Esempio n. 1
0
void
PolylineCollection::chained_path_from(Point start_near, PolylineCollection* retval, bool no_reverse) const
{
    Polylines my_paths = this->polylines;

    Points endpoints;  //里面存储所有polyline里面的第一个点和允许翻转时的最后一个点的坐标
    for (Polylines::const_iterator it = my_paths.begin(); it != my_paths.end(); ++it) {
        endpoints.push_back(it->first_point());
        if (no_reverse) {
            endpoints.push_back(it->first_point());
        } else {
            endpoints.push_back(it->last_point());
        }
    }

    while (!my_paths.empty()) {
        // find nearest point
        int start_index = start_near.nearest_point_index(endpoints);
        int path_index = start_index/2;
        if (start_index % 2 && !no_reverse) {
            my_paths.at(path_index).reverse();
        }
        retval->polylines.push_back(my_paths.at(path_index));
        my_paths.erase(my_paths.begin() + path_index);
        endpoints.erase(endpoints.begin() + 2*path_index, endpoints.begin() + 2*path_index + 2);
        start_near = retval->polylines.back().last_point();
    }
}
Esempio n. 2
0
Point
PolylineCollection::leftmost_point() const
{
    if (this->polylines.empty()) qDebug("leftmost_point() called on empty PolylineCollection");
    Point p = this->polylines.front().leftmost_point();
    for (Polylines::const_iterator it = this->polylines.begin() + 1; it != this->polylines.end(); ++it) {
        Point p2 = it->leftmost_point();
        if (p2.x < p.x) p = p2;
    }
    return p;
}
Esempio n. 3
0
Point PolylineCollection::leftmost_point(const Polylines &polylines)
{
    if (polylines.empty()) CONFESS("leftmost_point() called on empty PolylineCollection");
    Polylines::const_iterator it = polylines.begin();
    Point p = it->leftmost_point();
    for (++ it; it != polylines.end(); ++it) {
        Point p2 = it->leftmost_point();
        if (p2.x < p.x) 
            p = p2;
    }
    return p;
}
Esempio n. 4
0
ExtrusionEntityCollection
PerimeterGenerator::_fill_gaps(double min, double max, double w,
    const Polygons &gaps) const
{
    ExtrusionEntityCollection coll;
    
    min *= (1 - INSET_OVERLAP_TOLERANCE);
    
    ExPolygons curr = diff_ex(
        offset2(gaps, -min/2, +min/2),
        offset2(gaps, -max/2, +max/2),
        true
    );
    
    Polylines polylines;
    for (ExPolygons::const_iterator ex = curr.begin(); ex != curr.end(); ++ex)
        ex->medial_axis(max, min/2, &polylines);
    if (polylines.empty())
        return coll;
    
    #ifdef SLIC3R_DEBUG
    if (!curr.empty())
        printf("  %zu gaps filled with extrusion width = %f\n", curr.size(), w);
    #endif
    
    //my $flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL, 0, $w);
    Flow flow(
        w, this->layer_height, this->solid_infill_flow.nozzle_diameter
    );
    
    double mm3_per_mm = flow.mm3_per_mm();
    
    for (Polylines::const_iterator p = polylines.begin(); p != polylines.end(); ++p) {
        ExtrusionPath path(erGapFill);
        path.polyline   = *p;
        path.mm3_per_mm = mm3_per_mm;
        path.width      = flow.width;
        path.height     = this->layer_height;
        
        if (p->is_valid() && p->first_point().coincides_with(p->last_point())) {
            // since medial_axis() now returns only Polyline objects, detect loops here
            ExtrusionLoop loop;
            loop.paths.push_back(path);
            coll.append(loop);
        } else {
            coll.append(path);
        }
    }
    
    return coll;
}
Esempio n. 5
0
void
BridgeDetector::unsupported_edges(double angle, Polylines* unsupported) const
{
    // get bridge edges (both contour and holes)
    Polylines bridge_edges;
    {
        Polygons pp = this->expolygon;
        bridge_edges.insert(bridge_edges.end(), pp.begin(), pp.end());  // this uses split_at_first_point()
    }

    // get unsupported edges
    Polygons grown_lower;
    offset(this->lower_slices, &grown_lower, +this->extrusion_width);
    Polylines _unsupported;
    diff(bridge_edges, grown_lower, &_unsupported);

    /*  Split into individual segments and filter out edges parallel to the bridging angle
        TODO: angle tolerance should probably be based on segment length and flow width,
        so that we build supports whenever there's a chance that at least one or two bridge
        extrusions would be anchored within such length (i.e. a slightly non-parallel bridging
        direction might still benefit from anchors if long enough) */
    double angle_tolerance = PI / 180.0 * 5.0;
    for (Polylines::const_iterator polyline = _unsupported.begin(); polyline != _unsupported.end(); ++polyline) {
        Lines lines = polyline->lines();
        for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
            if (!xd::Geometry::directions_parallel(line->direction(), angle))
                unsupported->push_back(*line);
        }
    }

    /*
    if (0) {
        require "Slic3r/SVG.pm";
        Slic3r::SVG::output(
            "unsupported_" . rad2deg($angle) . ".svg",
            expolygons          => [$self->expolygon],
            green_expolygons    => $self->_anchors,
            red_expolygons      => union_ex($grown_lower),
            no_arrows           => 1,
            polylines           => \@bridge_edges,
            red_polylines       => $unsupported,
        );
    }
    */
}
Esempio n. 6
0
void
PerimeterGenerator::process()
{
    // other perimeters
    this->_mm3_per_mm           = this->perimeter_flow.mm3_per_mm();
    coord_t pwidth              = this->perimeter_flow.scaled_width();
    coord_t pspacing            = this->perimeter_flow.scaled_spacing();
    
    // external perimeters
    this->_ext_mm3_per_mm       = this->ext_perimeter_flow.mm3_per_mm();
    coord_t ext_pwidth          = this->ext_perimeter_flow.scaled_width();
    coord_t ext_pspacing        = this->ext_perimeter_flow.scaled_spacing();
    coord_t ext_pspacing2       = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow);
    
    // overhang perimeters
    this->_mm3_per_mm_overhang  = this->overhang_flow.mm3_per_mm();
    
    // solid infill
    coord_t ispacing            = this->solid_infill_flow.scaled_spacing();
    coord_t gap_area_threshold  = pwidth * pwidth;
    
    // Calculate the minimum required spacing between two adjacent traces.
    // This should be equal to the nominal flow spacing but we experiment
    // with some tolerance in order to avoid triggering medial axis when
    // some squishing might work. Loops are still spaced by the entire
    // flow spacing; this only applies to collapsing parts.
    // For ext_min_spacing we use the ext_pspacing calculated for two adjacent
    // external loops (which is the correct way) instead of using ext_pspacing2
    // which is the spacing between external and internal, which is not correct
    // and would make the collapsing (thus the details resolution) dependent on 
    // internal flow which is unrelated.
    coord_t min_spacing         = pspacing      * (1 - INSET_OVERLAP_TOLERANCE);
    coord_t ext_min_spacing     = ext_pspacing  * (1 - INSET_OVERLAP_TOLERANCE);
    
    // prepare grown lower layer slices for overhang detection
    if (this->lower_slices != NULL && this->config->overhangs) {
        // We consider overhang any part where the entire nozzle diameter is not supported by the
        // lower layer, so we take lower slices and offset them by half the nozzle diameter used 
        // in the current layer
        double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
        
        this->_lower_slices_p = offset(*this->lower_slices, scale_(+nozzle_diameter/2));
    }
    
    // we need to process each island separately because we might have different
    // extra perimeters for each one
    for (Surfaces::const_iterator surface = this->slices->surfaces.begin();
        surface != this->slices->surfaces.end(); ++surface) {
        // detect how many perimeters must be generated for this island
        signed short loop_number = this->config->perimeters + surface->extra_perimeters;
        loop_number--;  // 0-indexed loops
        
        Polygons gaps;
        
        Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION);
        if (loop_number >= 0) {  // no loops = -1
            
            std::vector<PerimeterGeneratorLoops> contours(loop_number+1);    // depth => loops
            std::vector<PerimeterGeneratorLoops> holes(loop_number+1);       // depth => loops
            Polylines thin_walls;
            
            // we loop one time more than needed in order to find gaps after the last perimeter was applied
            for (signed short i = 0; i <= loop_number+1; ++i) {  // outer loop is 0
                Polygons offsets;
                if (i == 0) {
                    // the minimum thickness of a single loop is:
                    // ext_width/2 + ext_spacing/2 + spacing/2 + width/2
                    if (this->config->thin_walls) {
                        offsets = offset2(
                            last,
                            -(ext_pwidth/2 + ext_min_spacing/2 - 1),
                            +(ext_min_spacing/2 - 1)
                        );
                    } else {
                        offsets = offset(last, -ext_pwidth/2);
                    }
                    
                    // look for thin walls
                    if (this->config->thin_walls) {
                        Polygons diffpp = diff(
                            last,
                            offset(offsets, +ext_pwidth/2),
                            true  // medial axis requires non-overlapping geometry
                        );
                        
                        // the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
                        // (actually, something larger than that still may exist due to mitering or other causes)
                        coord_t min_width = ext_pwidth / 2;
                        ExPolygons expp = offset2_ex(diffpp, -min_width/2, +min_width/2);
                        
                        // the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
                        Polylines pp;
                        for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                            ex->medial_axis(ext_pwidth + ext_pspacing2, min_width, &pp);
                        
                        double threshold = ext_pwidth * 2;
                        for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) {
                            if (p->length() > threshold) {
                                thin_walls.push_back(*p);
                            }
                        }
                        
                        #ifdef DEBUG
                        printf("  %zu thin walls detected\n", thin_walls.size());
                        #endif
                        
                        /*
                        if (false) {
                            require "Slic3r/SVG.pm";
                            Slic3r::SVG::output(
                                "medial_axis.svg",
                                no_arrows       => 1,
                                #expolygons      => \@expp,
                                polylines       => \@thin_walls,
                            );
                        }
                        */
                    }
                } else {
                    coord_t distance = (i == 1) ? ext_pspacing2 : pspacing;
                    
                    if (this->config->thin_walls) {
                        offsets = offset2(
                            last,
                            -(distance + min_spacing/2 - 1),
                            +(min_spacing/2 - 1)
                        );
                    } else {
                        offsets = offset(
                            last,
                            -distance
                        );
                    }
                    
                    // look for gaps
                    if (this->config->gap_fill_speed.value > 0 && this->config->fill_density.value > 0) {
                        // not using safety offset here would "detect" very narrow gaps
                        // (but still long enough to escape the area threshold) that gap fill
                        // won't be able to fill but we'd still remove from infill area
                        ExPolygons diff_expp = diff_ex(
                            offset(last, -0.5*distance),
                            offset(offsets, +0.5*distance + 10)  // safety offset
                        );
                        for (ExPolygons::const_iterator ex = diff_expp.begin(); ex != diff_expp.end(); ++ex) {
                            if (fabs(ex->area()) >= gap_area_threshold) {
                                Polygons pp = *ex;
                                gaps.insert(gaps.end(), pp.begin(), pp.end());
                            }
                        }
                    }
                }
                
                if (offsets.empty()) break;
                if (i > loop_number) break; // we were only looking for gaps this time
                
                last = offsets;
                for (Polygons::const_iterator polygon = offsets.begin(); polygon != offsets.end(); ++polygon) {
                    PerimeterGeneratorLoop loop(*polygon, i);
                    loop.is_contour = polygon->is_counter_clockwise();
                    if (loop.is_contour) {
                        contours[i].push_back(loop);
                    } else {
                        holes[i].push_back(loop);
                    }
                }
            }
            
            // nest loops: holes first
            for (signed short d = 0; d <= loop_number; ++d) {
                PerimeterGeneratorLoops &holes_d = holes[d];
                
                // loop through all holes having depth == d
                for (signed short i = 0; i < holes_d.size(); ++i) {
                    const PerimeterGeneratorLoop &loop = holes_d[i];
                    
                    // find the hole loop that contains this one, if any
                    for (signed short t = d+1; t <= loop_number; ++t) {
                        for (signed short j = 0; j < holes[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = holes[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                holes_d.erase(holes_d.begin() + i);
                                --i;
                                goto NEXT_LOOP;
                            }
                        }
                    }
                    
                    // if no hole contains this hole, find the contour loop that contains it
                    for (signed short t = loop_number; t >= 0; --t) {
                        for (signed short j = 0; j < contours[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = contours[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                holes_d.erase(holes_d.begin() + i);
                                --i;
                                goto NEXT_LOOP;
                            }
                        }
                    }
                    NEXT_LOOP: ;
                }
            }
        
            // nest contour loops
            for (signed short d = loop_number; d >= 1; --d) {
                PerimeterGeneratorLoops &contours_d = contours[d];
                
                // loop through all contours having depth == d
                for (signed short i = 0; i < contours_d.size(); ++i) {
                    const PerimeterGeneratorLoop &loop = contours_d[i];
                
                    // find the contour loop that contains it
                    for (signed short t = d-1; t >= 0; --t) {
                        for (signed short j = 0; j < contours[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = contours[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                contours_d.erase(contours_d.begin() + i);
                                --i;
                                goto NEXT_CONTOUR;
                            }
                        }
                    }
                    
                    NEXT_CONTOUR: ;
                }
            }
        
            // at this point, all loops should be in contours[0]
            
            ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls);
            
            // if brim will be printed, reverse the order of perimeters so that
            // we continue inwards after having finished the brim
            // TODO: add test for perimeter order
            if (this->config->external_perimeters_first
                || (this->layer_id == 0 && this->print_config->brim_width.value > 0))
                    entities.reverse();
            
            // append perimeters for this slice as a collection
            if (!entities.empty())
                this->loops->append(entities);
        }
        
        // fill gaps
        if (!gaps.empty()) {
            /*
            if (false) {
                require "Slic3r/SVG.pm";
                Slic3r::SVG::output(
                    "gaps.svg",
                    expolygons => union_ex(\@gaps),
                );
            }
            */
            
            // where $pwidth < thickness < 2*$pspacing, infill with width = 2*$pwidth
            // where 0.1*$pwidth < thickness < $pwidth, infill with width = 1*$pwidth
            std::vector<PerimeterGeneratorGapSize> gap_sizes;
            gap_sizes.push_back(PerimeterGeneratorGapSize(pwidth, 2*pspacing, 2*pwidth));
            gap_sizes.push_back(PerimeterGeneratorGapSize(0.1*pwidth, pwidth, 1*pwidth));
            
            for (std::vector<PerimeterGeneratorGapSize>::const_iterator gap_size = gap_sizes.begin();
                gap_size != gap_sizes.end(); ++gap_size) {
                ExtrusionEntityCollection gap_fill = this->_fill_gaps(gap_size->min, 
                    gap_size->max, unscale(gap_size->width), gaps);
                this->gap_fill->append(gap_fill.entities);
                
                // Make sure we don't infill narrow parts that are already gap-filled
                // (we only consider this surface's gaps to reduce the diff() complexity).
                // Growing actual extrusions ensures that gaps not filled by medial axis
                // are not subtracted from fill surfaces (they might be too short gaps
                // that medial axis skips but infill might join with other infill regions
                // and use zigzag).
                coord_t dist = gap_size->width/2;
                Polygons filled;
                for (ExtrusionEntitiesPtr::const_iterator it = gap_fill.entities.begin();
                    it != gap_fill.entities.end(); ++it) {
                    Polygons f;
                    offset((*it)->as_polyline(), &f, dist);
                    filled.insert(filled.end(), f.begin(), f.end());
                }
                last = diff(last, filled);
                gaps = diff(gaps, filled);  // prevent more gap fill here
            }
        }
        
        // create one more offset to be used as boundary for fill
        // we offset by half the perimeter spacing (to get to the actual infill boundary)
        // and then we offset back and forth by half the infill spacing to only consider the
        // non-collapsing regions
        coord_t inset = 0;
        if (loop_number == 0) {
            // one loop
            inset += ext_pspacing2/2;
        } else if (loop_number > 0) {
            // two or more loops
            inset += pspacing/2;
        }
        
        // only apply infill overlap if we actually have one perimeter
        if (inset > 0)
            inset -= this->config->get_abs_value("infill_overlap", inset + ispacing/2);
        
        {
            ExPolygons expp = union_ex(last);
            
            // simplify infill contours according to resolution
            Polygons pp;
            for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                ex->simplify_p(SCALED_RESOLUTION, &pp);
            
            // collapse too narrow infill areas
            coord_t min_perimeter_infill_spacing = ispacing * (1 - INSET_OVERLAP_TOLERANCE);
            expp = offset2_ex(
                pp,
                -inset -min_perimeter_infill_spacing/2,
                +min_perimeter_infill_spacing/2
            );
            
            // append infill areas to fill_surfaces
            for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                this->fill_surfaces->surfaces.push_back(Surface(stInternal, *ex));  // use a bogus surface type
        }
    }
}
Esempio n. 7
0
bool
BridgeDetector::detect_angle()
{
    if (this->_edges.empty() || this->_anchors.empty()) return false;

    /*  Outset the bridge expolygon by half the amount we used for detecting anchors;
        we'll use this one to clip our test lines and be sure that their endpoints
        are inside the anchors and not on their contours leading to false negatives. */
    Polygons clip_area;
    offset(this->expolygon, &clip_area, +this->extrusion_width/2);

    /*  we'll now try several directions using a rudimentary visibility check:
        bridge in several directions and then sum the length of lines having both
        endpoints within anchors */

    // we test angles according to configured resolution
    std::vector<double> angles;
    for (int i = 0; i <= PI/this->resolution; ++i)
        angles.push_back(i * this->resolution);

    // we also test angles of each bridge contour
    {
        Polygons pp = this->expolygon;
        for (Polygons::const_iterator p = pp.begin(); p != pp.end(); ++p) {
            Lines lines = p->lines();
            for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line)
                angles.push_back(line->direction());
        }
    }

    /*  we also test angles of each open supporting edge
        (this finds the optimal angle for C-shaped supports) */
    for (Polylines::const_iterator edge = this->_edges.begin(); edge != this->_edges.end(); ++edge) {
        if (edge->first_point().coincides_with(edge->last_point())) continue;
        angles.push_back(Line(edge->first_point(), edge->last_point()).direction());
    }

    // remove duplicates
    double min_resolution = PI/180.0;  // 1 degree
    std::sort(angles.begin(), angles.end());
    for (size_t i = 1; i < angles.size(); ++i) {
        if (xd::Geometry::directions_parallel(angles[i], angles[i-1], min_resolution)) {
            angles.erase(angles.begin() + i);
            --i;
        }
    }
    /*  compare first value with last one and remove the greatest one (PI)
        in case they are parallel (PI, 0) */
    if (xd::Geometry::directions_parallel(angles.front(), angles.back(), min_resolution))
        angles.pop_back();

    BridgeDirectionComparator bdcomp(this->extrusion_width);
    double line_increment = this->extrusion_width;
    bool have_coverage = false;
    for (std::vector<double>::const_iterator angle = angles.begin(); angle != angles.end(); ++angle) {
        Polygons my_clip_area = clip_area;
        ExPolygons my_anchors = this->_anchors;

        // rotate everything - the center point doesn't matter
        for (Polygons::iterator it = my_clip_area.begin(); it != my_clip_area.end(); ++it)
            it->rotate(-*angle, Point(0,0));
        for (ExPolygons::iterator it = my_anchors.begin(); it != my_anchors.end(); ++it)
            it->rotate(-*angle, Point(0,0));

        // generate lines in this direction
        BoundingBox bb;
        for (ExPolygons::const_iterator it = my_anchors.begin(); it != my_anchors.end(); ++it)
            bb.merge((Points)*it);

        Lines lines;
        for (coord_t y = bb.min.y; y <= bb.max.y; y += line_increment)
            lines.push_back(Line(Point(bb.min.x, y), Point(bb.max.x, y)));

        Lines clipped_lines;
        intersection(lines, my_clip_area, &clipped_lines);

        // remove any line not having both endpoints within anchors
        for (size_t i = 0; i < clipped_lines.size(); ++i) {
            Line &line = clipped_lines[i];
            if (!xd::Geometry::contains(my_anchors, line.a)
                    || !xd::Geometry::contains(my_anchors, line.b)) {
                clipped_lines.erase(clipped_lines.begin() + i);
                --i;
            }
        }

        std::vector<double> lengths;
        double total_length = 0;
        for (Lines::const_iterator line = clipped_lines.begin(); line != clipped_lines.end(); ++line) {
            double len = line->length();
            lengths.push_back(len);
            total_length += len;
        }
        if (total_length) have_coverage = true;

        // sum length of bridged lines
        bdcomp.dir_coverage[*angle] = total_length;

        /*  The following produces more correct results in some cases and more broken in others.
            TODO: investigate, as it looks more reliable than line clipping. */
        // $directions_coverage{$angle} = sum(map $_->area, @{$self->coverage($angle)}) // 0;

        // max length of bridged lines
        bdcomp.dir_avg_length[*angle] = !lengths.empty()
                                        ? *std::max_element(lengths.begin(), lengths.end())
                                        : 0;
    }

    // if no direction produced coverage, then there's no bridge direction
    if (!have_coverage) return false;

    // sort directions by score
    std::sort(angles.begin(), angles.end(), bdcomp);

    this->angle = angles.front();
    if (this->angle >= PI) this->angle -= PI;

//    #ifdef SLIC3R_DEBUG
//    printf("  Optimal infill angle is %d degrees\n", (int)Slic3r::Geometry::rad2deg(this->angle));
//    #endif

    return true;
}