Esempio n. 1
0
Error HTTPClient::request_raw(Method p_method, const String &p_url, const Vector<String> &p_headers, const PoolVector<uint8_t> &p_body) {

	Error err = prepare_request(p_method, p_url, p_headers);
	if (err != OK)
		return err;
	PoolByteArray::Read read = p_body.read();
	godot_xhr_send_data(xhr_id, read.ptr(), p_body.size());
	return OK;
}
Esempio n. 2
0
Error HTTPClient::poll() {

	switch (status) {

		case STATUS_DISCONNECTED:
			return ERR_UNCONFIGURED;

		case STATUS_RESOLVING:
			status = STATUS_CONNECTING;
			return OK;

		case STATUS_CONNECTING:
			status = STATUS_CONNECTED;
			return OK;

		case STATUS_CONNECTED:
		case STATUS_BODY:
			return OK;

		case STATUS_CONNECTION_ERROR:
			return ERR_CONNECTION_ERROR;

		case STATUS_REQUESTING:
			polled_response_code = godot_xhr_get_status(xhr_id);
			int response_length = godot_xhr_get_response_length(xhr_id);
			if (response_length == 0) {
				godot_xhr_ready_state_t ready_state = godot_xhr_get_ready_state(xhr_id);
				if (ready_state == XHR_READY_STATE_HEADERS_RECEIVED || ready_state == XHR_READY_STATE_LOADING) {
					return OK;
				} else {
					status = STATUS_CONNECTION_ERROR;
					return ERR_CONNECTION_ERROR;
				}
			}

			status = STATUS_BODY;

			PoolByteArray bytes;
			int len = godot_xhr_get_response_headers_length(xhr_id);
			bytes.resize(len);
			PoolByteArray::Write write = bytes.write();
			godot_xhr_get_response_headers(xhr_id, reinterpret_cast<char *>(write.ptr()), len);
			write = PoolByteArray::Write();

			PoolByteArray::Read read = bytes.read();
			polled_response_header = String::utf8(reinterpret_cast<const char *>(read.ptr()));
			read = PoolByteArray::Read();

			polled_response.resize(response_length);
			write = polled_response.write();
			godot_xhr_get_response(xhr_id, write.ptr(), response_length);
			write = PoolByteArray::Write();
			break;
	}
	return OK;
}
Esempio n. 3
0
void ExportTemplateManager::_http_download_mirror_completed(int p_status, int p_code, const PoolStringArray &headers, const PoolByteArray &p_data) {

	if (p_status != HTTPRequest::RESULT_SUCCESS || p_code != 200) {
		EditorNode::get_singleton()->show_warning("Error getting the list of mirrors.");
		return;
	}

	String mirror_str;
	{
		PoolByteArray::Read r = p_data.read();
		mirror_str.parse_utf8((const char *)r.ptr(), p_data.size());
	}

	template_list_state->hide();
	template_download_progress->hide();

	Variant r;
	String errs;
	int errline;
	Error err = JSON::parse(mirror_str, r, errs, errline);
	if (err != OK) {
		EditorNode::get_singleton()->show_warning("Error parsing JSON of mirror list. Please report this issue!");
		return;
	}

	bool mirrors_found = false;

	Dictionary d = r;
	print_line(r);
	if (d.has("mirrors")) {
		Array mirrors = d["mirrors"];
		for (int i = 0; i < mirrors.size(); i++) {
			Dictionary m = mirrors[i];
			ERR_CONTINUE(!m.has("url") || !m.has("name"));
			LinkButton *lb = memnew(LinkButton);
			lb->set_text(m["name"]);
			lb->connect("pressed", this, "_begin_template_download", varray(m["url"]));
			template_list->add_child(lb);
			mirrors_found = true;
		}
	}

	if (!mirrors_found) {
		EditorNode::get_singleton()->show_warning(TTR("No download links found for this version. Direct download is only available for official releases."));
		return;
	}
}
Esempio n. 4
0
PoolByteArray HTTPClient::read_response_body_chunk() {

	ERR_FAIL_COND_V(status != STATUS_BODY, PoolByteArray());

	int to_read = MIN(read_limit, polled_response.size() - response_read_offset);
	PoolByteArray chunk;
	chunk.resize(to_read);
	PoolByteArray::Write write = chunk.write();
	PoolByteArray::Read read = polled_response.read();
	memcpy(write.ptr(), read.ptr() + response_read_offset, to_read);
	write = PoolByteArray::Write();
	read = PoolByteArray::Read();
	response_read_offset += to_read;

	if (response_read_offset == polled_response.size()) {
		status = STATUS_CONNECTED;
		polled_response.resize(0);
		polled_response_code = 0;
		polled_response_header = String();
		godot_xhr_reset(xhr_id);
	}

	return chunk;
}
void VisualScriptBuiltinFunc::exec_func(BuiltinFunc p_func, const Variant **p_inputs, Variant *r_return, Variant::CallError &r_error, String &r_error_str) {

	switch (p_func) {
		case VisualScriptBuiltinFunc::MATH_SIN: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::sin((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_COS: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::cos((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_TAN: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::tan((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_SINH: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::sinh((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_COSH: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::cosh((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_TANH: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::tanh((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_ASIN: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::asin((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_ACOS: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::acos((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_ATAN: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::atan((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_ATAN2: {

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			*r_return = Math::atan2((double)*p_inputs[0], (double)*p_inputs[1]);
		} break;
		case VisualScriptBuiltinFunc::MATH_SQRT: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::sqrt((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_FMOD: {

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			*r_return = Math::fmod((double)*p_inputs[0], (double)*p_inputs[1]);
		} break;
		case VisualScriptBuiltinFunc::MATH_FPOSMOD: {

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			*r_return = Math::fposmod((double)*p_inputs[0], (double)*p_inputs[1]);
		} break;
		case VisualScriptBuiltinFunc::MATH_FLOOR: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::floor((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_CEIL: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::ceil((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_ROUND: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::round((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_ABS: {

			if (p_inputs[0]->get_type() == Variant::INT) {

				int64_t i = *p_inputs[0];
				*r_return = ABS(i);
			} else if (p_inputs[0]->get_type() == Variant::REAL) {

				real_t r = *p_inputs[0];
				*r_return = Math::abs(r);
			} else {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::REAL;
			}
		} break;
		case VisualScriptBuiltinFunc::MATH_SIGN: {

			if (p_inputs[0]->get_type() == Variant::INT) {

				int64_t i = *p_inputs[0];
				*r_return = i < 0 ? -1 : (i > 0 ? +1 : 0);
			} else if (p_inputs[0]->get_type() == Variant::REAL) {

				real_t r = *p_inputs[0];
				*r_return = r < 0.0 ? -1.0 : (r > 0.0 ? +1.0 : 0.0);
			} else {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::REAL;
			}
		} break;
		case VisualScriptBuiltinFunc::MATH_POW: {

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			*r_return = Math::pow((double)*p_inputs[0], (double)*p_inputs[1]);
		} break;
		case VisualScriptBuiltinFunc::MATH_LOG: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::log((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_EXP: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::exp((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_ISNAN: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::is_nan((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_ISINF: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::is_inf((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_EASE: {

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			*r_return = Math::ease((double)*p_inputs[0], (double)*p_inputs[1]);
		} break;
		case VisualScriptBuiltinFunc::MATH_DECIMALS: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::step_decimals((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_STEPIFY: {

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			*r_return = Math::stepify((double)*p_inputs[0], (double)*p_inputs[1]);
		} break;
		case VisualScriptBuiltinFunc::MATH_LERP: {

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);
			*r_return = Math::lerp((double)*p_inputs[0], (double)*p_inputs[1], (double)*p_inputs[2]);
		} break;
		case VisualScriptBuiltinFunc::MATH_INVERSE_LERP: {

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);
			*r_return = Math::inverse_lerp((double)*p_inputs[0], (double)*p_inputs[1], (double)*p_inputs[2]);
		} break;
		case VisualScriptBuiltinFunc::MATH_RANGE_LERP: {

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);
			VALIDATE_ARG_NUM(3);
			VALIDATE_ARG_NUM(4);
			*r_return = Math::range_lerp((double)*p_inputs[0], (double)*p_inputs[1], (double)*p_inputs[2], (double)*p_inputs[3], (double)*p_inputs[4]);
		} break;
		case VisualScriptBuiltinFunc::MATH_SMOOTHSTEP: {
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);
			*r_return = Math::smoothstep((double)*p_inputs[0], (double)*p_inputs[1], (double)*p_inputs[2]);
		} break;
		case VisualScriptBuiltinFunc::MATH_DECTIME: {

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);
			*r_return = Math::dectime((double)*p_inputs[0], (double)*p_inputs[1], (double)*p_inputs[2]);
		} break;
		case VisualScriptBuiltinFunc::MATH_RANDOMIZE: {
			Math::randomize();

		} break;
		case VisualScriptBuiltinFunc::MATH_RAND: {
			*r_return = Math::rand();
		} break;
		case VisualScriptBuiltinFunc::MATH_RANDF: {
			*r_return = Math::randf();
		} break;
		case VisualScriptBuiltinFunc::MATH_RANDOM: {

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			*r_return = Math::random((double)*p_inputs[0], (double)*p_inputs[1]);
		} break;
		case VisualScriptBuiltinFunc::MATH_SEED: {

			VALIDATE_ARG_NUM(0);
			uint64_t seed = *p_inputs[0];
			Math::seed(seed);

		} break;
		case VisualScriptBuiltinFunc::MATH_RANDSEED: {

			VALIDATE_ARG_NUM(0);
			uint64_t seed = *p_inputs[0];
			int ret = Math::rand_from_seed(&seed);
			Array reta;
			reta.push_back(ret);
			reta.push_back(seed);
			*r_return = reta;

		} break;
		case VisualScriptBuiltinFunc::MATH_DEG2RAD: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::deg2rad((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_RAD2DEG: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::rad2deg((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_LINEAR2DB: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::linear2db((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_DB2LINEAR: {

			VALIDATE_ARG_NUM(0);
			*r_return = Math::db2linear((double)*p_inputs[0]);
		} break;
		case VisualScriptBuiltinFunc::MATH_POLAR2CARTESIAN: {
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			double r = *p_inputs[0];
			double th = *p_inputs[1];
			*r_return = Vector2(r * Math::cos(th), r * Math::sin(th));
		} break;
		case VisualScriptBuiltinFunc::MATH_CARTESIAN2POLAR: {
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			double x = *p_inputs[0];
			double y = *p_inputs[1];
			*r_return = Vector2(Math::sqrt(x * x + y * y), Math::atan2(y, x));
		} break;
		case VisualScriptBuiltinFunc::MATH_WRAP: {
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);
			*r_return = Math::wrapi((int64_t)*p_inputs[0], (int64_t)*p_inputs[1], (int64_t)*p_inputs[2]);
		} break;
		case VisualScriptBuiltinFunc::MATH_WRAPF: {
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);
			*r_return = Math::wrapf((double)*p_inputs[0], (double)*p_inputs[1], (double)*p_inputs[2]);
		} break;
		case VisualScriptBuiltinFunc::LOGIC_MAX: {

			if (p_inputs[0]->get_type() == Variant::INT && p_inputs[1]->get_type() == Variant::INT) {

				int64_t a = *p_inputs[0];
				int64_t b = *p_inputs[1];
				*r_return = MAX(a, b);
			} else {
				VALIDATE_ARG_NUM(0);
				VALIDATE_ARG_NUM(1);

				real_t a = *p_inputs[0];
				real_t b = *p_inputs[1];

				*r_return = MAX(a, b);
			}

		} break;
		case VisualScriptBuiltinFunc::LOGIC_MIN: {

			if (p_inputs[0]->get_type() == Variant::INT && p_inputs[1]->get_type() == Variant::INT) {

				int64_t a = *p_inputs[0];
				int64_t b = *p_inputs[1];
				*r_return = MIN(a, b);
			} else {
				VALIDATE_ARG_NUM(0);
				VALIDATE_ARG_NUM(1);

				real_t a = *p_inputs[0];
				real_t b = *p_inputs[1];

				*r_return = MIN(a, b);
			}
		} break;
		case VisualScriptBuiltinFunc::LOGIC_CLAMP: {

			if (p_inputs[0]->get_type() == Variant::INT && p_inputs[1]->get_type() == Variant::INT && p_inputs[2]->get_type() == Variant::INT) {

				int64_t a = *p_inputs[0];
				int64_t b = *p_inputs[1];
				int64_t c = *p_inputs[2];
				*r_return = CLAMP(a, b, c);
			} else {
				VALIDATE_ARG_NUM(0);
				VALIDATE_ARG_NUM(1);
				VALIDATE_ARG_NUM(2);

				real_t a = *p_inputs[0];
				real_t b = *p_inputs[1];
				real_t c = *p_inputs[2];

				*r_return = CLAMP(a, b, c);
			}
		} break;
		case VisualScriptBuiltinFunc::LOGIC_NEAREST_PO2: {

			VALIDATE_ARG_NUM(0);
			int64_t num = *p_inputs[0];
			*r_return = next_power_of_2(num);
		} break;
		case VisualScriptBuiltinFunc::OBJ_WEAKREF: {

			if (p_inputs[0]->get_type() != Variant::OBJECT) {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::OBJECT;

				return;
			}

			if (p_inputs[0]->is_ref()) {

				REF r = *p_inputs[0];
				if (!r.is_valid()) {

					return;
				}

				Ref<WeakRef> wref = memnew(WeakRef);
				wref->set_ref(r);
				*r_return = wref;
			} else {
				Object *obj = *p_inputs[0];
				if (!obj) {

					return;
				}
				Ref<WeakRef> wref = memnew(WeakRef);
				wref->set_obj(obj);
				*r_return = wref;
			}

		} break;
		case VisualScriptBuiltinFunc::FUNC_FUNCREF: {

			if (p_inputs[0]->get_type() != Variant::OBJECT) {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::OBJECT;

				return;
			}
			if (p_inputs[1]->get_type() != Variant::STRING && p_inputs[1]->get_type() != Variant::NODE_PATH) {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 1;
				r_error.expected = Variant::STRING;

				return;
			}

			Ref<FuncRef> fr = memnew(FuncRef);

			fr->set_instance(*p_inputs[0]);
			fr->set_function(*p_inputs[1]);

			*r_return = fr;

		} break;
		case VisualScriptBuiltinFunc::TYPE_CONVERT: {

			VALIDATE_ARG_NUM(1);
			int type = *p_inputs[1];
			if (type < 0 || type >= Variant::VARIANT_MAX) {

				r_error_str = RTR("Invalid type argument to convert(), use TYPE_* constants.");
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::INT;
				return;

			} else {

				*r_return = Variant::construct(Variant::Type(type), p_inputs, 1, r_error);
			}
		} break;
		case VisualScriptBuiltinFunc::TYPE_OF: {

			*r_return = p_inputs[0]->get_type();

		} break;
		case VisualScriptBuiltinFunc::TYPE_EXISTS: {

			*r_return = ClassDB::class_exists(*p_inputs[0]);

		} break;
		case VisualScriptBuiltinFunc::TEXT_CHAR: {

			CharType result[2] = { *p_inputs[0], 0 };

			*r_return = String(result);

		} break;
		case VisualScriptBuiltinFunc::TEXT_STR: {

			String str = *p_inputs[0];

			*r_return = str;

		} break;
		case VisualScriptBuiltinFunc::TEXT_PRINT: {

			String str = *p_inputs[0];
			print_line(str);

		} break;

		case VisualScriptBuiltinFunc::TEXT_PRINTERR: {

			String str = *p_inputs[0];
			print_error(str);

		} break;
		case VisualScriptBuiltinFunc::TEXT_PRINTRAW: {

			String str = *p_inputs[0];
			OS::get_singleton()->print("%s", str.utf8().get_data());

		} break;
		case VisualScriptBuiltinFunc::VAR_TO_STR: {

			String vars;
			VariantWriter::write_to_string(*p_inputs[0], vars);
			*r_return = vars;
		} break;
		case VisualScriptBuiltinFunc::STR_TO_VAR: {

			if (p_inputs[0]->get_type() != Variant::STRING) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::STRING;

				return;
			}

			VariantParser::StreamString ss;
			ss.s = *p_inputs[0];

			String errs;
			int line;
			Error err = VariantParser::parse(&ss, *r_return, errs, line);

			if (err != OK) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::STRING;
				*r_return = "Parse error at line " + itos(line) + ": " + errs;
				return;
			}

		} break;
		case VisualScriptBuiltinFunc::VAR_TO_BYTES: {

			if (p_inputs[1]->get_type() != Variant::BOOL) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 1;
				r_error.expected = Variant::BOOL;
				return;
			}
			PoolByteArray barr;
			int len;
			bool full_objects = *p_inputs[1];
			Error err = encode_variant(*p_inputs[0], NULL, len, full_objects);
			if (err) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::NIL;
				r_error_str = "Unexpected error encoding variable to bytes, likely unserializable type found (Object or RID).";
				return;
			}

			barr.resize(len);
			{
				PoolByteArray::Write w = barr.write();
				encode_variant(*p_inputs[0], w.ptr(), len, full_objects);
			}
			*r_return = barr;
		} break;
		case VisualScriptBuiltinFunc::BYTES_TO_VAR: {

			if (p_inputs[0]->get_type() != Variant::POOL_BYTE_ARRAY) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::POOL_BYTE_ARRAY;
				return;
			}
			if (p_inputs[1]->get_type() != Variant::BOOL) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 1;
				r_error.expected = Variant::BOOL;
				return;
			}

			PoolByteArray varr = *p_inputs[0];
			bool allow_objects = *p_inputs[1];
			Variant ret;
			{
				PoolByteArray::Read r = varr.read();
				Error err = decode_variant(ret, r.ptr(), varr.size(), NULL, allow_objects);
				if (err != OK) {
					r_error_str = RTR("Not enough bytes for decoding bytes, or invalid format.");
					r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
					r_error.argument = 0;
					r_error.expected = Variant::POOL_BYTE_ARRAY;
					return;
				}
			}

			*r_return = ret;

		} break;
		case VisualScriptBuiltinFunc::COLORN: {

			VALIDATE_ARG_NUM(1);

			Color color = Color::named(*p_inputs[0]);
			color.a = *p_inputs[1];

			*r_return = String(color);

		} break;
		default: {
		}
	}
}
Esempio n. 6
0
bool HTTPRequest::_update_connection() {

	switch (client->get_status()) {
		case HTTPClient::STATUS_DISCONNECTED: {
			call_deferred("_request_done", RESULT_CANT_CONNECT, 0, PoolStringArray(), PoolByteArray());
			return true; //end it, since it's doing something
		} break;
		case HTTPClient::STATUS_RESOLVING: {
			client->poll();
			//must wait
			return false;
		} break;
		case HTTPClient::STATUS_CANT_RESOLVE: {
			call_deferred("_request_done", RESULT_CANT_RESOLVE, 0, PoolStringArray(), PoolByteArray());
			return true;

		} break;
		case HTTPClient::STATUS_CONNECTING: {
			client->poll();
			//must wait
			return false;
		} break; //connecting to ip
		case HTTPClient::STATUS_CANT_CONNECT: {

			call_deferred("_request_done", RESULT_CANT_CONNECT, 0, PoolStringArray(), PoolByteArray());
			return true;

		} break;
		case HTTPClient::STATUS_CONNECTED: {

			if (request_sent) {

				if (!got_response) {

					//no body

					bool ret_value;

					if (_handle_response(&ret_value))
						return ret_value;

					call_deferred("_request_done", RESULT_SUCCESS, response_code, response_headers, PoolByteArray());
					return true;
				}
				if (got_response && body_len < 0) {
					//chunked transfer is done
					call_deferred("_request_done", RESULT_SUCCESS, response_code, response_headers, body);
					return true;
				}

				call_deferred("_request_done", RESULT_CHUNKED_BODY_SIZE_MISMATCH, response_code, response_headers, PoolByteArray());
				return true;
				//request migh have been done
			} else {
				//did not request yet, do request

				Error err = client->request(method, request_string, headers, request_data);
				if (err != OK) {
					call_deferred("_request_done", RESULT_CONNECTION_ERROR, 0, PoolStringArray(), PoolByteArray());
					return true;
				}

				request_sent = true;
				return false;
			}
		} break; //connected: { } break requests only accepted here
		case HTTPClient::STATUS_REQUESTING: {
			//must wait, it's requesting
			client->poll();
			return false;

		} break; // request in progress
		case HTTPClient::STATUS_BODY: {

			if (!got_response) {

				bool ret_value;

				if (_handle_response(&ret_value))
					return ret_value;

				if (!client->is_response_chunked() && client->get_response_body_length() == 0) {

					call_deferred("_request_done", RESULT_SUCCESS, response_code, response_headers, PoolByteArray());
					return true;
				}

				if (client->is_response_chunked()) {
					body_len = -1; //no body len because chunked, change your webserver configuration if you want body len
				} else {
					body_len = client->get_response_body_length();

					if (body_size_limit >= 0 && body_len > body_size_limit) {
						call_deferred("_request_done", RESULT_BODY_SIZE_LIMIT_EXCEEDED, response_code, response_headers, PoolByteArray());
						return true;
					}
				}

				if (download_to_file != String()) {
					file = FileAccess::open(download_to_file, FileAccess::WRITE);
					if (!file) {

						call_deferred("_request_done", RESULT_DOWNLOAD_FILE_CANT_OPEN, response_code, response_headers, PoolByteArray());
						return true;
					}
				}
			}

			//print_line("BODY: "+itos(body.size()));
			client->poll();

			PoolByteArray chunk = client->read_response_body_chunk();
			downloaded += chunk.size();

			if (file) {
				PoolByteArray::Read r = chunk.read();
				file->store_buffer(r.ptr(), chunk.size());
				if (file->get_error() != OK) {
					call_deferred("_request_done", RESULT_DOWNLOAD_FILE_WRITE_ERROR, response_code, response_headers, PoolByteArray());
					return true;
				}
			} else {
				body.append_array(chunk);
			}

			if (body_size_limit >= 0 && downloaded > body_size_limit) {
				call_deferred("_request_done", RESULT_BODY_SIZE_LIMIT_EXCEEDED, response_code, response_headers, PoolByteArray());
				return true;
			}

			if (body_len >= 0) {

				if (downloaded == body_len) {
					call_deferred("_request_done", RESULT_SUCCESS, response_code, response_headers, body);
					return true;
				}
				/*if (body.size()>=body_len) {
					call_deferred("_request_done",RESULT_BODY_SIZE_MISMATCH,response_code,response_headers,ByteArray());
					return true;
				}*/
			}

			return false;

		} break; // request resulted in body: { } break which must be read
		case HTTPClient::STATUS_CONNECTION_ERROR: {
			call_deferred("_request_done", RESULT_CONNECTION_ERROR, 0, PoolStringArray(), PoolByteArray());
			return true;
		} break;
		case HTTPClient::STATUS_SSL_HANDSHAKE_ERROR: {
			call_deferred("_request_done", RESULT_SSL_HANDSHAKE_ERROR, 0, PoolStringArray(), PoolByteArray());
			return true;
		} break;
	}

	ERR_FAIL_V(false);
}
Esempio n. 7
0
void GDScriptFunctions::call(Function p_func, const Variant **p_args, int p_arg_count, Variant &r_ret, Variant::CallError &r_error) {

	r_error.error = Variant::CallError::CALL_OK;
#ifdef DEBUG_ENABLED

#define VALIDATE_ARG_COUNT(m_count)                                        \
	if (p_arg_count < m_count) {                                           \
		r_error.error = Variant::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;  \
		r_error.argument = m_count;                                        \
		r_ret = Variant();                                                 \
		return;                                                            \
	}                                                                      \
	if (p_arg_count > m_count) {                                           \
		r_error.error = Variant::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS; \
		r_error.argument = m_count;                                        \
		r_ret = Variant();                                                 \
		return;                                                            \
	}

#define VALIDATE_ARG_NUM(m_arg)                                          \
	if (!p_args[m_arg]->is_num()) {                                      \
		r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT; \
		r_error.argument = m_arg;                                        \
		r_error.expected = Variant::REAL;                                \
		r_ret = Variant();                                               \
		return;                                                          \
	}

#else

#define VALIDATE_ARG_COUNT(m_count)
#define VALIDATE_ARG_NUM(m_arg)
#endif

	//using a switch, so the compiler generates a jumptable

	switch (p_func) {

		case MATH_SIN: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::sin((double)*p_args[0]);
		} break;
		case MATH_COS: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::cos((double)*p_args[0]);
		} break;
		case MATH_TAN: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::tan((double)*p_args[0]);
		} break;
		case MATH_SINH: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::sinh((double)*p_args[0]);
		} break;
		case MATH_COSH: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::cosh((double)*p_args[0]);
		} break;
		case MATH_TANH: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::tanh((double)*p_args[0]);
		} break;
		case MATH_ASIN: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::asin((double)*p_args[0]);
		} break;
		case MATH_ACOS: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::acos((double)*p_args[0]);
		} break;
		case MATH_ATAN: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::atan((double)*p_args[0]);
		} break;
		case MATH_ATAN2: {
			VALIDATE_ARG_COUNT(2);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			r_ret = Math::atan2((double)*p_args[0], (double)*p_args[1]);
		} break;
		case MATH_SQRT: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::sqrt((double)*p_args[0]);
		} break;
		case MATH_FMOD: {
			VALIDATE_ARG_COUNT(2);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			r_ret = Math::fmod((double)*p_args[0], (double)*p_args[1]);
		} break;
		case MATH_FPOSMOD: {
			VALIDATE_ARG_COUNT(2);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			r_ret = Math::fposmod((double)*p_args[0], (double)*p_args[1]);
		} break;
		case MATH_FLOOR: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::floor((double)*p_args[0]);
		} break;
		case MATH_CEIL: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::ceil((double)*p_args[0]);
		} break;
		case MATH_ROUND: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::round((double)*p_args[0]);
		} break;
		case MATH_ABS: {
			VALIDATE_ARG_COUNT(1);
			if (p_args[0]->get_type() == Variant::INT) {

				int64_t i = *p_args[0];
				r_ret = ABS(i);
			} else if (p_args[0]->get_type() == Variant::REAL) {

				double r = *p_args[0];
				r_ret = Math::abs(r);
			} else {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::REAL;
				r_ret = Variant();
			}
		} break;
		case MATH_SIGN: {
			VALIDATE_ARG_COUNT(1);
			if (p_args[0]->get_type() == Variant::INT) {

				int64_t i = *p_args[0];
				r_ret = i < 0 ? -1 : (i > 0 ? +1 : 0);
			} else if (p_args[0]->get_type() == Variant::REAL) {

				real_t r = *p_args[0];
				r_ret = r < 0.0 ? -1.0 : (r > 0.0 ? +1.0 : 0.0);
			} else {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::REAL;
				r_ret = Variant();
			}
		} break;
		case MATH_POW: {
			VALIDATE_ARG_COUNT(2);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			r_ret = Math::pow((double)*p_args[0], (double)*p_args[1]);
		} break;
		case MATH_LOG: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::log((double)*p_args[0]);
		} break;
		case MATH_EXP: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::exp((double)*p_args[0]);
		} break;
		case MATH_ISNAN: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::is_nan((double)*p_args[0]);
		} break;
		case MATH_ISINF: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::is_inf((double)*p_args[0]);
		} break;
		case MATH_EASE: {
			VALIDATE_ARG_COUNT(2);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			r_ret = Math::ease((double)*p_args[0], (double)*p_args[1]);
		} break;
		case MATH_DECIMALS: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::step_decimals((double)*p_args[0]);
		} break;
		case MATH_STEPIFY: {
			VALIDATE_ARG_COUNT(2);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			r_ret = Math::stepify((double)*p_args[0], (double)*p_args[1]);
		} break;
		case MATH_LERP: {
			VALIDATE_ARG_COUNT(3);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);
			r_ret = Math::lerp((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
		} break;
		case MATH_INVERSE_LERP: {
			VALIDATE_ARG_COUNT(3);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);
			r_ret = Math::inverse_lerp((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
		} break;
		case MATH_RANGE_LERP: {
			VALIDATE_ARG_COUNT(5);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);
			VALIDATE_ARG_NUM(3);
			VALIDATE_ARG_NUM(4);
			r_ret = Math::range_lerp((double)*p_args[0], (double)*p_args[1], (double)*p_args[2], (double)*p_args[3], (double)*p_args[4]);
		} break;
		case MATH_DECTIME: {
			VALIDATE_ARG_COUNT(3);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);
			r_ret = Math::dectime((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
		} break;
		case MATH_RANDOMIZE: {
			Math::randomize();
			r_ret = Variant();
		} break;
		case MATH_RAND: {
			r_ret = Math::rand();
		} break;
		case MATH_RANDF: {
			r_ret = Math::randf();
		} break;
		case MATH_RANDOM: {
			VALIDATE_ARG_COUNT(2);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			r_ret = Math::random((double)*p_args[0], (double)*p_args[1]);
		} break;
		case MATH_SEED: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			uint64_t seed = *p_args[0];
			Math::seed(seed);
			r_ret = Variant();
		} break;
		case MATH_RANDSEED: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			uint64_t seed = *p_args[0];
			int ret = Math::rand_from_seed(&seed);
			Array reta;
			reta.push_back(ret);
			reta.push_back(seed);
			r_ret = reta;

		} break;
		case MATH_DEG2RAD: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::deg2rad((double)*p_args[0]);
		} break;
		case MATH_RAD2DEG: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::rad2deg((double)*p_args[0]);
		} break;
		case MATH_LINEAR2DB: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::linear2db((double)*p_args[0]);
		} break;
		case MATH_DB2LINEAR: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			r_ret = Math::db2linear((double)*p_args[0]);
		} break;
		case MATH_POLAR2CARTESIAN: {
			VALIDATE_ARG_COUNT(2);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			double r = *p_args[0];
			double th = *p_args[1];
			r_ret = Vector2(r * Math::cos(th), r * Math::sin(th));
		} break;
		case MATH_CARTESIAN2POLAR: {
			VALIDATE_ARG_COUNT(2);
			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			double x = *p_args[0];
			double y = *p_args[1];
			r_ret = Vector2(Math::sqrt(x * x + y * y), Math::atan2(y, x));
		} break;
		case MATH_WRAP: {
			VALIDATE_ARG_COUNT(3);
			r_ret = Math::wrapi((int64_t)*p_args[0], (int64_t)*p_args[1], (int64_t)*p_args[2]);
		} break;
		case MATH_WRAPF: {
			VALIDATE_ARG_COUNT(3);
			r_ret = Math::wrapf((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
		} break;
		case LOGIC_MAX: {
			VALIDATE_ARG_COUNT(2);
			if (p_args[0]->get_type() == Variant::INT && p_args[1]->get_type() == Variant::INT) {

				int64_t a = *p_args[0];
				int64_t b = *p_args[1];
				r_ret = MAX(a, b);
			} else {
				VALIDATE_ARG_NUM(0);
				VALIDATE_ARG_NUM(1);

				real_t a = *p_args[0];
				real_t b = *p_args[1];

				r_ret = MAX(a, b);
			}

		} break;
		case LOGIC_MIN: {
			VALIDATE_ARG_COUNT(2);
			if (p_args[0]->get_type() == Variant::INT && p_args[1]->get_type() == Variant::INT) {

				int64_t a = *p_args[0];
				int64_t b = *p_args[1];
				r_ret = MIN(a, b);
			} else {
				VALIDATE_ARG_NUM(0);
				VALIDATE_ARG_NUM(1);

				real_t a = *p_args[0];
				real_t b = *p_args[1];

				r_ret = MIN(a, b);
			}
		} break;
		case LOGIC_CLAMP: {
			VALIDATE_ARG_COUNT(3);
			if (p_args[0]->get_type() == Variant::INT && p_args[1]->get_type() == Variant::INT && p_args[2]->get_type() == Variant::INT) {

				int64_t a = *p_args[0];
				int64_t b = *p_args[1];
				int64_t c = *p_args[2];
				r_ret = CLAMP(a, b, c);
			} else {
				VALIDATE_ARG_NUM(0);
				VALIDATE_ARG_NUM(1);
				VALIDATE_ARG_NUM(2);

				real_t a = *p_args[0];
				real_t b = *p_args[1];
				real_t c = *p_args[2];

				r_ret = CLAMP(a, b, c);
			}
		} break;
		case LOGIC_NEAREST_PO2: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			int64_t num = *p_args[0];
			r_ret = next_power_of_2(num);
		} break;
		case OBJ_WEAKREF: {
			VALIDATE_ARG_COUNT(1);
			if (p_args[0]->get_type() != Variant::OBJECT) {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::OBJECT;
				r_ret = Variant();
				return;
			}

			if (p_args[0]->is_ref()) {

				REF r = *p_args[0];
				if (!r.is_valid()) {
					r_ret = Variant();
					return;
				}

				Ref<WeakRef> wref = memnew(WeakRef);
				wref->set_ref(r);
				r_ret = wref;
			} else {
				Object *obj = *p_args[0];
				if (!obj) {
					r_ret = Variant();
					return;
				}
				Ref<WeakRef> wref = memnew(WeakRef);
				wref->set_obj(obj);
				r_ret = wref;
			}

		} break;
		case FUNC_FUNCREF: {
			VALIDATE_ARG_COUNT(2);
			if (p_args[0]->get_type() != Variant::OBJECT) {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::OBJECT;
				r_ret = Variant();
				return;
			}
			if (p_args[1]->get_type() != Variant::STRING && p_args[1]->get_type() != Variant::NODE_PATH) {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 1;
				r_error.expected = Variant::STRING;
				r_ret = Variant();
				return;
			}

			Ref<FuncRef> fr = memnew(FuncRef);

			fr->set_instance(*p_args[0]);
			fr->set_function(*p_args[1]);

			r_ret = fr;

		} break;
		case TYPE_CONVERT: {
			VALIDATE_ARG_COUNT(2);
			VALIDATE_ARG_NUM(1);
			int type = *p_args[1];
			if (type < 0 || type >= Variant::VARIANT_MAX) {

				r_ret = RTR("Invalid type argument to convert(), use TYPE_* constants.");
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::INT;
				return;

			} else {

				r_ret = Variant::construct(Variant::Type(type), p_args, 1, r_error);
			}
		} break;
		case TYPE_OF: {

			VALIDATE_ARG_COUNT(1);
			r_ret = p_args[0]->get_type();

		} break;
		case TYPE_EXISTS: {

			VALIDATE_ARG_COUNT(1);
			r_ret = ClassDB::class_exists(*p_args[0]);

		} break;
		case TEXT_CHAR: {
			VALIDATE_ARG_COUNT(1);
			VALIDATE_ARG_NUM(0);
			CharType result[2] = { *p_args[0], 0 };
			r_ret = String(result);
		} break;
		case TEXT_STR: {

			String str;
			for (int i = 0; i < p_arg_count; i++) {

				String os = p_args[i]->operator String();

				if (i == 0)
					str = os;
				else
					str += os;
			}

			r_ret = str;

		} break;
		case TEXT_PRINT: {

			String str;
			for (int i = 0; i < p_arg_count; i++) {

				str += p_args[i]->operator String();
			}

			//str+="\n";
			print_line(str);
			r_ret = Variant();

		} break;
		case TEXT_PRINT_TABBED: {

			String str;
			for (int i = 0; i < p_arg_count; i++) {

				if (i)
					str += "\t";
				str += p_args[i]->operator String();
			}

			//str+="\n";
			print_line(str);
			r_ret = Variant();

		} break;
		case TEXT_PRINT_SPACED: {

			String str;
			for (int i = 0; i < p_arg_count; i++) {

				if (i)
					str += " ";
				str += p_args[i]->operator String();
			}

			//str+="\n";
			print_line(str);
			r_ret = Variant();

		} break;

		case TEXT_PRINTERR: {

			String str;
			for (int i = 0; i < p_arg_count; i++) {

				str += p_args[i]->operator String();
			}

			//str+="\n";
			print_error(str);
			r_ret = Variant();

		} break;
		case TEXT_PRINTRAW: {
			String str;
			for (int i = 0; i < p_arg_count; i++) {

				str += p_args[i]->operator String();
			}

			//str+="\n";
			OS::get_singleton()->print("%s", str.utf8().get_data());
			r_ret = Variant();

		} break;
		case VAR_TO_STR: {
			VALIDATE_ARG_COUNT(1);
			String vars;
			VariantWriter::write_to_string(*p_args[0], vars);
			r_ret = vars;
		} break;
		case STR_TO_VAR: {
			VALIDATE_ARG_COUNT(1);
			if (p_args[0]->get_type() != Variant::STRING) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::STRING;
				r_ret = Variant();
				return;
			}

			VariantParser::StreamString ss;
			ss.s = *p_args[0];

			String errs;
			int line;
			Error err = VariantParser::parse(&ss, r_ret, errs, line);

			if (err != OK) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::STRING;
				r_ret = "Parse error at line " + itos(line) + ": " + errs;
				return;
			}

		} break;
		case VAR_TO_BYTES: {
			VALIDATE_ARG_COUNT(1);

			PoolByteArray barr;
			int len;
			Error err = encode_variant(*p_args[0], NULL, len);
			if (err) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::NIL;
				r_ret = "Unexpected error encoding variable to bytes, likely unserializable type found (Object or RID).";
				return;
			}

			barr.resize(len);
			{
				PoolByteArray::Write w = barr.write();
				encode_variant(*p_args[0], w.ptr(), len);
			}
			r_ret = barr;
		} break;
		case BYTES_TO_VAR: {
			VALIDATE_ARG_COUNT(1);
			if (p_args[0]->get_type() != Variant::POOL_BYTE_ARRAY) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::POOL_BYTE_ARRAY;
				r_ret = Variant();
				return;
			}

			PoolByteArray varr = *p_args[0];
			Variant ret;
			{
				PoolByteArray::Read r = varr.read();
				Error err = decode_variant(ret, r.ptr(), varr.size(), NULL);
				if (err != OK) {
					r_ret = RTR("Not enough bytes for decoding bytes, or invalid format.");
					r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
					r_error.argument = 0;
					r_error.expected = Variant::POOL_BYTE_ARRAY;
					return;
				}
			}

			r_ret = ret;

		} break;
		case GEN_RANGE: {

			switch (p_arg_count) {

				case 0: {

					r_error.error = Variant::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
					r_error.argument = 1;
					r_ret = Variant();

				} break;
				case 1: {

					VALIDATE_ARG_NUM(0);
					int count = *p_args[0];
					Array arr;
					if (count <= 0) {
						r_ret = arr;
						return;
					}
					Error err = arr.resize(count);
					if (err != OK) {
						r_error.error = Variant::CallError::CALL_ERROR_INVALID_METHOD;
						r_ret = Variant();
						return;
					}

					for (int i = 0; i < count; i++) {
						arr[i] = i;
					}

					r_ret = arr;
				} break;
				case 2: {

					VALIDATE_ARG_NUM(0);
					VALIDATE_ARG_NUM(1);

					int from = *p_args[0];
					int to = *p_args[1];

					Array arr;
					if (from >= to) {
						r_ret = arr;
						return;
					}
					Error err = arr.resize(to - from);
					if (err != OK) {
						r_error.error = Variant::CallError::CALL_ERROR_INVALID_METHOD;
						r_ret = Variant();
						return;
					}
					for (int i = from; i < to; i++)
						arr[i - from] = i;
					r_ret = arr;
				} break;
				case 3: {

					VALIDATE_ARG_NUM(0);
					VALIDATE_ARG_NUM(1);
					VALIDATE_ARG_NUM(2);

					int from = *p_args[0];
					int to = *p_args[1];
					int incr = *p_args[2];
					if (incr == 0) {

						r_ret = RTR("step argument is zero!");
						r_error.error = Variant::CallError::CALL_ERROR_INVALID_METHOD;
						return;
					}

					Array arr;
					if (from >= to && incr > 0) {
						r_ret = arr;
						return;
					}
					if (from <= to && incr < 0) {
						r_ret = arr;
						return;
					}

					//calculate how many
					int count = 0;
					if (incr > 0) {

						count = ((to - from - 1) / incr) + 1;
					} else {

						count = ((from - to - 1) / -incr) + 1;
					}

					Error err = arr.resize(count);

					if (err != OK) {
						r_error.error = Variant::CallError::CALL_ERROR_INVALID_METHOD;
						r_ret = Variant();
						return;
					}

					if (incr > 0) {
						int idx = 0;
						for (int i = from; i < to; i += incr) {
							arr[idx++] = i;
						}
					} else {

						int idx = 0;
						for (int i = from; i > to; i += incr) {
							arr[idx++] = i;
						}
					}

					r_ret = arr;
				} break;
				default: {

					r_error.error = Variant::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS;
					r_error.argument = 3;
					r_ret = Variant();

				} break;
			}

		} break;
		case RESOURCE_LOAD: {
			VALIDATE_ARG_COUNT(1);
			if (p_args[0]->get_type() != Variant::STRING) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::STRING;
				r_ret = Variant();
			} else {
				r_ret = ResourceLoader::load(*p_args[0]);
			}

		} break;
		case INST2DICT: {

			VALIDATE_ARG_COUNT(1);

			if (p_args[0]->get_type() == Variant::NIL) {
				r_ret = Variant();
			} else if (p_args[0]->get_type() != Variant::OBJECT) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_ret = Variant();
			} else {

				Object *obj = *p_args[0];
				if (!obj) {
					r_ret = Variant();

				} else if (!obj->get_script_instance() || obj->get_script_instance()->get_language() != GDScriptLanguage::get_singleton()) {

					r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
					r_error.argument = 0;
					r_error.expected = Variant::DICTIONARY;
					r_ret = RTR("Not a script with an instance");
					return;
				} else {

					GDScriptInstance *ins = static_cast<GDScriptInstance *>(obj->get_script_instance());
					Ref<GDScript> base = ins->get_script();
					if (base.is_null()) {

						r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
						r_error.argument = 0;
						r_error.expected = Variant::DICTIONARY;
						r_ret = RTR("Not based on a script");
						return;
					}

					GDScript *p = base.ptr();
					Vector<StringName> sname;

					while (p->_owner) {

						sname.push_back(p->name);
						p = p->_owner;
					}
					sname.invert();

					if (!p->path.is_resource_file()) {
						r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
						r_error.argument = 0;
						r_error.expected = Variant::DICTIONARY;
						r_ret = Variant();

						r_ret = RTR("Not based on a resource file");

						return;
					}

					NodePath cp(sname, Vector<StringName>(), false);

					Dictionary d;
					d["@subpath"] = cp;
					d["@path"] = p->path;

					p = base.ptr();

					while (p) {

						for (Set<StringName>::Element *E = p->members.front(); E; E = E->next()) {

							Variant value;
							if (ins->get(E->get(), value)) {

								String k = E->get();
								if (!d.has(k)) {
									d[k] = value;
								}
							}
						}

						p = p->_base;
					}

					r_ret = d;
				}
			}

		} break;
		case DICT2INST: {

			VALIDATE_ARG_COUNT(1);

			if (p_args[0]->get_type() != Variant::DICTIONARY) {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::DICTIONARY;
				r_ret = Variant();

				return;
			}

			Dictionary d = *p_args[0];

			if (!d.has("@path")) {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::OBJECT;
				r_ret = RTR("Invalid instance dictionary format (missing @path)");

				return;
			}

			Ref<Script> scr = ResourceLoader::load(d["@path"]);
			if (!scr.is_valid()) {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::OBJECT;
				r_ret = RTR("Invalid instance dictionary format (can't load script at @path)");
				return;
			}

			Ref<GDScript> gdscr = scr;

			if (!gdscr.is_valid()) {

				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::OBJECT;
				r_ret = Variant();
				r_ret = RTR("Invalid instance dictionary format (invalid script at @path)");
				return;
			}

			NodePath sub;
			if (d.has("@subpath")) {
				sub = d["@subpath"];
			}

			for (int i = 0; i < sub.get_name_count(); i++) {

				gdscr = gdscr->subclasses[sub.get_name(i)];
				if (!gdscr.is_valid()) {

					r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
					r_error.argument = 0;
					r_error.expected = Variant::OBJECT;
					r_ret = Variant();
					r_ret = RTR("Invalid instance dictionary (invalid subclasses)");
					return;
				}
			}

			r_ret = gdscr->_new(NULL, 0, r_error);

			GDScriptInstance *ins = static_cast<GDScriptInstance *>(static_cast<Object *>(r_ret)->get_script_instance());
			Ref<GDScript> gd_ref = ins->get_script();

			for (Map<StringName, GDScript::MemberInfo>::Element *E = gd_ref->member_indices.front(); E; E = E->next()) {
				if (d.has(E->key())) {
					ins->members[E->get().index] = d[E->key()];
				}
			}

		} break;
		case VALIDATE_JSON: {

			VALIDATE_ARG_COUNT(1);

			if (p_args[0]->get_type() != Variant::STRING) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::STRING;
				r_ret = Variant();
				return;
			}

			String errs;
			int errl;

			Error err = JSON::parse(*p_args[0], r_ret, errs, errl);

			if (err != OK) {
				r_ret = itos(errl) + ":" + errs;
			} else {
				r_ret = "";
			}

		} break;
		case PARSE_JSON: {

			VALIDATE_ARG_COUNT(1);

			if (p_args[0]->get_type() != Variant::STRING) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::STRING;
				r_ret = Variant();
				return;
			}

			String errs;
			int errl;

			Error err = JSON::parse(*p_args[0], r_ret, errs, errl);

			if (err != OK) {
				r_ret = Variant();
			}

		} break;
		case TO_JSON: {
			VALIDATE_ARG_COUNT(1);

			r_ret = JSON::print(*p_args[0]);
		} break;
		case HASH: {

			VALIDATE_ARG_COUNT(1);
			r_ret = p_args[0]->hash();

		} break;
		case COLOR8: {

			if (p_arg_count < 3) {
				r_error.error = Variant::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
				r_error.argument = 3;
				r_ret = Variant();

				return;
			}
			if (p_arg_count > 4) {
				r_error.error = Variant::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS;
				r_error.argument = 4;
				r_ret = Variant();

				return;
			}

			VALIDATE_ARG_NUM(0);
			VALIDATE_ARG_NUM(1);
			VALIDATE_ARG_NUM(2);

			Color color((float)*p_args[0] / 255.0f, (float)*p_args[1] / 255.0f, (float)*p_args[2] / 255.0f);

			if (p_arg_count == 4) {
				VALIDATE_ARG_NUM(3);
				color.a = (float)*p_args[3] / 255.0f;
			}

			r_ret = color;

		} break;
		case COLORN: {

			if (p_arg_count < 1) {
				r_error.error = Variant::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
				r_error.argument = 1;
				r_ret = Variant();
				return;
			}

			if (p_arg_count > 2) {
				r_error.error = Variant::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS;
				r_error.argument = 2;
				r_ret = Variant();
				return;
			}

			if (p_args[0]->get_type() != Variant::STRING) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_ret = Variant();
			} else {
				Color color = Color::named(*p_args[0]);
				if (p_arg_count == 2) {
					VALIDATE_ARG_NUM(1);
					color.a = *p_args[1];
				}
				r_ret = color;
			}

		} break;

		case PRINT_STACK: {

			ScriptLanguage *script = GDScriptLanguage::get_singleton();
			for (int i = 0; i < script->debug_get_stack_level_count(); i++) {

				print_line("Frame " + itos(i) + " - " + script->debug_get_stack_level_source(i) + ":" + itos(script->debug_get_stack_level_line(i)) + " in function '" + script->debug_get_stack_level_function(i) + "'");
			};
		} break;

		case INSTANCE_FROM_ID: {

			VALIDATE_ARG_COUNT(1);
			if (p_args[0]->get_type() != Variant::INT && p_args[0]->get_type() != Variant::REAL) {
				r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
				r_error.argument = 0;
				r_error.expected = Variant::INT;
				r_ret = Variant();
				break;
			}

			uint32_t id = *p_args[0];
			r_ret = ObjectDB::get_instance(id);

		} break;
		case LEN: {

			VALIDATE_ARG_COUNT(1);
			switch (p_args[0]->get_type()) {
				case Variant::STRING: {

					String d = *p_args[0];
					r_ret = d.length();
				} break;
				case Variant::DICTIONARY: {

					Dictionary d = *p_args[0];
					r_ret = d.size();
				} break;
				case Variant::ARRAY: {

					Array d = *p_args[0];
					r_ret = d.size();
				} break;
				case Variant::POOL_BYTE_ARRAY: {

					PoolVector<uint8_t> d = *p_args[0];
					r_ret = d.size();
				} break;
				case Variant::POOL_INT_ARRAY: {

					PoolVector<int> d = *p_args[0];
					r_ret = d.size();
				} break;
				case Variant::POOL_REAL_ARRAY: {

					PoolVector<real_t> d = *p_args[0];
					r_ret = d.size();
				} break;
				case Variant::POOL_STRING_ARRAY: {

					PoolVector<String> d = *p_args[0];
					r_ret = d.size();
				} break;
				case Variant::POOL_VECTOR2_ARRAY: {

					PoolVector<Vector2> d = *p_args[0];
					r_ret = d.size();
				} break;
				case Variant::POOL_VECTOR3_ARRAY: {

					PoolVector<Vector3> d = *p_args[0];
					r_ret = d.size();
				} break;
				case Variant::POOL_COLOR_ARRAY: {

					PoolVector<Color> d = *p_args[0];
					r_ret = d.size();
				} break;
				default: {
					r_error.error = Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
					r_error.argument = 0;
					r_error.expected = Variant::OBJECT;
					r_ret = Variant();
					r_ret = RTR("Object can't provide a length.");
				}
			}

		} break;
		case FUNC_MAX: {

			ERR_FAIL();
		} break;
	}
}