torus ); // add it to the scene scene->addChild(tortransnode); // create the materials: Here, just using cgfx materials. OSG::CgFXMaterialRefPtr mat1 = OSG::CgFXMaterial::create(); if(argc > 1) { mat1->setEffectFile(argv[1]); } // assign the material to the geometry cylgeo->setMaterial(mat1); // assign the material to the geometry torusgeo->setMaterial(mat1); OSG::commitChanges(); // create the SimpleSceneManager helper mgr = new OSG::SimpleSceneManager; // tell the manager what to manage mgr->setWindow(gwin ); // file io OSG::FCFileType::FCPtrStore Containers; Containers.insert(scene); //Use an empty Ignore types vector OSG::FCFileType::FCTypeVector IgnoreTypes; //IgnoreTypes.push_back(Node::getClassType().getId()); //Write the Field Containers to a xml file OSG::FCFileHandler::the()->write(Containers,OSG::BoostPath("C:/Users/danielg/Desktop/test.xml"),IgnoreTypes); //Read FieldContainers from an XML file OSG::FCFileType::FCPtrStore NewContainers; NewContainers = OSG::FCFileHandler::the()->read(OSG::BoostPath("C://Users//danielg//Documents//VirtualCellData//trunk//Artwork//Models//Vehicles_and_Tools//Protein_Ship//Ship_Export_Test.dae")); //Write the read FieldContainers to an XML file // OSG::FCFileHandler::the()->write(NewContainers,OSG::BoostPath("C:/Users/danielg/Desktop/test2.xml"),IgnoreTypes); //NewContainers.clear(); // NewContainers = OSG::FCFileHandler::the()->read(OSG::BoostPath("C:/Users/danielg/Desktop/test2.xml")); OSG::FCFileType::FCPtrStore::iterator itor = NewContainers.begin(); OSG::FCFileType::FCPtrStore::iterator endIt = NewContainers.end(); OSG::NodeRefPtr root; for(; itor != endIt; itor++) { OSG::Node *cur = OSG::dynamic_pointer_cast<OSG::Node>((*itor)); if(cur != NULL) { if(cur->getParent() == NULL) { root = cur; //mgr->setRoot(cur); break; } } } std::string filepath("C://Users//danielg//Desktop//test.osb"); OSG::SceneFileHandler::the()->write(root,filepath.c_str()); root = OSG::SceneFileHandler::the()->read(filepath.c_str()); if(root != NULL) { mgr->setRoot(root); } else { std::cout << std::endl << "ERROR READING THE OSB FILE BACK IN~~~~!" << std::endl; } // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the scene // this time, create just the core of the geometry OSG::GeometryRefPtr torus = OSG::makeTorusGeo( .5, 2, 8, 12 ); // create the scene // the scene has a single group with ncopies transformations below, // each of these carries a Node that shares the geometry /* The Switch NodeCore very similar to the Group, but it has the additional capability to only show one or none of its children. This is controlled by the choice Field, and is used below in the keys function. */ // create the root Switch node OSG::NodeRefPtr scene = OSG::Node::create(); sw = OSG::Switch::create(); sw->setChoice(OSG::Switch::ALL); scene->setCore(sw); // create the copied geometry nodes and their transformations for(OSG::UInt16 i = 0; i<ncopies; ++i) { // create the nodes for the shared Geometry core OSG::NodeRefPtr geonode = OSG::Node::create(); // assign the Core to the Node geonode->setCore(torus); // add a transformation for every Geometry OSG::NodeRefPtr transnode = OSG::Node::create(); trans[i] = OSG::Transform::create(); transnode->setCore (trans[i]); transnode->addChild(geonode ); scene->addChild(transnode); } OSG::commitChanges(); // create the SimpleSceneManager helper mgr = new OSG::SimpleSceneManager; // tell the manager what to manage mgr->setWindow(gwin ); mgr->setRoot (scene); // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// // Initialize GLUT & OpenSG and set up the scene // int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); mgr->setWindow(gwin); // create a pretty simple graph: a Group with two Transforms as children, // each of which carries a single Geometry. // The scene OSG::NodeRefPtr scene = OSG::Node::create(); // The cylinder and its transformation OSG::NodeRefPtr cyl = OSG::Node::create(); OSG::GeometryRefPtr cylgeo = OSG::makeCylinderGeo( 1.4f, .3f, 24, true, true, true ); cyl->setCore(cylgeo); cyltrans = OSG::Transform::create(); OSG::NodeRefPtr cyltransnode = OSG::Node::create(); cyltransnode->setCore (cyltrans); cyltransnode->addChild(cyl ); // add it to the scene scene->addChild(cyltransnode); // The torus and its transformation OSG::NodeRefPtr torus = OSG::Node::create(); OSG::GeometryRefPtr torusgeo = OSG::makeTorusGeo( .2f, 1, 24, 36 ); torus->setCore(torusgeo); tortrans = OSG::Transform::create(); OSG::NodeRefPtr tortransnode = OSG::Node::create(); tortransnode->setCore (tortrans); tortransnode->addChild(torus ); // add it to the scene scene->addChild(tortransnode); // // create the shader program // OSG::ShaderProgramChunkRefPtr prog_chunk = OSG::ShaderProgramChunk::create(); OSG::ShaderProgramRefPtr vertShader = OSG::ShaderProgram::createVertexShader(); OSG::ShaderProgramRefPtr fragShader = OSG::ShaderProgram::createFragmentShader(); vertShader->setProgram(get_vp_program()); fragShader->setProgram(get_fp_program()); // // binding the shader storage block to a buffer binding point can be performed // either by calling the shaders's addShaderStorageBlock method or by // adding a 'buffer block' variable to a ShaderProgramVariableChunk. // In the following we use both variants for illustration. // fragShader->addShaderStorageBlock("ExampleBlock", 1); // block binding point prog_chunk->addShader(vertShader); prog_chunk->addShader(fragShader); // // create shader storage buffer object for block 'ExampleBlock' // OSG::MultiPropertySSBOChunkRefPtr ssbo_example_block = create_example_block_state(); OSG::PolygonChunkRefPtr polygon_chunk = OSG::PolygonChunk::create(); polygon_chunk->setFrontMode(GL_FILL); polygon_chunk->setBackMode(GL_FILL); polygon_chunk->setCullFace(GL_NONE); OSG::DepthChunkRefPtr depth_chunk = OSG::DepthChunk::create(); depth_chunk->setEnable(true); OSG::ChunkMaterialRefPtr prog_state = OSG::ChunkMaterial::create(); prog_state->addChunk(ssbo_example_block, 1); // buffer binding point 1 prog_state->addChunk(prog_chunk); prog_state->addChunk(polygon_chunk); prog_state->addChunk(depth_chunk); OSG::MaterialChunkOverrideGroupRefPtr mgrp = OSG::MaterialChunkOverrideGroup::create(); mgrp->setMaterial(prog_state); scene->setCore(mgrp); OSG::commitChanges(); mgr->setRoot(scene); // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { printf("Press key '1' or '2' to switch between one and two light sources.\n"); // OSG init OSG::osgInit(argc,argv); globals = new GlobalObjects; // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // GLUT init int winid = setupGLUT(&argc, argv); globals->gwin = OSG::GLUTWindow::create(); /* Construct a scene with a ground plane, some objects and two lights. Nothing very interesting at this point. See further down for the part relevant to shadows. */ globals->rootNode = OSG::makeCoredNode<OSG::Group>(); OSG::NodeRefPtr scene = OSG::makeCoredNode<OSG::Group>(); // create lights OSG::TransformRefPtr point1_trans; OSG::NodeRefPtr point1 = OSG::makeCoredNode<OSG::PointLight>(&globals->point1_core); OSG::NodeRefPtr point1_beacon = OSG::makeCoredNode<OSG::Transform >(&point1_trans); point1_trans->editMatrix().setTranslate(0.0, 0.0, 15.0); globals->point1_core->setAmbient(0.15f,0.15f,0.15f,1); globals->point1_core->setDiffuse(0.4f,0.4f,0.4f,1); globals->point1_core->setSpecular(0.0f,0.0f,0.0f,1); globals->point1_core->setBeacon(point1_beacon); globals->point1_core->setOn(true); OSG::TransformRefPtr point2_trans; OSG::NodeRefPtr point2 = OSG::makeCoredNode<OSG::PointLight>(&globals->point2_core); OSG::NodeRefPtr point2_beacon = OSG::makeCoredNode<OSG::Transform >(&point2_trans); point2_trans->editMatrix().setTranslate(2.5, 2.5, 15.0); globals->point2_core->setAmbient(0.15f,0.15f,0.15f,1); globals->point2_core->setDiffuse(0.4f,0.4f,0.4f,1); globals->point2_core->setSpecular(0.0f,0.0f,0.0f,1); globals->point2_core->setBeacon(point2_beacon); globals->point2_core->setOn(true); point1->addChild(point2); point2->addChild(scene ); // create scene // bottom OSG::NodeRefPtr plane = OSG::makePlane(25.0, 25.0, 128, 128); OSG::UChar8 imgdata[] = { 255,0,0, 0,255,0, 0,0,255, 255,255,0 }; OSG::ImageRefPtr plane_img = OSG::Image::create(); plane_img->set(OSG::Image::OSG_RGB_PF, 2, 2, 1, 1, 1, 0, imgdata); OSG::TextureObjChunkRefPtr plane_tex = OSG::TextureObjChunk::create(); plane_tex->setImage(plane_img); plane_tex->setMinFilter(GL_LINEAR); plane_tex->setMagFilter(GL_LINEAR); plane_tex->setWrapS(GL_REPEAT); plane_tex->setWrapT(GL_REPEAT); OSG::TextureEnvChunkRefPtr plane_tex_env = OSG::TextureEnvChunk::create(); plane_tex_env->setEnvMode(GL_MODULATE); OSG::SimpleMaterialRefPtr plane_mat = OSG::SimpleMaterial::create(); plane_mat->setAmbient(OSG::Color3f(0.3f,0.3f,0.3f)); plane_mat->setDiffuse(OSG::Color3f(1.0f,1.0f,1.0f)); plane_mat->addChunk(plane_tex); plane_mat->addChunk(plane_tex_env); OSG::GeometryRefPtr plane_geo = dynamic_cast<OSG::Geometry *>(plane->getCore()); plane_geo->setMaterial(plane_mat); // box OSG::NodeRefPtr box_trans_node = OSG::makeCoredNode<OSG::Transform>(&globals->box_trans); globals->box_trans->editMatrix().setTranslate(0.0, 0.0, 2.0); OSG::NodeRefPtr box = OSG::makeBox(8.0f, 8.0f, 0.8f, 10, 10 , 10); box_trans_node->addChild(box); OSG::SimpleMaterialRefPtr box_mat = OSG::SimpleMaterial::create(); box_mat->setAmbient(OSG::Color3f(0.0f,0.0f,0.0f)); box_mat->setDiffuse(OSG::Color3f(0.0f,0.0f,1.0f)); OSG::GeometryRefPtr box_geo = dynamic_cast<OSG::Geometry *>(box->getCore()); box_geo->setMaterial(box_mat); // cylinder1 OSG::NodeRefPtr cylinder1_trans_node = OSG::makeCoredNode<OSG::Transform>(&globals->cylinder1_trans); globals->cylinder1_trans->editMatrix().setTranslate(0.0, 0.0, 5.0); OSG::NodeRefPtr cylinder1 = OSG::makeCylinder(10.0f, 0.4f, 32, true, true ,true); cylinder1_trans_node->addChild(cylinder1); OSG::SimpleMaterialRefPtr cylinder1_mat = OSG::SimpleMaterial::create(); cylinder1_mat->setAmbient(OSG::Color3f(0.0,0.0,0.0)); cylinder1_mat->setDiffuse(OSG::Color3f(1.0,0.0,0.0)); OSG::GeometryRefPtr cylinder1_geo = dynamic_cast<OSG::Geometry *>(cylinder1->getCore()); cylinder1_geo->setMaterial(cylinder1_mat); // cylinder2 OSG::NodeRefPtr cylinder2_trans_node = OSG::makeCoredNode<OSG::Transform>(&globals->cylinder2_trans); globals->cylinder2_trans->editMatrix().setTranslate(0.0, 0.0, 8.0); OSG::NodeRefPtr cylinder2 = OSG::makeCylinder(10.0f, 0.4f, 32, true, true ,true); cylinder2_trans_node->addChild(cylinder2); OSG::SimpleMaterialRefPtr cylinder2_mat = OSG::SimpleMaterial::create(); cylinder2_mat->setAmbient(OSG::Color3f(0.0,0.0,0.0)); cylinder2_mat->setDiffuse(OSG::Color3f(0.0,1.0,0.0)); OSG::GeometryRefPtr cylinder2_geo = dynamic_cast<OSG::Geometry *>(cylinder2->getCore()); cylinder2_geo->setMaterial(cylinder2_mat); // scene scene->addChild(plane); scene->addChild(box_trans_node); scene->addChild(cylinder1_trans_node); scene->addChild(cylinder2_trans_node); globals->rootNode->addChild(point1); globals->rootNode->addChild(point1_beacon); globals->rootNode->addChild(point2_beacon); globals->gwin->setGlutId(winid); globals->gwin->init(); /* SHADOWS Shadows are implemented as LightEngines (every Light can have one to augment it's regular effect). */ // create the engines OSG::SimpleShadowMapEngineRefPtr ssme1 = OSG::SimpleShadowMapEngine::create(); OSG::SimpleShadowMapEngineRefPtr ssme2 = OSG::SimpleShadowMapEngine::create(); // add them to the light sources globals->point1_core->setLightEngine(ssme1); globals->point2_core->setLightEngine(ssme2); ssme1->setWidth (SM_RESOLUTION); ssme1->setHeight(SM_RESOLUTION); ssme1->setShadowColor(OSG::Color4f(0.1f, 0.1f, 0.1f, 1.0f)); ssme2->setWidth (SM_RESOLUTION); ssme2->setHeight(SM_RESOLUTION); OSG::Vec3f min,max; globals->rootNode->updateVolume(); globals->rootNode->getVolume ().getBounds( min, max ); OSG::commitChanges(); // create the SimpleSceneManager helper globals->mgr = OSG::SimpleSceneManager::create(); globals->mgr->setWindow(globals->gwin ); globals->mgr->setRoot (globals->rootNode); globals->mgr->turnHeadlightOff(); globals->mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
int main(int argc, char **argv) { // we need to load some relative images and geometry files. // to make this work reliable (e.g. starting the tutorial via link) // we use the argv[0] parameter. #ifdef WIN32 std::string sep("\\"); #else std::string sep("/"); #endif std::string path = argv[0]; // remove app name std::string::size_type i = path.rfind(sep); if(i != std::string::npos) path = path.substr(0, i); // set the current dir to the application dir. OSG::Directory::setCurrent(path.c_str()); // OSG init OSG::osgInit(argc, argv); /* Initialize GLUT state - glut will take any command line arguments that pertain to it or X Windows - look at its documentation at http://reality.sgi.com/mjk/spec3/spec3.html */ glutInit(&argc, argv); /* Select type of Display mode: Double buffer RGBA color Alpha components supported (use GLUT_ALPHA) Depth buffer */ glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH ); /* get a 640 x 480 window */ //glutInitWindowSize(640, 480); glutInitWindowSize(Width, Height); /* the window starts at the upper left corner of the screen */ glutInitWindowPosition(300, 0); /* Open a window */ window = glutCreateWindow("Oz, Mouse Control"); if (m_bFullscreen) glutFullScreen(); glutSetCursor(GLUT_CURSOR_NONE); glutDisplayFunc(&DrawGLScene); // register all GLUT callback functions glutIdleFunc(idleFunc); /* Register the function called when our window is resized. */ glutReshapeFunc(ReSizeGLScene); /* Register the function called when the keyboard is pressed. */ glutKeyboardFunc(keyPressed); /* Register the function called when special keys (arrows, page down, etc) are pressed. */ //glutSpecialFunc(&specialKeyPressed); glutMouseFunc(mouseFunc); glutMotionFunc(motionFunc); glutPassiveMotionFunc(motionFunc); /* Initialize our window. */ InitGL(640, 480); pwin = OSG::PassiveWindow::create(); pwin->init(); /* All scene file loading is handled via the SceneFileHandler. */ world = OSG::SceneFileHandler::the()->read("Data/tie.wrl"); // create the main scene transformation node // 1. create the Node scene =OSG:: Node::create(); // 2. create the core trans = OSG::Transform::create(); // 3. associate the core with the node scene->setCore(trans); scene->addChild(world); // add the world as a child // create the SimpleSceneManager helper - it will be only partially used mgr = new OSG::SimpleSceneManager; // tell the manager what to manage mgr->setWindow(pwin ); mgr->setRoot (scene); if (pwin->getMFPort()->size() != 0) { OSG::PassiveBackgroundRefPtr bg = OSG::PassiveBackground::create(); vp = pwin->getPort(0); cam = dynamic_cast<OSG::PerspectiveCamera *>(vp->getCamera()); newcam = OSG::MatrixCamera::create(); // the MatrixCamera will only be a slave to the OpenGL matrices vp->setCamera(newcam); // replace the cam vp->setBackground(bg); // keep OpenSG from deleting the background, we will do that ourselves if(cam == NULL) exit(1); } else { printf("Could not acquire pointer to camera !!\n"); exit(1); } OSG::commitChanges(); /* Start Event Processing Engine */ glutMainLoop(); return 1; }
// // react to keys // void keyboard(unsigned char k, int, int) { static OSG::Real32 val0 = 0.f; static OSG::Real32 val1 = 0.f; static OSG::Real32 x1 = 0.f; static OSG::Real32 y1 = 0.f; static OSG::Real32 z1 = 0.f; static OSG::Real32 x2 = 0.f; static OSG::Real32 y2 = 0.f; static OSG::Real32 z2 = 0.f; switch(k) { case ' ': { OSG::SceneGraphPrinter sgp(mgr->getRoot()); sgp.printDownTree(std::cout); } break; case '1': // enable/disable clip plane 0 { vecClipPlaneData[0]._enabled = !vecClipPlaneData[0]._enabled; updateClipPlanes(vecClipPlaneData); } break; case '2': // enable/disable clip plane 1 { vecClipPlaneData[1]._enabled = !vecClipPlaneData[1]._enabled; updateClipPlanes(vecClipPlaneData); } break; case '3': // enable/disable box geometry { if(vecGeometries[0] == NULL) { OSG::Matrix matrix; OSG::Vec3f v(10.f, 0.f, 15.f); matrix.setTranslate(v); OSG::GeometryRefPtr boxGeo = OSG::makeBoxGeo(15, 15, 15, 1, 1, 1); OSG::NodeRefPtr boxTree = buildGeoTree(scene, boxGeo, matrix); vecGeometries[0] = boxTree; scene->addChild(boxTree); } else { scene->subChild(vecGeometries[0]); vecGeometries[0] = NULL; } // mgr->showAll(); // mgr->redraw(); } break; case '4': // enable/disable torus geometry { if (vecGeometries[1] == NULL) { OSG::Matrix matrix; OSG::Vec3f v( 0.f, 10.f, 0.f); matrix.setTranslate(v); OSG::GeometryRefPtr torusGeo = OSG::makeTorusGeo(2, 6, 8, 16); OSG::NodeRefPtr torusTree = buildGeoTree(scene, torusGeo, matrix); vecGeometries[1] = torusTree; scene->addChild(torusTree); } else { scene->subChild(vecGeometries[1]); vecGeometries[1] = NULL; } // mgr->showAll(); // mgr->redraw(); } break; case '5': { OSG::SceneFileHandler::the()->write(mgr->getRoot(), "clipplane_model.osb", true); } break; case 'n': // move clip plane 0 opposite to the normal direction of the plane { val0 -= 0.2; vecClipPlaneData[0]._equation[3] = val0; updateClipPlanes(vecClipPlaneData); } break; case 'm': // move clip plane 0 in the normal direction of the plane { val0 += 0.2; vecClipPlaneData[0]._equation[3] = val0; updateClipPlanes(vecClipPlaneData); } break; case ',': // move clip plane 1 opposite to the normal direction of the plane { val1 -= 0.2; vecClipPlaneData[1]._equation[3] = val1; updateClipPlanes(vecClipPlaneData); } break; case '.': // move clip plane 1 in the normal direction of the plane { val1 += 0.2; vecClipPlaneData[1]._equation[3] = val1; updateClipPlanes(vecClipPlaneData); } break; case 'q': // move box in -x direction { x1 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 'w': // move box in +x direction { x1 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 'a': // move box in -y direction { y1 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 's': // move box in +y direction { y1 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 'y': // move box in -z direction { z1 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 'x': // move box in +z direction { z1 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 'e': // move torus in -x direction { x2 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 'r': // move torus in +x direction { x2 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 'd': // move torus in -y direction { y2 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 'f': // move torus in +y direction { y2 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 'c': // move torus in -z direction { z2 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 'v': // move torus in +z direction { z2 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 27: { cleanup(); OSG::osgExit(); exit(0); } break; } glutPostRedisplay(); }
// // build geometry scenegraph Tree // // // We need 3 material groups for the clip plane capping trick: // // scene // | // +--------------------+--------------------+ // | | | // group1 (mat1) group2 (mat2) group3 (mat3) // | | | // geometry (geo1) geometry (geo2) geometry (geo1) // // geo1 : actual geometry to draw // geo2 : plane geometry coincident with the clip plane // // mat1 : has a stencil chunk that clears the stencil buffer first, than // does the inversion, and has a clip plane chunk that enables one // clip plane. Sort key 2*i + 0 with i idx of a clip plane. // mat2 : has a stencil chunk and settings for drawing the clip plane // geometry. All clip planes but the one coincident with the plane // are activated. Sort key 2*i + 0 with i idx of a clip plane. // mat3 : the material used for the actual geometry. All clip planes are // activated. Sort key none. // // For each active clip plane copies of the left two branches need to be // added. // OSG::NodeTransitPtr buildGeoTree( OSG::Node *scene, OSG::Geometry *geo1, const OSG::Matrix &matrix) { // // Parent nodes for the left two branches // VecNodesT vecMaterialNodes1; VecNodesT vecMaterialNodes2; for(int i = 0; i < iNumClipPlanes; ++i) // foreach clip plane { // // Branch 1: Imprint the geometry clip plane intersection into the // stencil buffer. // OSG::NodeRefPtr geomNode = OSG::Node::create(); geomNode->setCore(geo1); OSG::NodeRefPtr materialNode1 = OSG::Node::create(); // // Create stencil material core // OSG::StencilChunkRefPtr stencilChunk1 = OSG::StencilChunk::create(); stencilChunk1->setClearBuffer(1); stencilChunk1->setStencilFunc(GL_NEVER); stencilChunk1->setStencilValue(1); stencilChunk1->setStencilMask(1); stencilChunk1->setStencilOpFail(GL_INVERT); stencilChunk1->setStencilOpZFail(GL_INVERT); stencilChunk1->setStencilOpZPass(GL_INVERT); OSG::ChunkMaterialRefPtr mat1 = OSG::ChunkMaterial::create(); mat1->addChunk(stencilChunk1); mat1->addChunk(vecClipPlaneDetails[i]._clipPlaneChunk); mat1->setSortKey(2 * i + 0); OSG::MaterialGroupRefPtr mgrp1 = OSG::MaterialGroup::create(); mgrp1->setMaterial(mat1); materialNode1->setCore(mgrp1); materialNode1->addChild(geomNode); // the primary geometry vecMaterialNodes1.push_back(materialNode1); // // Branch 2: Draw plane at places were the stencil buffer is set // OSG::NodeRefPtr materialNode2 = OSG::Node ::create(); OSG::StencilChunkRefPtr stencilChunk2 = OSG::StencilChunk::create(); stencilChunk2->setStencilFunc(GL_EQUAL); stencilChunk2->setStencilValue(1); stencilChunk2->setStencilMask(1); stencilChunk2->setStencilOpFail(GL_KEEP); stencilChunk2->setStencilOpZFail(GL_ZERO); stencilChunk2->setStencilOpZPass(GL_ZERO); OSG::SimpleMaterialRefPtr mat2 = OSG::SimpleMaterial::create(); mat2->setDiffuse(vecClipPlaneDetails[i]._planeColor); mat2->setSpecular(OSG::Color3f(1,1,1)); mat2->setLit(true); // // Do clip the plane with all clip planes but the one coincident // with the plane. // for(int j = 0; j < iNumClipPlanes; ++j) { if(i != j) { mat2->addChunk(vecClipPlaneDetails[j]._clipPlaneChunk); } } mat2->addChunk(stencilChunk2); mat2->setSortKey(2 * i + 1); OSG::NodeRefPtr planeGeoNode = OSG::Node::create(); planeGeoNode->setCore(vecClipPlaneDetails[i]._planeGeometryCore); OSG::NodeRefPtr planeTrafoNode = OSG::Node::create(); planeTrafoNode->setCore(vecClipPlaneDetails[i]._planeTrafoCore); planeTrafoNode->addChild(planeGeoNode); // // Neutralize the summed up transformation at this point in the // scenegraph since we are describing the plane in the same frame // as the clip planes, i.e. world coordinates. // OSG::NodeRefPtr planeRootNode = OSG::Node::create(); planeRootNode->setCore(OSG::InverseTransform::create()); planeRootNode->addChild(planeTrafoNode); OSG::MaterialGroupRefPtr mgrp2 = OSG::MaterialGroup::create(); mgrp2->setMaterial(mat2); materialNode2->setCore(mgrp2); materialNode2->addChild(planeRootNode); // plane geometry vecMaterialNodes2.push_back(materialNode2); } // // Finally, set up a branch for drawing the primary geometry // OSG::NodeRefPtr materialNode3 = OSG::Node ::create(); OSG::SimpleMaterialRefPtr mat3 = OSG::SimpleMaterial::create(); mat3->setDiffuse(OSG::Color3f(1,0,0)); mat3->setSpecular(OSG::Color3f(1,1,1)); mat3->setLit(true); // // Clip the geometry with each clip plane // for(int i = 0; i < iNumClipPlanes; ++i)\ { mat3->addChunk(vecClipPlaneDetails[i]._clipPlaneChunk); } OSG::MaterialGroupRefPtr mgrp3 = OSG::MaterialGroup::create(); mgrp3->setMaterial(mat3); OSG::NodeRefPtr geometryNode = OSG::Node::create(); geometryNode->setCore(geo1); materialNode3->setCore (mgrp3); materialNode3->addChild(geometryNode); // // The grouping stage core does suppress a reordering // of the render states. This is necessary because the // stencil states must be rendered in correct order. // There is no state sorting across stages, so that // would ensure that everything below a stage is rendered // together and the sort key can enforce the right order // among those things. // OSG::NodeRefPtr stageNode = OSG::Node::create(); stageNode->setCore(OSG::GroupingStage::create()); OSG::NodeRefPtr clipPlanePartNode = OSG::Node::create(); clipPlanePartNode->setCore(OSG::Group::create()); stageNode->addChild(clipPlanePartNode); for(int i = 0; i < iNumClipPlanes; ++i) { clipPlanePartNode->addChild(vecMaterialNodes1[i]); clipPlanePartNode->addChild(vecMaterialNodes2[i]); } // // The multi switch core is not actually used in this // example. However it could be used to define multiple // render branches and selectively activate and deactivate // them in a given context. // OSG::MultiSwitchRefPtr selectCore = OSG::MultiSwitch::create(); selectCore->setSwitchMode(OSG::MultiSwitch::ALL); // // Add the branches to some parent node. // OSG::NodeRefPtr selectNode = OSG::Node::create(); selectNode->setCore(selectCore); selectNode->addChild(stageNode); selectNode->addChild(materialNode3); // // Finally, the geometry should be transformable // OSG::TransformRefPtr transfCore; OSG::NodeRefPtr transfNode = OSG::makeCoredNode<OSG::Transform>(&transfCore); transfCore->setMatrix(matrix); transfNode->addChild(selectNode); // if using sort keys use this // instead of the former line. return OSG::NodeTransitPtr(transfNode); }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // The scene group OSG::NodeRefPtr scene = OSG::Node::create(); OSG::GroupRefPtr g = OSG::Group::create(); scene->setCore(g); if(argc < 2) { FWARNING(("No file given!\n")); FWARNING(("Supported file formats:\n")); std::list<const char*> suffixes; OSG::SceneFileHandler::the()->getSuffixList(suffixes); for(std::list<const char*>::iterator it = suffixes.begin(); it != suffixes.end(); ++it) { FWARNING(("%s\n", *it)); } fileroot = OSG::makeTorus(.5, 2, 16, 16); } else { fileroot = OSG::SceneFileHandler::the()->read(argv[1]); /* All scene file loading is handled via the SceneFileHandler. */ } scene->addChild(fileroot); // Create a small geometry to show the ray and what was hit // Contains a line and a single triangle. // The line shows the ray, the triangle whatever was hit. OSG::SimpleMaterialRefPtr red = OSG::SimpleMaterial::create(); red->setDiffuse (OSG::Color3f( 1,0,0 )); red->setTransparency(0.5); red->setLit (false); isectPoints = OSG::GeoPnt3fProperty::create(); isectPoints->addValue(OSG::Pnt3f(0,0,0)); isectPoints->addValue(OSG::Pnt3f(0,0,0)); isectPoints->addValue(OSG::Pnt3f(0,0,0)); isectPoints->addValue(OSG::Pnt3f(0,0,0)); isectPoints->addValue(OSG::Pnt3f(0,0,0)); OSG::GeoUInt32PropertyRefPtr index = OSG::GeoUInt32Property::create(); index->addValue(0); index->addValue(1); index->addValue(2); index->addValue(3); index->addValue(4); OSG::GeoUInt32PropertyRefPtr lens = OSG::GeoUInt32Property::create(); lens->addValue(2); lens->addValue(3); OSG::GeoUInt8PropertyRefPtr type = OSG::GeoUInt8Property::create(); type->addValue(GL_LINES); type->addValue(GL_TRIANGLES); testgeocore = OSG::Geometry::create(); testgeocore->setPositions(isectPoints); testgeocore->setIndices(index); testgeocore->setLengths(lens); testgeocore->setTypes(type); testgeocore->setMaterial(red); OSG::NodeRefPtr testgeo = OSG::Node::create(); testgeo->setCore(testgeocore); scene->addChild(testgeo); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); // tell the manager what to manage mgr->setWindow(gwin ); mgr->setRoot (scene); // show the whole scene mgr->showAll(); mgr->getCamera()->setNear(mgr->getCamera()->getNear() / 10); // Show the bounding volumes? Not for now mgr->getRenderAction()->setVolumeDrawing(false); _idbuff = new IDbuffer(); _idbuff->setCamera(mgr->getCamera()); _idbuff->setRoot(scene); } // GLUT main loop glutMainLoop(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // load the scene OSG::NodeRefPtr scene; if(argc < 2) { FWARNING(("No file given!\n")); FWARNING(("Supported file formats:\n")); std::list<const char*> suffixes; OSG::SceneFileHandler::the()->getSuffixList(suffixes, OSG::SceneFileType::OSG_READ_SUPPORTED); for(std::list<const char*>::iterator it = suffixes.begin(); it != suffixes.end(); ++it) { FWARNING(("%s\n", *it)); } scene = OSG::makeTorus(.5, 2, 16, 16); } else { /* All scene file loading is handled via the SceneFileHandler. */ scene = OSG::SceneFileHandler::the()->read(argv[1]); } OSG::commitChanges(); // calc size of the scene OSG::Vec3f min, max; OSG::BoxVolume vol; scene->getWorldVolume(vol); vol.getBounds(min, max); OSG::Vec3f d = max - min; OSG::Real32 offset = d.length() / 2.0f; // now create a deep clone OSG::NodeRefPtr sceneClone = OSG::deepCloneTree(scene); // this clones all nodes but the cores of type Material and Transform are shared. //NodePtr sceneClone = deepCloneTree(scene, "Material, Transform"); // now change all geometries from the cloned scene just to show // that it is a real deep copy. traverse(sceneClone, &changeGeo); // create a small scene graph with two transformation nodes. OSG::NodeRefPtr root = OSG::makeCoredNode<OSG::Group>(); OSG::ComponentTransformRefPtr t1; OSG::NodeRefPtr tn1 = OSG::makeCoredNode<OSG::ComponentTransform>(&t1); OSG::ComponentTransformRefPtr t2; OSG::NodeRefPtr tn2 = OSG::makeCoredNode<OSG::ComponentTransform>(&t2); t1->setTranslation(OSG::Vec3f(- offset, 0.0f, 0.0f)); t2->setTranslation(OSG::Vec3f(offset, 0.0f, 0.0f)); tn1->addChild(scene); tn2->addChild(sceneClone); root->addChild(tn1); root->addChild(tn2); OSG::commitChanges(); // create the SimpleSceneManager helper mgr = new OSG::SimpleSceneManager; // tell the manager what to manage mgr->setWindow(gwin ); mgr->setRoot (root); // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // Args given? if(argc > 1) { if(sscanf(argv[1], "%u", &nlights) != 1) { FWARNING(("Number of lights '%s' not understood.\n", argv[1])); nlights = 3; } } // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); /* A Light defines a source of light in the scene. Generally, two types of information are of interest: The position of the light source (geometry), and what elements of the scene are lit (semantics). Using the position of the light in the graph for geometry allows moving the Light just like any other node, by putting it below a OSG::Transform Node and changing the transformation. This consistency also simplifies attaching Lights to moving parts in the scene: just put them below the same Transform and they will move with the object. The semantic interpretation also makes sense, it lets you restrict the influence area of the light to a subgraph of the scene. This can be used for efficiency, as every active light increases the amount of calculations necessary per vertex, even if the light doesn't influence the vertex, because it is too far away. It can also be used to overcome the restrictions on the number of lights. OpenSG currently only allows 8 concurrently active lights. It is also not difficult to imagine situations where both interpretations are necessary at the same time. Take for example a car driving through a night scene. You'd want to headlights to be fixed to the car and move together with it. But at the same time they should light the houses you're driving by, and not the mountains in the distance. Thus there should be a way to do both at the same time. OpenSG solves this by splitting the two tasks to two Nodes. The Light's Node is for the sematntic part, it defines which object are lit by the Light. FOr the geometrc part the Light keeps a SFNodePtr to a different Node, the so called beacon. The local coordinate system of the beacon provides the reference coordinate system for the light's position. Thus the typical setup of an OpenSG scenegraph starts with a set of lights, which light the whole scene, followed by the actual geometry. Tip: Using the beacon of the camera (see \ref PageSystemWindowCamera) as the beacon of a light source creates a headlight. Every light is closely related to OpenGL's light specification. It has a diffuse, specular and ambient color. Additionally it can be switched on and off using the on field. */ // Create the scene OSG::NodeRefPtr scene = OSG::Node::create(); OSG::GroupRefPtr group = OSG::Group::create(); scene->setCore(group); // create the scene to be lit // a simple torus is fine for now. // You can add more Geometry here if you want to. OSG::NodeRefPtr lit_scene = OSG::makeTorus(.5, 2, 32, 64); // helper node to keep the lights on top of each other OSG::NodeRefPtr lastnode = lit_scene; // create the light sources OSG::Color3f colors[] = { OSG::Color3f(1,0,0), OSG::Color3f(0,1,0), OSG::Color3f(0,0,1), OSG::Color3f(1,1,0), OSG::Color3f(0,1,1), OSG::Color3f(1,0,1), OSG::Color3f(1,1,1), OSG::Color3f(1,1,1) }; if(nlights > 8) { FWARNING(("Currently only 8 lights supported\n")); nlights = 8; } // scale the lights to not overexpose everything. Just a little. OSG::Real32 scale = OSG::osgMax(1., 1.5 / nlights); for(OSG::UInt16 i = 0; i < nlights; ++i) { // create the light source OSG::NodeRefPtr light = OSG::Node::create(); OSG::LightRefPtr light_core; OSG::NodeRefPtr geo_node; switch((i % 3) + 0) { /* The PointLight has a position to define its location. In addition, as it really is located in the scene, it has attenuation parameters to change the light's intensity depending on the distance to the light. Point lights are more expesinve to compute than directional lights, but not quite as expesive as spot lights. If you need to see the localized effects of the light, a point light is a good compromise between speed and quality. */ case 0: { OSG::PointLightRefPtr l = OSG::PointLight::create(); l->setPosition (0, 0, 0); l->setConstantAttenuation (1); l->setLinearAttenuation (0); l->setQuadraticAttenuation (3); // a little sphere to show where the light is geo_node = OSG::makeLatLongSphere(8, 8, 0.1f); OSG::GeometryRefPtr geo = dynamic_cast<OSG::Geometry *>(geo_node->getCore()); OSG::SimpleMaterialRefPtr sm = OSG::SimpleMaterial::create(); sm->setLit(false); sm->setDiffuse(OSG::Color3f( colors[i][0], colors[i][1], colors[i][2] )); geo->setMaterial(sm); light_core = l; } break; /* The DirectionalLight just has a direction. To use it as a headlight use (0,0,-1) as a direction. it is the computationally cheapest light source. Thus for the fastest lit rendering, just a single directional light source. The osg::SimpleSceneManager's headlight is a directional light source. */ case 1: { OSG::DirectionalLightRefPtr l = OSG::DirectionalLight::create(); l->setDirection(0, 0, 1); // a little cylinder to show where the light is geo_node = OSG::makeCylinder(.1f, .03f, 8, true, true, true); OSG::GeometryRefPtr geo = dynamic_cast<OSG::Geometry *>(geo_node->getCore()); OSG::SimpleMaterialRefPtr sm = OSG::SimpleMaterial::create(); sm->setLit(false); sm->setDiffuse(OSG::Color3f( colors[i][0], colors[i][1], colors[i][2] )); geo->setMaterial(sm); light_core = l; } break; /* The SpotLight adds a direction to the PointLight and a spotCutOff angle to define the area that's lit. To define the light intensity fallof within that area the spotExponent field is used. Spot lights are very expensive to compute, use them sparingly. */ case 2: { OSG::SpotLightRefPtr l = OSG::SpotLight::create(); l->setPosition (OSG::Pnt3f(0, 0, 0)); l->setDirection (OSG::Vec3f(0, -1, 0)); l->setSpotExponent (2); l->setSpotCutOff (OSG::osgDegree2Rad(45)); l->setConstantAttenuation (1); l->setLinearAttenuation (0); l->setQuadraticAttenuation (3); // a little cone to show where the light is geo_node = OSG::makeCone(.2f, .2f, 8, true, true); OSG::GeometryRefPtr geo = dynamic_cast<OSG::Geometry *>(geo_node->getCore()); OSG::SimpleMaterialRefPtr sm = OSG::SimpleMaterial::create(); sm->setLit(false); sm->setDiffuse(OSG::Color3f( colors[i][0], colors[i][1], colors[i][2] )); geo->setMaterial(sm); light_core = l; } break; } // create the beacon and attach it to the scene OSG::NodeRefPtr beacon = OSG::Node::create(); OSG::TransformRefPtr beacon_core = OSG::Transform::create(); lightBeacons[i] = beacon_core; beacon->setCore(beacon_core); beacon->addChild(geo_node); scene->addChild(beacon); light_core->setAmbient (colors[i][0] / scale, colors[i][1] / scale, colors[i][2] / scale, 1); light_core->setDiffuse (colors[i][0] / scale, colors[i][1] / scale, colors[i][2] / scale, 1); light_core->setSpecular(1 / scale, 1 / scale, 1 / scale, 1); light_core->setBeacon (beacon); light->setCore(light_core); light->addChild(lastnode); lights[i] = light_core; lastnode = light; } scene->addChild(lastnode); OSG::commitChanges(); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); // tell the manager what to manage mgr->setWindow(gwin ); mgr->setRoot (scene); // switch the headlight off, we have enough lights as is mgr->setHeadlight(false); // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the scene // create a pretty simple graph: a Group with two Transforms as children, // each of which carries a single Geometry. // The scene group OSG::NodeRefPtr scene = OSG::Node::create(); OSG::GroupRefPtr g = OSG::Group::create(); scene->setCore(g); // The cylinder and its transformation OSG::NodeRefPtr cyl = OSG::makeCylinder( 1.4f, .3f, 8, true, true, true ); cyltrans = OSG::Transform::create(); OSG::NodeRefPtr cyltransnode = OSG::Node::create(); cyltransnode->setCore (cyltrans); cyltransnode->addChild(cyl ); // add it to the scene scene->addChild(cyltransnode); // The torus and its transformation OSG::NodeRefPtr torus = OSG::makeTorus( .2f, 1, 8, 12 ); tortrans = OSG::Transform::create(); OSG::NodeRefPtr tortransnode = OSG::Node::create(); tortransnode->setCore (tortrans); tortransnode->addChild(torus ); // add it to the scene scene->addChild(tortransnode); // now traverse the scene /* There are four variants of the traverse() function. It can either be called for a single node or for a vector nodes. And they can either call a function just when entering the node, or in addition when leaving the node. The signatures of the functions are: enter functions: Action::ResultE enter(Node *node); leave functions: Action::ResultE leave(Node *node, Action::ResultE res); The functions that are called are wrapped in functors. A functor is an object that contains a function or method, which can be called through the functor. OpenSG uses boost::function for this purpose and provides appriopriate typedefs for enter and leave functors as TraverseEnterFunctor and TraverseLeaveFunctor (see OSGAction.h). In order to call member functions through a functor an object of the correct type has to be available (there has to an object to take the role of this for the member function). To store an instance of an object in a functor use boost::bind to bind the first argument of the member function functor to the object (see below for examples). */ SLOG << "Variant 1: just print every encountered node" << OSG::endLog; traverse(scene, enter); SLOG << OSG::endLog << "Variant 2: just print every encountered node, using a" << " vector of nodes" << OSG::endLog; std::vector<OSG::Node *> nodevec; nodevec.push_back(tortransnode); nodevec.push_back(cyltransnode); traverse(nodevec, enter); SLOG << OSG::endLog << "Variant 3: just print every encountered node on entering" << " and leaving" << OSG::endLog; traverse(scene, enter, leave); // now use a travstate object to hold additional data travstate t; SLOG << OSG::endLog << "Variant 4: use an object to hold state for indentation" << OSG::endLog; traverse(scene, boost::bind(&travstate::enter, &t, _1 ), boost::bind(&travstate::leave, &t, _1, _2) ); SLOG << OSG::endLog << "Variant 5: don't descend into transforms" << OSG::endLog; traverse(scene, dontEnterTrans, leave); SLOG << OSG::endLog << "Variant 6: quit when you find a geometry" << OSG::endLog; traverse(scene, quitGeo, leave); // create the SimpleSceneManager helper mgr = new OSG::SimpleSceneManager; // tell the manager what to manage mgr->setWindow(gwin ); mgr->setRoot (scene); // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin= OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the scene /* Scenegraph nodes in OpenSG consist of two parts: the Node and its Core. The Node contains the general information that anchors an object in the graph: the parent, a list of children, a bounding volume. Note that the Node contains a single parent, a Node can only be connected to a graph in one place. There is only one Node class, all nodes in the scenegraph use the same Node. The specific information that distinguishes node kinds from each other is stored in the NodeCore. Consequently there is a different kind of NodeCore for the different kinds of functions a node can have. The NodeCore contains all the information that the Node doesn't. NodeCores can be used by multiple Nodes. In this example the Geometry NodeCore of the torus is used to display multiple tori. */ // this time, create just the core of the geometry OSG::GeometryRefPtr torus = OSG::makeTorusGeo( .5, 2, 8, 12 ); // create the scene // the scene has a single group with ncopies transformations below, // each of these carries a Node that shares the geometry /* The Group NodeCore is the basic type to create the hierarchical graph. It does very little to its children, just calls all of them when asked to do anything, and collecting their information if necessary. */ // create the root Group node OSG::NodeRefPtr scene = OSG::Node::create(); OSG::GroupRefPtr g = OSG::Group::create(); scene->setCore(g); // create the copied geometry nodes and their transformations for(OSG::UInt16 i = 0; i < ncopies; ++i) { // create the nodes for the shared Geometry core OSG::NodeRefPtr geonode = OSG::Node::create(); // assign the Core to the Node geonode->setCore(torus); // add a transformation for every Geometry OSG::NodeRefPtr transnode = OSG::Node::create(); trans[i] = OSG::Transform::create(); transnode->setCore (trans[i]); transnode->addChild(geonode ); scene->addChild(transnode); } OSG::commitChanges(); // create the SimpleSceneManager helper mgr = new OSG::SimpleSceneManager; // tell the manager what to manage mgr->setWindow(gwin ); mgr->setRoot (scene); // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the scene OSG::NodeRefPtr torus = OSG::makeTorus( .5, 2, 16, 32 ); OSG::NodeRefPtr scene = OSG::Node::create(); trans = OSG::Transform::create(); scene->setCore(trans); scene->addChild(torus); // Create the parts needed for the video background OSG::UInt32 width = 640; OSG::UInt32 height = 480; // get the desired size from the command line if(argc >= 3) { width = atoi(argv[1]); height = atoi(argv[2]); } // To check OpenGL extensions, the Window needs to have run through // frameInit at least once. This automatically happens when rendering, // but we can't wait for that here. gwin->activate (); gwin->frameInit(); // Now we can check for OpenGL extensions hasNPOT = gwin->hasExtension("GL_ARB_texture_non_power_of_two"); // Print what we've got SLOG << "Got " << (isPOT?"":"non-") << "power-of-two images and " << (hasNPOT?"can":"cannot") << " use NPOT textures, changing " << (changeOnlyPart?"part":"all") << " of the screen" << std::endl; // Ok, now for the meat of the code... // first we need an Image to hold the picture(s) to show image = OSG::Image::create(); // set the image's size and type, and allocate memory // this example uses RGB. On some systems (e.g. Windows) BGR // or BGRA might be faster, it depends on how the images are // acquired image->set(OSG::Image::OSG_RGB_PF, width, height); // Now create the texture to be used for the background texObj = OSG::TextureObjChunk::create(); // Associate image and texture texObj->setImage(image); // Set filtering modes. LINEAR is cheap and good if the image size // changes very little (i.e. the window is about the same size as // the images). texObj->setMinFilter(GL_LINEAR); texObj->setMagFilter(GL_LINEAR); // Set the wrapping modes. We don't need repetition, it might actually // introduce artifactes at the borders, so switch it off. texObj->setWrapS(GL_CLAMP_TO_EDGE); texObj->setWrapT(GL_CLAMP_TO_EDGE); // Newer versions of OpenGL can handle NPOT textures directly. // OpenSG will do that internally automatically. // // Older versions need POT textures. By default OpenSG // will scale an NPOT texture to POT while defining it. // For changing textures that's too slow. // So tell OpenSG not to scale the image and adjust the texture // coordinates used by the TextureBackground (see below). texObj->setScale(false); // Create the background OSG::TextureBackgroundRefPtr back = OSG::TextureBackground::create(); // Set the texture to use back->setTexture(texObj); // if the image is NPOT and we don't have hardware support for it // adjust the texture coordinates. if(isPOT == false && hasNPOT == false) { OSG::UInt32 potWidth = OSG::osgNextPower2(width ); OSG::UInt32 potHeight = OSG::osgNextPower2(height); OSG::Real32 tcRight = OSG::Real32(width ) / OSG::Real32(potWidth ); OSG::Real32 tcTop = OSG::Real32(height) / OSG::Real32(potHeight); back->editMFTexCoords()->push_back(OSG::Vec2f( 0.f, 0.f)); back->editMFTexCoords()->push_back(OSG::Vec2f(tcRight, 0.f)); back->editMFTexCoords()->push_back(OSG::Vec2f(tcRight, tcTop)); back->editMFTexCoords()->push_back(OSG::Vec2f( 0.f, tcTop)); } OSG::commitChanges(); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); // tell the manager what to manage mgr->setWindow(gwin ); mgr->setRoot (scene); mgr->setStatistics(true); // replace the background // This has to be done after the viewport has been created, which the // SSM does in setRoot(). OSG::ViewportRefPtr vp = gwin->getPort(0); vp->setBackground(back); } // show the whole scene mgr->showAll(); // GLUT main loop glutMainLoop(); return 0; }