int main(int argc, char** argv){ std::string help = "Locates the 3D position of a sound source\n" "Arguments: <timestamp1> <timestamp2> <timestamp3> <timestamp4>\n" "Note: \n\ttimestamps must be in the correct order to obtain meaningful result\n"; if(std::strcmp(argv[1], "-h") == 0){ std::cout << help << std::endl; } else if(argc < 5){ std::cout << "Usage:\n" << argv[0] << " <timestamp1> <timestamp2> <timestamp3> <timestamp4>" << std::endl; } double ts1 = std::atof(argv[1]); double ts2 = std::atof(argv[2]); double ts3 = std::atof(argv[3]); double ts4 = std::atof(argv[4]); const double initial_x = 10; const double initial_y = 0; const double initial_z = 0; const double initial_t = ts1; double x = initial_x; double y = initial_y; double z = initial_z; double t = initial_t; Problem problem; CostFunction* h1cost = new AutoDiffCostFunction<Hydrophone1Cost ,1 ,1, 1, 1, 1>(new Hydrophone1Cost(ts1)); CostFunction* h2cost = new AutoDiffCostFunction<Hydrophone2Cost ,1 ,1, 1, 1, 1>(new Hydrophone2Cost(ts2)); CostFunction* h3cost = new AutoDiffCostFunction<Hydrophone3Cost ,1 ,1, 1, 1, 1>(new Hydrophone3Cost(ts3)); CostFunction* h4cost = new AutoDiffCostFunction<Hydrophone4Cost ,1 ,1, 1, 1, 1>(new Hydrophone4Cost(ts4)); problem.AddResidualBlock(h1cost, NULL, &x, &y, &z, &t); problem.AddResidualBlock(h2cost, NULL, &x, &y, &z, &t); problem.AddResidualBlock(h3cost, NULL, &x, &y, &z, &t); problem.AddResidualBlock(h4cost, NULL, &x, &y, &z, &t); Solver::Options options; options.max_num_iterations = 100; options.linear_solver_type = ceres::DENSE_QR; options.minimizer_progress_to_stdout = true; std::cout << "Initial x = " << x << ", y = " << y << ", z = " << z << ", t = " << t << "\n"; // Run the solver! Solver::Summary summary; Solve(options, &problem, &summary); std::cout << summary.FullReport() << "\n"; std::cout << "Final x = " << x << ", y = " << y << ", z = " << z << ", t = " << t << "\n"; return 0; }
int main(int argc, char *argv[]) { FLAGS_log_dir = "logs/"; google::InitGoogleLogging(argv[0]); google::ParseCommandLineFlags(&argc, &argv, true); dataset::dataSet<double> data; data.residual_type = "quadratic"; data.numPoints = 100; data.range["begin"] = -5.0; data.range["end"] = 5.0; double A = 1.0; double B = 0.0; double C = 0.0; double D = 1.0; double E = 0.0; dataset::makeSet(&data, {&A, &B, &C}); plot::plotData(&data); double Ap = 3.45; Problem problem; for (int i = 0; i < 100; i++){ double x = data.xdata[i]; double y = data.ydata[i]; double r = 0.0; CostFunction* cost = residual<double>::Create(x, y, "quadratic"); problem.AddResidualBlock(cost, NULL, &Ap, &B, &C); } Solver::Options options; Solver::Summary summary; Solve(options, &problem, &summary); std::cout << summary.FullReport() << std::endl; return 0; }
double CeresSolverBase::launchProfiledSolveAndSummary(const std::unique_ptr<ceres::Solver::Options>& options, ceres::Problem* problem, bool profileSolve, std::vector<SolverIteration>& iters) { Solver::Summary summary; double elapsedTime; { ml::Timer timer; Solve(*options, problem, &summary); elapsedTime = timer.getElapsedTimeMS(); } cout << "Solver used: " << summary.linear_solver_type_used << endl; cout << "Minimizer iters: " << summary.iterations.size() << endl; cout << "Total time: " << elapsedTime << "ms" << endl; double iterationTotalTime = 0.0; int totalLinearItereations = 0; for (auto &i : summary.iterations) { iterationTotalTime += i.iteration_time_in_seconds; totalLinearItereations += i.linear_solver_iterations; cout << "Iteration: " << i.linear_solver_iterations << " " << i.iteration_time_in_seconds * 1000.0 << "ms," << " cost: " << i.cost << endl; } if (profileSolve) { for (auto &i : summary.iterations) { iters.push_back(SolverIteration(i.cost, i.iteration_time_in_seconds * 1000.0)); } } cout << "Total iteration time: " << iterationTotalTime << endl; cout << "Cost per linear solver iteration: " << iterationTotalTime * 1000.0 / totalLinearItereations << "ms" << endl; double cost = -1.0; problem->Evaluate(Problem::EvaluateOptions(), &cost, nullptr, nullptr, nullptr); cout << "Cost end: " << cost << endl; cout << summary.FullReport() << endl; return cost; }
bool solve_translations_problem_l2_chordal ( const int* edges, const double* poses, const double* weights, int num_edges, double loss_width, double* X, double function_tolerance, double parameter_tolerance, int max_iterations ) { // seed the random number generator std::srand( std::time( NULL ) ); // re index the edges to be a sequential set std::vector<int> reindexed_edges(edges, edges+2*num_edges); std::vector<int> reindexed_lookup; reindex_problem(&reindexed_edges[0], num_edges, reindexed_lookup); const int num_nodes = reindexed_lookup.size(); // Init with a random guess solution std::vector<double> x(3*num_nodes); for (int i=0; i<3*num_nodes; ++i) x[i] = (double)rand() / RAND_MAX; // add the parameter blocks (a 3-vector for each node) Problem problem; for (int i=0; i<num_nodes; ++i) problem.AddParameterBlock(&x[3*i], 3); // set the residual function (chordal distance for each edge) for (int i=0; i<num_edges; ++i) { CostFunction* cost_function = new AutoDiffCostFunction<ChordFunctor, 3, 3, 3>( new ChordFunctor(poses+3*i, weights[i])); if (loss_width == 0.0) { // No robust loss function problem.AddResidualBlock(cost_function, NULL, &x[3*reindexed_edges[2*i+0]], &x[3*reindexed_edges[2*i+1]]); } else { problem.AddResidualBlock(cost_function, new ceres::HuberLoss(loss_width), &x[3*reindexed_edges[2*i+0]], &x[3*reindexed_edges[2*i+1]]); } } // Fix first camera in {0,0,0}: fix the translation ambiguity x[0] = x[1] = x[2] = 0.0; problem.SetParameterBlockConstant(&x[0]); // solve Solver::Options options; #ifdef OPENMVG_USE_OPENMP options.num_threads = omp_get_max_threads(); options.num_linear_solver_threads = omp_get_max_threads(); #endif // OPENMVG_USE_OPENMP options.minimizer_progress_to_stdout = false; options.logging_type = ceres::SILENT; options.max_num_iterations = max_iterations; options.function_tolerance = function_tolerance; options.parameter_tolerance = parameter_tolerance; // Since the problem is sparse, use a sparse solver iff available if (ceres::IsSparseLinearAlgebraLibraryTypeAvailable(ceres::SUITE_SPARSE)) { options.sparse_linear_algebra_library_type = ceres::SUITE_SPARSE; options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; } else if (ceres::IsSparseLinearAlgebraLibraryTypeAvailable(ceres::CX_SPARSE)) { options.sparse_linear_algebra_library_type = ceres::CX_SPARSE; options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; } else if (ceres::IsSparseLinearAlgebraLibraryTypeAvailable(ceres::EIGEN_SPARSE)) { options.sparse_linear_algebra_library_type = ceres::EIGEN_SPARSE; options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; } else { options.linear_solver_type = ceres::DENSE_NORMAL_CHOLESKY; } Solver::Summary summary; Solve(options, &problem, &summary); std::cout << summary.FullReport() << "\n"; if (summary.IsSolutionUsable()) { // undo the re indexing for (int i=0; i<num_nodes; ++i) { const int j = reindexed_lookup[i]; X[3*j+0] = x[3*i+0]; X[3*j+1] = x[3*i+1]; X[3*j+2] = x[3*i+2]; } } return summary.IsSolutionUsable(); }