void PolylineCollection::chained_path_from(Point start_near, PolylineCollection* retval, bool no_reverse) const { Polylines my_paths = this->polylines; Points endpoints; //里面存储所有polyline里面的第一个点和允许翻转时的最后一个点的坐标 for (Polylines::const_iterator it = my_paths.begin(); it != my_paths.end(); ++it) { endpoints.push_back(it->first_point()); if (no_reverse) { endpoints.push_back(it->first_point()); } else { endpoints.push_back(it->last_point()); } } while (!my_paths.empty()) { // find nearest point int start_index = start_near.nearest_point_index(endpoints); int path_index = start_index/2; if (start_index % 2 && !no_reverse) { my_paths.at(path_index).reverse(); } retval->polylines.push_back(my_paths.at(path_index)); my_paths.erase(my_paths.begin() + path_index); endpoints.erase(endpoints.begin() + 2*path_index, endpoints.begin() + 2*path_index + 2); start_near = retval->polylines.back().last_point(); } }
Point PolylineCollection::leftmost_point() const { if (this->polylines.empty()) qDebug("leftmost_point() called on empty PolylineCollection"); Point p = this->polylines.front().leftmost_point(); for (Polylines::const_iterator it = this->polylines.begin() + 1; it != this->polylines.end(); ++it) { Point p2 = it->leftmost_point(); if (p2.x < p.x) p = p2; } return p; }
Point PolylineCollection::leftmost_point(const Polylines &polylines) { if (polylines.empty()) CONFESS("leftmost_point() called on empty PolylineCollection"); Polylines::const_iterator it = polylines.begin(); Point p = it->leftmost_point(); for (++ it; it != polylines.end(); ++it) { Point p2 = it->leftmost_point(); if (p2.x < p.x) p = p2; } return p; }
ExtrusionEntityCollection PerimeterGenerator::_fill_gaps(double min, double max, double w, const Polygons &gaps) const { ExtrusionEntityCollection coll; min *= (1 - INSET_OVERLAP_TOLERANCE); ExPolygons curr = diff_ex( offset2(gaps, -min/2, +min/2), offset2(gaps, -max/2, +max/2), true ); Polylines polylines; for (ExPolygons::const_iterator ex = curr.begin(); ex != curr.end(); ++ex) ex->medial_axis(max, min/2, &polylines); if (polylines.empty()) return coll; #ifdef SLIC3R_DEBUG if (!curr.empty()) printf(" %zu gaps filled with extrusion width = %f\n", curr.size(), w); #endif //my $flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL, 0, $w); Flow flow( w, this->layer_height, this->solid_infill_flow.nozzle_diameter ); double mm3_per_mm = flow.mm3_per_mm(); for (Polylines::const_iterator p = polylines.begin(); p != polylines.end(); ++p) { ExtrusionPath path(erGapFill); path.polyline = *p; path.mm3_per_mm = mm3_per_mm; path.width = flow.width; path.height = this->layer_height; if (p->is_valid() && p->first_point().coincides_with(p->last_point())) { // since medial_axis() now returns only Polyline objects, detect loops here ExtrusionLoop loop; loop.paths.push_back(path); coll.append(loop); } else { coll.append(path); } } return coll; }
void BridgeDetector::unsupported_edges(double angle, Polylines* unsupported) const { // get bridge edges (both contour and holes) Polylines bridge_edges; { Polygons pp = this->expolygon; bridge_edges.insert(bridge_edges.end(), pp.begin(), pp.end()); // this uses split_at_first_point() } // get unsupported edges Polygons grown_lower; offset(this->lower_slices, &grown_lower, +this->extrusion_width); Polylines _unsupported; diff(bridge_edges, grown_lower, &_unsupported); /* Split into individual segments and filter out edges parallel to the bridging angle TODO: angle tolerance should probably be based on segment length and flow width, so that we build supports whenever there's a chance that at least one or two bridge extrusions would be anchored within such length (i.e. a slightly non-parallel bridging direction might still benefit from anchors if long enough) */ double angle_tolerance = PI / 180.0 * 5.0; for (Polylines::const_iterator polyline = _unsupported.begin(); polyline != _unsupported.end(); ++polyline) { Lines lines = polyline->lines(); for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) { if (!xd::Geometry::directions_parallel(line->direction(), angle)) unsupported->push_back(*line); } } /* if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "unsupported_" . rad2deg($angle) . ".svg", expolygons => [$self->expolygon], green_expolygons => $self->_anchors, red_expolygons => union_ex($grown_lower), no_arrows => 1, polylines => \@bridge_edges, red_polylines => $unsupported, ); } */ }
void PerimeterGenerator::process() { // other perimeters this->_mm3_per_mm = this->perimeter_flow.mm3_per_mm(); coord_t pwidth = this->perimeter_flow.scaled_width(); coord_t pspacing = this->perimeter_flow.scaled_spacing(); // external perimeters this->_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm(); coord_t ext_pwidth = this->ext_perimeter_flow.scaled_width(); coord_t ext_pspacing = this->ext_perimeter_flow.scaled_spacing(); coord_t ext_pspacing2 = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow); // overhang perimeters this->_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm(); // solid infill coord_t ispacing = this->solid_infill_flow.scaled_spacing(); coord_t gap_area_threshold = pwidth * pwidth; // Calculate the minimum required spacing between two adjacent traces. // This should be equal to the nominal flow spacing but we experiment // with some tolerance in order to avoid triggering medial axis when // some squishing might work. Loops are still spaced by the entire // flow spacing; this only applies to collapsing parts. // For ext_min_spacing we use the ext_pspacing calculated for two adjacent // external loops (which is the correct way) instead of using ext_pspacing2 // which is the spacing between external and internal, which is not correct // and would make the collapsing (thus the details resolution) dependent on // internal flow which is unrelated. coord_t min_spacing = pspacing * (1 - INSET_OVERLAP_TOLERANCE); coord_t ext_min_spacing = ext_pspacing * (1 - INSET_OVERLAP_TOLERANCE); // prepare grown lower layer slices for overhang detection if (this->lower_slices != NULL && this->config->overhangs) { // We consider overhang any part where the entire nozzle diameter is not supported by the // lower layer, so we take lower slices and offset them by half the nozzle diameter used // in the current layer double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1); this->_lower_slices_p = offset(*this->lower_slices, scale_(+nozzle_diameter/2)); } // we need to process each island separately because we might have different // extra perimeters for each one for (Surfaces::const_iterator surface = this->slices->surfaces.begin(); surface != this->slices->surfaces.end(); ++surface) { // detect how many perimeters must be generated for this island signed short loop_number = this->config->perimeters + surface->extra_perimeters; loop_number--; // 0-indexed loops Polygons gaps; Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION); if (loop_number >= 0) { // no loops = -1 std::vector<PerimeterGeneratorLoops> contours(loop_number+1); // depth => loops std::vector<PerimeterGeneratorLoops> holes(loop_number+1); // depth => loops Polylines thin_walls; // we loop one time more than needed in order to find gaps after the last perimeter was applied for (signed short i = 0; i <= loop_number+1; ++i) { // outer loop is 0 Polygons offsets; if (i == 0) { // the minimum thickness of a single loop is: // ext_width/2 + ext_spacing/2 + spacing/2 + width/2 if (this->config->thin_walls) { offsets = offset2( last, -(ext_pwidth/2 + ext_min_spacing/2 - 1), +(ext_min_spacing/2 - 1) ); } else { offsets = offset(last, -ext_pwidth/2); } // look for thin walls if (this->config->thin_walls) { Polygons diffpp = diff( last, offset(offsets, +ext_pwidth/2), true // medial axis requires non-overlapping geometry ); // the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width // (actually, something larger than that still may exist due to mitering or other causes) coord_t min_width = ext_pwidth / 2; ExPolygons expp = offset2_ex(diffpp, -min_width/2, +min_width/2); // the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop Polylines pp; for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) ex->medial_axis(ext_pwidth + ext_pspacing2, min_width, &pp); double threshold = ext_pwidth * 2; for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) { if (p->length() > threshold) { thin_walls.push_back(*p); } } #ifdef DEBUG printf(" %zu thin walls detected\n", thin_walls.size()); #endif /* if (false) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "medial_axis.svg", no_arrows => 1, #expolygons => \@expp, polylines => \@thin_walls, ); } */ } } else { coord_t distance = (i == 1) ? ext_pspacing2 : pspacing; if (this->config->thin_walls) { offsets = offset2( last, -(distance + min_spacing/2 - 1), +(min_spacing/2 - 1) ); } else { offsets = offset( last, -distance ); } // look for gaps if (this->config->gap_fill_speed.value > 0 && this->config->fill_density.value > 0) { // not using safety offset here would "detect" very narrow gaps // (but still long enough to escape the area threshold) that gap fill // won't be able to fill but we'd still remove from infill area ExPolygons diff_expp = diff_ex( offset(last, -0.5*distance), offset(offsets, +0.5*distance + 10) // safety offset ); for (ExPolygons::const_iterator ex = diff_expp.begin(); ex != diff_expp.end(); ++ex) { if (fabs(ex->area()) >= gap_area_threshold) { Polygons pp = *ex; gaps.insert(gaps.end(), pp.begin(), pp.end()); } } } } if (offsets.empty()) break; if (i > loop_number) break; // we were only looking for gaps this time last = offsets; for (Polygons::const_iterator polygon = offsets.begin(); polygon != offsets.end(); ++polygon) { PerimeterGeneratorLoop loop(*polygon, i); loop.is_contour = polygon->is_counter_clockwise(); if (loop.is_contour) { contours[i].push_back(loop); } else { holes[i].push_back(loop); } } } // nest loops: holes first for (signed short d = 0; d <= loop_number; ++d) { PerimeterGeneratorLoops &holes_d = holes[d]; // loop through all holes having depth == d for (signed short i = 0; i < holes_d.size(); ++i) { const PerimeterGeneratorLoop &loop = holes_d[i]; // find the hole loop that contains this one, if any for (signed short t = d+1; t <= loop_number; ++t) { for (signed short j = 0; j < holes[t].size(); ++j) { PerimeterGeneratorLoop &candidate_parent = holes[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.children.push_back(loop); holes_d.erase(holes_d.begin() + i); --i; goto NEXT_LOOP; } } } // if no hole contains this hole, find the contour loop that contains it for (signed short t = loop_number; t >= 0; --t) { for (signed short j = 0; j < contours[t].size(); ++j) { PerimeterGeneratorLoop &candidate_parent = contours[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.children.push_back(loop); holes_d.erase(holes_d.begin() + i); --i; goto NEXT_LOOP; } } } NEXT_LOOP: ; } } // nest contour loops for (signed short d = loop_number; d >= 1; --d) { PerimeterGeneratorLoops &contours_d = contours[d]; // loop through all contours having depth == d for (signed short i = 0; i < contours_d.size(); ++i) { const PerimeterGeneratorLoop &loop = contours_d[i]; // find the contour loop that contains it for (signed short t = d-1; t >= 0; --t) { for (signed short j = 0; j < contours[t].size(); ++j) { PerimeterGeneratorLoop &candidate_parent = contours[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.children.push_back(loop); contours_d.erase(contours_d.begin() + i); --i; goto NEXT_CONTOUR; } } } NEXT_CONTOUR: ; } } // at this point, all loops should be in contours[0] ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls); // if brim will be printed, reverse the order of perimeters so that // we continue inwards after having finished the brim // TODO: add test for perimeter order if (this->config->external_perimeters_first || (this->layer_id == 0 && this->print_config->brim_width.value > 0)) entities.reverse(); // append perimeters for this slice as a collection if (!entities.empty()) this->loops->append(entities); } // fill gaps if (!gaps.empty()) { /* if (false) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "gaps.svg", expolygons => union_ex(\@gaps), ); } */ // where $pwidth < thickness < 2*$pspacing, infill with width = 2*$pwidth // where 0.1*$pwidth < thickness < $pwidth, infill with width = 1*$pwidth std::vector<PerimeterGeneratorGapSize> gap_sizes; gap_sizes.push_back(PerimeterGeneratorGapSize(pwidth, 2*pspacing, 2*pwidth)); gap_sizes.push_back(PerimeterGeneratorGapSize(0.1*pwidth, pwidth, 1*pwidth)); for (std::vector<PerimeterGeneratorGapSize>::const_iterator gap_size = gap_sizes.begin(); gap_size != gap_sizes.end(); ++gap_size) { ExtrusionEntityCollection gap_fill = this->_fill_gaps(gap_size->min, gap_size->max, unscale(gap_size->width), gaps); this->gap_fill->append(gap_fill.entities); // Make sure we don't infill narrow parts that are already gap-filled // (we only consider this surface's gaps to reduce the diff() complexity). // Growing actual extrusions ensures that gaps not filled by medial axis // are not subtracted from fill surfaces (they might be too short gaps // that medial axis skips but infill might join with other infill regions // and use zigzag). coord_t dist = gap_size->width/2; Polygons filled; for (ExtrusionEntitiesPtr::const_iterator it = gap_fill.entities.begin(); it != gap_fill.entities.end(); ++it) { Polygons f; offset((*it)->as_polyline(), &f, dist); filled.insert(filled.end(), f.begin(), f.end()); } last = diff(last, filled); gaps = diff(gaps, filled); // prevent more gap fill here } } // create one more offset to be used as boundary for fill // we offset by half the perimeter spacing (to get to the actual infill boundary) // and then we offset back and forth by half the infill spacing to only consider the // non-collapsing regions coord_t inset = 0; if (loop_number == 0) { // one loop inset += ext_pspacing2/2; } else if (loop_number > 0) { // two or more loops inset += pspacing/2; } // only apply infill overlap if we actually have one perimeter if (inset > 0) inset -= this->config->get_abs_value("infill_overlap", inset + ispacing/2); { ExPolygons expp = union_ex(last); // simplify infill contours according to resolution Polygons pp; for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) ex->simplify_p(SCALED_RESOLUTION, &pp); // collapse too narrow infill areas coord_t min_perimeter_infill_spacing = ispacing * (1 - INSET_OVERLAP_TOLERANCE); expp = offset2_ex( pp, -inset -min_perimeter_infill_spacing/2, +min_perimeter_infill_spacing/2 ); // append infill areas to fill_surfaces for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) this->fill_surfaces->surfaces.push_back(Surface(stInternal, *ex)); // use a bogus surface type } } }
bool BridgeDetector::detect_angle() { if (this->_edges.empty() || this->_anchors.empty()) return false; /* Outset the bridge expolygon by half the amount we used for detecting anchors; we'll use this one to clip our test lines and be sure that their endpoints are inside the anchors and not on their contours leading to false negatives. */ Polygons clip_area; offset(this->expolygon, &clip_area, +this->extrusion_width/2); /* we'll now try several directions using a rudimentary visibility check: bridge in several directions and then sum the length of lines having both endpoints within anchors */ // we test angles according to configured resolution std::vector<double> angles; for (int i = 0; i <= PI/this->resolution; ++i) angles.push_back(i * this->resolution); // we also test angles of each bridge contour { Polygons pp = this->expolygon; for (Polygons::const_iterator p = pp.begin(); p != pp.end(); ++p) { Lines lines = p->lines(); for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) angles.push_back(line->direction()); } } /* we also test angles of each open supporting edge (this finds the optimal angle for C-shaped supports) */ for (Polylines::const_iterator edge = this->_edges.begin(); edge != this->_edges.end(); ++edge) { if (edge->first_point().coincides_with(edge->last_point())) continue; angles.push_back(Line(edge->first_point(), edge->last_point()).direction()); } // remove duplicates double min_resolution = PI/180.0; // 1 degree std::sort(angles.begin(), angles.end()); for (size_t i = 1; i < angles.size(); ++i) { if (xd::Geometry::directions_parallel(angles[i], angles[i-1], min_resolution)) { angles.erase(angles.begin() + i); --i; } } /* compare first value with last one and remove the greatest one (PI) in case they are parallel (PI, 0) */ if (xd::Geometry::directions_parallel(angles.front(), angles.back(), min_resolution)) angles.pop_back(); BridgeDirectionComparator bdcomp(this->extrusion_width); double line_increment = this->extrusion_width; bool have_coverage = false; for (std::vector<double>::const_iterator angle = angles.begin(); angle != angles.end(); ++angle) { Polygons my_clip_area = clip_area; ExPolygons my_anchors = this->_anchors; // rotate everything - the center point doesn't matter for (Polygons::iterator it = my_clip_area.begin(); it != my_clip_area.end(); ++it) it->rotate(-*angle, Point(0,0)); for (ExPolygons::iterator it = my_anchors.begin(); it != my_anchors.end(); ++it) it->rotate(-*angle, Point(0,0)); // generate lines in this direction BoundingBox bb; for (ExPolygons::const_iterator it = my_anchors.begin(); it != my_anchors.end(); ++it) bb.merge((Points)*it); Lines lines; for (coord_t y = bb.min.y; y <= bb.max.y; y += line_increment) lines.push_back(Line(Point(bb.min.x, y), Point(bb.max.x, y))); Lines clipped_lines; intersection(lines, my_clip_area, &clipped_lines); // remove any line not having both endpoints within anchors for (size_t i = 0; i < clipped_lines.size(); ++i) { Line &line = clipped_lines[i]; if (!xd::Geometry::contains(my_anchors, line.a) || !xd::Geometry::contains(my_anchors, line.b)) { clipped_lines.erase(clipped_lines.begin() + i); --i; } } std::vector<double> lengths; double total_length = 0; for (Lines::const_iterator line = clipped_lines.begin(); line != clipped_lines.end(); ++line) { double len = line->length(); lengths.push_back(len); total_length += len; } if (total_length) have_coverage = true; // sum length of bridged lines bdcomp.dir_coverage[*angle] = total_length; /* The following produces more correct results in some cases and more broken in others. TODO: investigate, as it looks more reliable than line clipping. */ // $directions_coverage{$angle} = sum(map $_->area, @{$self->coverage($angle)}) // 0; // max length of bridged lines bdcomp.dir_avg_length[*angle] = !lengths.empty() ? *std::max_element(lengths.begin(), lengths.end()) : 0; } // if no direction produced coverage, then there's no bridge direction if (!have_coverage) return false; // sort directions by score std::sort(angles.begin(), angles.end(), bdcomp); this->angle = angles.front(); if (this->angle >= PI) this->angle -= PI; // #ifdef SLIC3R_DEBUG // printf(" Optimal infill angle is %d degrees\n", (int)Slic3r::Geometry::rad2deg(this->angle)); // #endif return true; }