Esempio n. 1
0
Double_t getBestFitShift(TTree *dataTree, TTree *mcTree,
			 TCut dataCandidateCut, TCut sidebandCut,
			 TCut mcSignalCut,
			 Double_t backgroundShift, Double_t purityBinVal)
{
  dtree_ = dataTree;
  mtree_ = mcTree;
  dCut_ = dataCandidateCut;
  sCut_ = sidebandCut;
  mCut_ = mcSignalCut;
  bkg_shift_ = backgroundShift;
  purityBinVal_ = purityBinVal;

  
  // ROOT::Minuit2::Minuit2Minimizer min ( ROOT::Minuit2::kMigrad );
  // min.SetMaxFunctionCalls(1000000);
  // min.SetMaxIterations(100000);
  // min.SetTolerance(0.00001); 
  // ROOT::Math::Functor f(&minimizerPurity,1); 
  // double step = 0.00001;
  // double variable = 0; 
  // min.SetFunction(f); 
  // // Set the free variables to be minimized!
  // //min.SetLimitedVariable(0,"sigShift",variable, step,-0.0005,0.0005); 
  // min.SetVariable(0,"sigShift",variable, step);
  // min.Minimize();

  ROOT::Math::Functor1D func(&minimizerPurity);
 
  ROOT::Math::BrentMinimizer1D bm;
  bm.SetFunction(func, -0.0005,0.0005);
  bm.Minimize(10);
  
  //cout << "f(" << bm.XMinimum() << ") = " <<bm.FValMinimum() << endl;
   
  //return min.X()[0];
  return bm.XMinimum();
}
Esempio n. 2
0
void optimizenorm(size_t i, const std::string& path)
{
  if (v_graphs.size()==1) {
    double  *py = v_graphs[0]->GetY();
    int    npts = v_graphs[0]->GetN();
    double norm = 1./py[0];
    // cout << npts << endl;
    for (int j=0; j<npts; j++) py[j] = norm*py[j];
  } else if (v_graphs.size() > 1) {
    ROOT::Math::Functor1D func(& mydistance);
    ROOT::Math::BrentMinimizer1D bm;
    bm.SetFunction(func, 1,7000); // "x" is the norm (denom) scale factor
    bm.Minimize(100,0.01,0.01);

    cout << path << ": best norm scale " << bm.XMinimum()
	 << ", gives distance " << bm.FValMinimum() << endl;
 
    double *py = v_graphs[i]->GetY();
    for (int j=0; j<v_graphs[0]->GetN(); j++) py[j] /= bm.XMinimum();
  }
}                                                        // optimizenorm