inline void PHX::FieldManager<Traits>:: setUnmanagedField(PHX::MDField<DataT,Tag0,Tag1,Tag2,Tag3,Tag4, Tag5,Tag6,Tag7>& f) { PHX::any any_f(f.get_static_view()); m_eval_containers.template getAsObject<EvalT>()->setUnmanagedField(f.fieldTag(),any_f); }
inline void PHX::FieldManager<Traits>:: getFieldData(PHX::MDField<const DataT,Tag0,Tag1,Tag2,Tag3,Tag4, Tag5,Tag6,Tag7>& f) { PHX::any a = m_eval_containers.template getAsObject<EvalT>()->getFieldData(f.fieldTag()); f.setFieldData(a); }
//********************************************************************** PHX_EVALUATE_FIELDS(CoordinatesEvaluator,d) { PHX::MDField<double,Cell,NODE,Dim> coords = this->wda(d).cell_vertex_coordinates; // const Intrepid::FieldContainer<double> & coords = this->wda(d).cell_vertex_coordinates; // copy coordinates directly into the field for(std::size_t i=0; i<d.num_cells; i++) for(int j=0; j<coords.dimension(1); j++) coordinate(i,j) = coords(i,j,dimension); }
void IntegrationValues2<Scalar>:: getCubatureCV(const PHX::MDField<Scalar,Cell,NODE,Dim>& in_node_coordinates) { int num_space_dim = int_rule->topology->getDimension(); if (int_rule->isSide() && num_space_dim==1) { std::cout << "WARNING: 0-D quadrature rule infrastructure does not exist!!! Will not be able to do " << "non-natural integration rules."; return; } { size_type num_cells = in_node_coordinates.dimension(0); size_type num_nodes = in_node_coordinates.dimension(1); size_type num_dims = in_node_coordinates.dimension(2); for (size_type cell = 0; cell < num_cells; ++cell) { for (size_type node = 0; node < num_nodes; ++node) { for (size_type dim = 0; dim < num_dims; ++dim) { node_coordinates(cell,node,dim) = in_node_coordinates(cell,node,dim); dyn_node_coordinates(cell,node,dim) = Sacado::ScalarValue<Scalar>::eval(in_node_coordinates(cell,node,dim)); } } } } if (int_rule->cv_type == "side") intrepid_cubature->getCubature(dyn_phys_cub_points.get_view(),dyn_phys_cub_norms.get_view(),dyn_node_coordinates.get_view()); else intrepid_cubature->getCubature(dyn_phys_cub_points.get_view(),dyn_phys_cub_weights.get_view(),dyn_node_coordinates.get_view()); size_type num_cells = dyn_phys_cub_points.dimension(0); size_type num_ip =dyn_phys_cub_points.dimension(1); size_type num_dims = dyn_phys_cub_points.dimension(2); for (size_type cell = 0; cell < num_cells; ++cell) { for (size_type ip = 0; ip < num_ip; ++ip) { if (int_rule->cv_type != "side") weighted_measure(cell,ip) = dyn_phys_cub_weights(cell,ip); for (size_type dim = 0; dim < num_dims; ++dim) { ip_coordinates(cell,ip,dim) = dyn_phys_cub_points(cell,ip,dim); if (int_rule->cv_type == "side") weighted_normals(cell,ip,dim) = dyn_phys_cub_norms(cell,ip,dim); } } } }
void IntegrationValues2<Scalar>:: getCubature(const PHX::MDField<Scalar,Cell,NODE,Dim>& in_node_coordinates) { int num_space_dim = int_rule->topology->getDimension(); if (int_rule->isSide() && num_space_dim==1) { std::cout << "WARNING: 0-D quadrature rule ifrastructure does not exist!!! Will not be able to do " << "non-natural integration rules."; return; } Intrepid2::CellTools<PHX::Device::execution_space> cell_tools; if (!int_rule->isSide()) intrepid_cubature->getCubature(dyn_cub_points.get_view(), dyn_cub_weights.get_view()); else { intrepid_cubature->getCubature(dyn_side_cub_points.get_view(), dyn_cub_weights.get_view()); cell_tools.mapToReferenceSubcell(dyn_cub_points.get_view(), dyn_side_cub_points.get_view(), int_rule->spatial_dimension-1, int_rule->side, *(int_rule->topology)); } // IP coordinates cell_tools.mapToPhysicalFrame(ip_coordinates.get_view(), dyn_cub_points.get_view(), in_node_coordinates.get_view(), *(int_rule->topology)); }
virtual void evaluateContainer(const PHX::MDField<panzer::Traits::Residual::ScalarT,panzer::Cell,panzer::IP,panzer::Dim> & points, PHX::MDField<panzer::Traits::Residual::ScalarT> & field) const { int num_cells = field.dimension(0); int num_qp = points.dimension(1); for(int i=0; i<num_cells; i++) { for(int j=0; j<num_qp; j++) { double x = points(i,j,0); // just x and y double y = points(i,j,1); field(i,j,0) = (x+y)*(x+y); field(i,j,1) = sin(x+y); } } }
void IntegrationValues2<Scalar>:: evaluateValues(const PHX::MDField<Scalar,Cell,NODE,Dim>& in_node_coordinates, const PHX::MDField<Scalar,Cell,IP,Dim>& other_ip_coordinates) { getCubature(in_node_coordinates); { // Determine the permutation. std::vector<size_type> permutation(other_ip_coordinates.dimension(1)); permuteToOther(ip_coordinates, other_ip_coordinates, permutation); // Apply the permutation to the cubature arrays. MDFieldArrayFactory af(prefix, alloc_arrays); const size_type num_ip = dyn_cub_points.dimension(0); { const size_type num_dim = dyn_side_cub_points.dimension(1); DblArrayDynamic old_dyn_side_cub_points = af.template buildArray<double,IP,Dim>( "old_dyn_side_cub_points", num_ip, num_dim); old_dyn_side_cub_points.deep_copy(dyn_side_cub_points); for (size_type ip = 0; ip < num_ip; ++ip) if (ip != permutation[ip]) for (size_type dim = 0; dim < num_dim; ++dim) dyn_side_cub_points(ip, dim) = old_dyn_side_cub_points(permutation[ip], dim); } { const size_type num_dim = dyn_cub_points.dimension(1); DblArrayDynamic old_dyn_cub_points = af.template buildArray<double,IP,Dim>( "old_dyn_cub_points", num_ip, num_dim); old_dyn_cub_points.deep_copy(dyn_cub_points); for (size_type ip = 0; ip < num_ip; ++ip) if (ip != permutation[ip]) for (size_type dim = 0; dim < num_dim; ++dim) dyn_cub_points(ip, dim) = old_dyn_cub_points(permutation[ip], dim); } { DblArrayDynamic old_dyn_cub_weights = af.template buildArray<double,IP>( "old_dyn_cub_weights", num_ip); old_dyn_cub_weights.deep_copy(dyn_cub_weights); for (size_type ip = 0; ip < dyn_cub_weights.dimension(0); ++ip) if (ip != permutation[ip]) dyn_cub_weights(ip) = old_dyn_cub_weights(permutation[ip]); } { const size_type num_cells = ip_coordinates.dimension(0), num_ip = ip_coordinates.dimension(1), num_dim = ip_coordinates.dimension(2); Array_CellIPDim old_ip_coordinates = af.template buildStaticArray<Scalar,Cell,IP,Dim>( "old_ip_coordinates", num_cells, num_ip, num_dim); Kokkos::deep_copy(old_ip_coordinates.get_kokkos_view(), ip_coordinates.get_kokkos_view()); for (size_type cell = 0; cell < num_cells; ++cell) for (size_type ip = 0; ip < num_ip; ++ip) if (ip != permutation[ip]) for (size_type dim = 0; dim < num_dim; ++dim) ip_coordinates(cell, ip, dim) = old_ip_coordinates(cell, permutation[ip], dim); } // All subsequent calculations inherit the permutation. } evaluateRemainingValues(in_node_coordinates); }
panzer::GatherSolution_BlockedTpetra<EvalT, TRAITS,S,LO,GO,NodeT>:: GatherSolution_BlockedTpetra( const Teuchos::RCP<const BlockedDOFManager<LO,GO> > & indexer, const Teuchos::ParameterList& p) { const std::vector<std::string>& names = *(p.get< Teuchos::RCP< std::vector<std::string> > >("DOF Names")); Teuchos::RCP<panzer::PureBasis> basis = p.get< Teuchos::RCP<panzer::PureBasis> >("Basis"); for (std::size_t fd = 0; fd < names.size(); ++fd) { PHX::MDField<ScalarT,Cell,NODE> field = PHX::MDField<ScalarT,Cell,NODE>(names[fd],basis->functional); this->addEvaluatedField(field.fieldTag()); } this->setName("Gather Solution"); }
//********************************************************************** PHX_EVALUATE_FIELDS(HessianTestEvaluator,workset) { // Grad = y * std::cos(x*y) // = x * std::cos(x*y)-0.25*std::sin(y) // Hess*v = dy * std::cos(x*y) - y * ( dx * sin(x*y) + dy * sin(x*y)) // = dx * std::cos(x*y) - x * ( dx * sin(x*y) + dy * sin(x*y)) - 0.25 * dy * std::cos(y) // for(int ip=0;ip<result.dimension_0();++ip) result(ip) = std::sin(x(ip)*y(ip))+0.25*std::cos(y(ip)); }
void transformWeightedGradientBF ( const Field<2>& F, const RealType& F_det, const PHX::MDField<RealType, Cell, Node, QuadPoint, Dim>& w_grad_bf, const int cell, const int pt, const int node, RealType w[3]) { const int nd = w_grad_bf.dimension(3); for (int k = 0; k < nd; ++k) { w[k] = 0; for (int i = 0; i < nd; ++i) w[k] += (w_grad_bf(cell, node, pt, i) * F()(cell, pt, i, k)); w[k] /= F_det; } }
static void permuteToOther(const PHX::MDField<Scalar,Cell,IP,Dim>& coords, const PHX::MDField<Scalar,Cell,IP,Dim>& other_coords, std::vector<typename ArrayTraits<Scalar,PHX::MDField<Scalar> >::size_type>& permutation) { typedef typename ArrayTraits<Scalar,PHX::MDField<Scalar> >::size_type size_type; // We can safely assume: (1) The permutation is the same for every cell in // the workset. (2) The first workset has valid data. Hence we operate only // on cell 0. const size_type cell = 0; const size_type num_ip = coords.dimension(1), num_dim = coords.dimension(2); permutation.resize(num_ip); std::vector<char> taken(num_ip, 0); for (size_type ip = 0; ip < num_ip; ++ip) { // Find an other point to associate with ip. size_type i_min = 0; Scalar d_min = -1; for (size_type other_ip = 0; other_ip < num_ip; ++other_ip) { // For speed, skip other points that are already associated. if (taken[other_ip]) continue; // Compute the distance between the two points. Scalar d(0); for (size_type dim = 0; dim < num_dim; ++dim) { const Scalar diff = coords(cell, ip, dim) - other_coords(cell, other_ip, dim); d += diff*diff; } if (d_min < 0 || d < d_min) { d_min = d; i_min = other_ip; } } // Record the match. permutation[ip] = i_min; // This point is now taken. taken[i_min] = 1; } }
void SurfaceBasis<EvalT, Traits>::computeJacobian( const PHX::MDField<MeshScalarT, Cell, QuadPoint, Dim, Dim> basis, const PHX::MDField<MeshScalarT, Cell, QuadPoint, Dim, Dim> dualBasis, PHX::MDField<MeshScalarT, Cell, QuadPoint> area) { const std::size_t worksetSize = basis.dimension(0); for (std::size_t cell(0); cell < worksetSize; ++cell) { for (std::size_t pt(0); pt < numQPs; ++pt) { Intrepid::Tensor<MeshScalarT> dPhiInv(3, &dualBasis(cell, pt, 0, 0)); Intrepid::Tensor<MeshScalarT> dPhi(3, &basis(cell, pt, 0, 0)); Intrepid::Vector<MeshScalarT> G_2(3, &basis(cell, pt, 2, 0)); MeshScalarT j0 = Intrepid::det(dPhi); MeshScalarT jacobian = j0 * std::sqrt( Intrepid::dot(Intrepid::dot(G_2, Intrepid::transpose(dPhiInv) * dPhiInv), G_2)); area(cell, pt) = jacobian * refWeights(pt); } } }
inline void PHX::FieldManager<Traits>:: setUnmanagedField(PHX::MDField<DataT>& f) { m_eval_containers.template getAsObject<EvalT>()->setUnmanagedField(f.fieldTag(),f.get_static_any_view()); }
void IntegrationValues2<Scalar>:: evaluateValuesCV(const PHX::MDField<Scalar,Cell,NODE,Dim> & in_node_coordinates) { Intrepid2::CellTools<Scalar> cell_tools; { size_type num_cells = in_node_coordinates.dimension(0); size_type num_nodes = in_node_coordinates.dimension(1); size_type num_dims = in_node_coordinates.dimension(2); for (size_type cell = 0; cell < num_cells; ++cell) { for (size_type node = 0; node < num_nodes; ++node) { for (size_type dim = 0; dim < num_dims; ++dim) { node_coordinates(cell,node,dim) = in_node_coordinates(cell,node,dim); dyn_node_coordinates(cell,node,dim) = Sacado::ScalarValue<Scalar>::eval(in_node_coordinates(cell,node,dim)); } } } } if (int_rule->cv_type == "volume") intrepid_cubature->getCubature(dyn_phys_cub_points,dyn_phys_cub_weights,dyn_node_coordinates); else if (int_rule->cv_type == "side") intrepid_cubature->getCubature(dyn_phys_cub_points,dyn_phys_cub_norms,dyn_node_coordinates); if (int_rule->cv_type == "volume") { size_type num_cells = dyn_phys_cub_points.dimension(0); size_type num_ip = dyn_phys_cub_points.dimension(1); size_type num_dims = dyn_phys_cub_points.dimension(2); for (size_type cell = 0; cell < num_cells; ++cell) { for (size_type ip = 0; ip < num_ip; ++ip) { weighted_measure(cell,ip) = dyn_phys_cub_weights(cell,ip); for (size_type dim = 0; dim < num_dims; ++dim) ip_coordinates(cell,ip,dim) = dyn_phys_cub_points(cell,ip,dim); } } cell_tools.mapToReferenceFrame(ref_ip_coordinates, ip_coordinates, node_coordinates, *(int_rule->topology),-1); cell_tools.setJacobian(jac, ref_ip_coordinates, node_coordinates, *(int_rule->topology)); } else if (int_rule->cv_type == "side") { size_type num_cells = dyn_phys_cub_points.dimension(0); size_type num_ip = dyn_phys_cub_points.dimension(1); size_type num_dims = dyn_phys_cub_points.dimension(2); for (size_type cell = 0; cell < num_cells; ++cell) { for (size_type ip = 0; ip < num_ip; ++ip) { for (size_type dim = 0; dim < num_dims; ++dim) { ip_coordinates(cell,ip,dim) = dyn_phys_cub_points(cell,ip,dim); weighted_normals(cell,ip,dim) = dyn_phys_cub_norms(cell,ip,dim); } } } cell_tools.mapToReferenceFrame(ref_ip_coordinates, ip_coordinates, node_coordinates, *(int_rule->topology),-1); cell_tools.setJacobian(jac, ref_ip_coordinates, node_coordinates, *(int_rule->topology)); } cell_tools.setJacobianInv(jac_inv, jac); cell_tools.setJacobianDet(jac_det, jac); }
void IntegrationValues2<Scalar>:: evaluateRemainingValues(const PHX::MDField<Scalar,Cell,NODE,Dim>& in_node_coordinates) { Intrepid2::CellTools<Scalar> cell_tools; // copy the dynamic data structures into the static data structures { size_type num_ip = dyn_cub_points.dimension(0); size_type num_dims = dyn_cub_points.dimension(1); for (size_type ip = 0; ip < num_ip; ++ip) { cub_weights(ip) = dyn_cub_weights(ip); for (size_type dim = 0; dim < num_dims; ++dim) cub_points(ip,dim) = dyn_cub_points(ip,dim); } } if (int_rule->isSide()) { const size_type num_ip = dyn_cub_points.dimension(0), num_side_dims = dyn_side_cub_points.dimension(1); for (size_type ip = 0; ip < num_ip; ++ip) for (size_type dim = 0; dim < num_side_dims; ++dim) side_cub_points(ip,dim) = dyn_side_cub_points(ip,dim); } { size_type num_cells = in_node_coordinates.dimension(0); size_type num_nodes = in_node_coordinates.dimension(1); size_type num_dims = in_node_coordinates.dimension(2); for (size_type cell = 0; cell < num_cells; ++cell) { for (size_type node = 0; node < num_nodes; ++node) { for (size_type dim = 0; dim < num_dims; ++dim) { node_coordinates(cell,node,dim) = in_node_coordinates(cell,node,dim); } } } } cell_tools.setJacobian(jac, cub_points, node_coordinates, *(int_rule->topology)); cell_tools.setJacobianInv(jac_inv, jac); cell_tools.setJacobianDet(jac_det, jac); if (!int_rule->isSide()) { Intrepid2::FunctionSpaceTools:: computeCellMeasure<Scalar>(weighted_measure, jac_det, cub_weights); } else if(int_rule->spatial_dimension==3) { Intrepid2::FunctionSpaceTools:: computeFaceMeasure<Scalar>(weighted_measure, jac, cub_weights,int_rule->side,*int_rule->topology); } else if(int_rule->spatial_dimension==2) { Intrepid2::FunctionSpaceTools:: computeEdgeMeasure<Scalar>(weighted_measure, jac, cub_weights,int_rule->side,*int_rule->topology); } else TEUCHOS_ASSERT(false); // Shakib contravarient metric tensor for (size_type cell = 0; cell < contravarient.dimension(0); ++cell) { for (size_type ip = 0; ip < contravarient.dimension(1); ++ip) { // zero out matrix for (size_type i = 0; i < contravarient.dimension(2); ++i) for (size_type j = 0; j < contravarient.dimension(3); ++j) covarient(cell,ip,i,j) = 0.0; // g^{ij} = \frac{\parital x_i}{\partial \chi_\alpha}\frac{\parital x_j}{\partial \chi_\alpha} for (size_type i = 0; i < contravarient.dimension(2); ++i) { for (size_type j = 0; j < contravarient.dimension(3); ++j) { for (size_type alpha = 0; alpha < contravarient.dimension(2); ++alpha) { covarient(cell,ip,i,j) += jac(cell,ip,i,alpha) * jac(cell,ip,j,alpha); } } } } } Intrepid2::RealSpaceTools<Scalar>::inverse(contravarient, covarient); // norm of g_ij for (size_type cell = 0; cell < contravarient.dimension(0); ++cell) { for (size_type ip = 0; ip < contravarient.dimension(1); ++ip) { norm_contravarient(cell,ip) = 0.0; for (size_type i = 0; i < contravarient.dimension(2); ++i) { for (size_type j = 0; j < contravarient.dimension(3); ++j) { norm_contravarient(cell,ip) += contravarient(cell,ip,i,j) * contravarient(cell,ip,i,j); } } norm_contravarient(cell,ip) = std::sqrt(norm_contravarient(cell,ip)); } } }
void PHX::EvaluatorWithBaseImpl<Traits>:: addEvaluatedField(const PHX::MDField<DataT,Tag0,Tag1,Tag2,Tag3, Tag4,Tag5,Tag6,Tag7>& f) { this->addEvaluatedField(f.fieldTag()); }