Esempio n. 1
0
   /*
   * Verlet MD NVE integrator step
   *
   * This method implements the algorithm:
   *
   *        vm(n)  = v(n) + 0.5*a(n)*dt
   *        x(n+1) = x(n) + vm(n)*dt
   *
   *        calculate acceleration a(n+1)
   *
   *        v(n+1) = vm(n) + 0.5*a(n+1)*dt
   *
   * where x is position, v is velocity, and a is acceleration.
   */
   void NveVvIntegrator::step() 
   {
      Vector dv;
      Vector dr;
      System::MoleculeIterator molIter;
      double prefactor;
      int iSpecies, nSpecies;

      nSpecies = simulation().nSpecies();

      // 1st half velocity Verlet, loop over atoms 
      #if USE_ITERATOR
      Molecule::AtomIterator atomIter;
      for (iSpecies=0; iSpecies < nSpecies; ++iSpecies) {
         system().begin(iSpecies, molIter); 
         for ( ; molIter.notEnd(); ++molIter) {
            for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) {

               prefactor = prefactors_[atomIter->typeId()];

               dv.multiply(atomIter->force(), prefactor);
               atomIter->velocity() += dv;

               dr.multiply(atomIter->velocity(), dt_);
               atomIter->position() += dr;

            }
         }
      }
      #else 
      Atom* atomPtr;
      int   ia;
      for (iSpecies=0; iSpecies < nSpecies; ++iSpecies) {
         system().begin(iSpecies, molIter); 
         for ( ; molIter.notEnd(); ++molIter) {
            for (ia=0; ia < molIter->nAtom(); ++ia) {
               atomPtr = &molIter->atom(ia);
               prefactor = prefactors_[atomPtr->typeId()];

               dv.multiply(atomPtr->force(), prefactor);
               atomPtr->velocity() += dv;
               dr.multiply(atomPtr->velocity(), dt_);
               
               atomPtr->position() += dr;

            }
         }
      }
      #endif

      system().calculateForces();

      // 2nd half velocity Verlet, loop over atoms
      #if USE_ITERATOR
      for (iSpecies=0; iSpecies < nSpecies; ++iSpecies) {
         system().begin(iSpecies, molIter); 
         for ( ; molIter.notEnd(); ++molIter) {
            for (molIter->begin(atomIter); atomIter.notEnd(); ++atomIter) {
               prefactor = prefactors_[atomIter->typeId()];
               dv.multiply(atomIter->force(), prefactor);
               atomIter->velocity() += dv;
            }
         }
      }
      #else
      for (iSpecies=0; iSpecies < nSpecies; ++iSpecies) {
         system().begin(iSpecies, molIter); 
         for ( ; molIter.notEnd(); ++molIter)
         {
            for (ia=0; ia < molIter->nAtom(); ++ia) {
               atomPtr = &molIter->atom(ia);
               prefactor = prefactors_[atomPtr->typeId()];
               dv.multiply(atomPtr->force(), prefactor);
               atomPtr->velocity() += dv;
            }
         }
      }
      #endif

      #ifndef INTER_NOPAIR
      if (!system().pairPotential().isPairListCurrent()) {
         system().pairPotential().buildPairList();
      }
      #endif

   }
Esempio n. 2
0
   void NphIntegrator::step() 
   {
      System::MoleculeIterator molIter;
      double prefactor;
      int    iSpecies, nSpecies;

      nSpecies = simulation().nSpecies();

      /* perform the first half step of the explicitly reversible NPH integration scheme.
  
         This follows from operator factorization
  
         - orthorhombic case:
  
           1) eta_alpha(t+dt/2) = eta_alpha(t) + dt/2 * V/L_alpha * ( P_{alpha,alpha}(t) - P_ext)
           2) v' = v(t) + (1/2)a(t)*dt
           3) L(t+dt/2) = L(t) + dt*eta(t+dt/2)/(2*W)
           4) r'_alpha = r(t) + v'*dt* (L_{alpha}^2(t)/L_{alpha}^2(t+dt/2))
           5a) L(t+dt) = L(t+dt/2) + dt*eta(t+dt/2)/2/W
           5b) r_alpha(t+dt) = L_alpha(t+dt)/L_alpha(t)*r'_alpha
           5c) v''_alpha = L_alpha(t)/L_alpha(t+dt) * v'_alpha
  
         alpha denotes a cartesian index.
  
         - isotropic case:
  
           only eta_x := eta is used and instead of step 1) we have
  
           1') eta(t+dt/2) = eta(t) + dt/2 * (1/3*Tr P(t) - P_ext)
  
           furthermore, in step 3) and 5a) L is replaced with V=L^3
  
         - tetragonal case:
  
           Lx := L_perp, Ly = Lz := L_par
           eta_x := eta_perp, etay := eta_par, etaz unused
  
           instead of step 1) we have
  
           1'a) eta_perp(t+dt/2) = eta_perp + dt/2 * V/L_perp * ( P_xx(t) - P_ext)
           1'b) eta_par(t+dt/2) = eta_par + dt/2 * V/L_par * ( P_yy(t) + P_zz(t) - 2*P_ext)
  
           steps 3) and 5a) are split into two sub-steps
  
           L_perp(i+1) = L_perp(i) + dt/(2*W)*eta_perp
           L_par(i+1) = L_par(i) + dt/(4*W)*eta_par
      */

      // obtain current stress tensor (diagonal components)
      system().computeStress(currP_);

      // obtain current box lengths
      Vector lengths  = system().boundary().lengths();
      double volume = lengths[0]*lengths[1]*lengths[2];

      double extP = system().boundaryEnsemble().pressure();

      // advance eta(t)->eta(t+dt/2) (step one)
      if (mode_ == Orthorhombic) {
         double Vdthalf = 1.0/2.0 * volume * dt_;
         eta_[0] += Vdthalf/lengths[0] * (currP_[0] - extP);
         eta_[1] += Vdthalf/lengths[1] * (currP_[1] - extP);
         eta_[2] += Vdthalf/lengths[2] * (currP_[2] - extP);
      } else if (mode_ == Tetragonal) { 
         double Vdthalf = 1.0/2.0* volume * dt_; 
         eta_[0] += Vdthalf/lengths[0]*(currP_[0] - extP);
         eta_[1] += Vdthalf/lengths[1]*(currP_[1] + currP_[2] - 2.0*extP);
      } else if (mode_ == Cubic) {
         eta_[0] += 1.0/2.0*dt_*(1.0/3.0*(currP_[0]+currP_[1]+currP_[2]) - extP);
      }

      // update the box length L(t) -> L(t+dt/2) (step three)
      // (since we still keep the accelerations a(t) computed for box length L_alpha(t) in memory,
      // needed in step two, we can exchange the order of the two steps)
      // also pre-calculate L(t+dt) (step 5a, only depends on eta(t) of step one)

      Vector lengthsOld = lengths;
      Vector lengthsFinal;
      double volumeFinal = 0.0;

      double dthalfoverW = 1.0/2.0*dt_/W_;

      if (mode_ == Orthorhombic) {
         lengths[0] += dthalfoverW*eta_[0];
         lengths[1] += dthalfoverW*eta_[1];
         lengths[2] += dthalfoverW*eta_[2];
         lengthsFinal[0] = lengths[0] + dthalfoverW*eta_[0];
         lengthsFinal[1] = lengths[1] + dthalfoverW*eta_[1];
         lengthsFinal[2] = lengths[2] + dthalfoverW*eta_[2];
         volumeFinal = lengthsFinal[0]*lengthsFinal[1]*lengthsFinal[2];
      } else if (mode_ == Tetragonal) {
         lengths[0] += dthalfoverW*eta_[0];
         lengths[1] += (1.0/2.0)*dthalfoverW*eta_[1];
         lengths[2] = lengths[1];
         lengthsFinal[0] = lengths[0] + dthalfoverW*eta_[0];
         lengthsFinal[1] = lengths[1] + (1.0/2.0)*dthalfoverW*eta_[1];
         lengthsFinal[2] = lengthsFinal[1];
         volumeFinal = lengthsFinal[0]*lengthsFinal[1]*lengthsFinal[2];
      } else if (mode_ == Cubic) {
         volume += dthalfoverW*eta_[0];
         lengths[0] = pow(volume,1.0/3.0); // Lx = Ly = Lz = V^(1/3)
         lengths[1] = lengths[0];
         lengths[2] = lengths[0];
         volumeFinal = volume + dthalfoverW*eta_[0];
         lengthsFinal[0] = pow(volumeFinal,1./3.);
         lengthsFinal[1] = lengthsFinal[0];
         lengthsFinal[2] = lengthsFinal[0];
      }
         
      // update simulation box 
      system().boundary().setOrthorhombic(lengthsFinal); 

      
      // update particles
      Atom* atomPtr;
      int   ia;
      Vector vtmp, dr, rtmp, dv;
      Vector lengthsFac, dtLengthsFac2;

      for (int i=0; i<3; i++) {
         lengthsFac[i] = lengthsFinal[i]/lengthsOld[i];
         dtLengthsFac2[i] = dt_ * lengthsOld[i]*lengthsOld[i]/lengths[i]/lengths[i];
      }

      for (iSpecies=0; iSpecies < nSpecies; ++iSpecies) {
         system().begin(iSpecies, molIter); 
         for ( ; molIter.notEnd(); ++molIter) {
            for (ia=0; ia < molIter->nAtom(); ++ia) {
               atomPtr = &molIter->atom(ia);
               prefactor = prefactors_[atomPtr->typeId()];

               dv.multiply(atomPtr->force(), prefactor);
               vtmp.add(atomPtr->velocity(),dv);

               dr[0] = vtmp[0] * dtLengthsFac2[0];
               dr[1] = vtmp[1] * dtLengthsFac2[1];
               dr[2] = vtmp[2] * dtLengthsFac2[2];

               rtmp.add(atomPtr->position(), dr);

               rtmp[0] *= lengthsFac[0];
               rtmp[1] *= lengthsFac[1];
               rtmp[2] *= lengthsFac[2];

               atomPtr->position() = rtmp;

               vtmp[0] /= lengthsFac[0];
               vtmp[1] /= lengthsFac[1];
               vtmp[2] /= lengthsFac[2];

               atomPtr->velocity() = vtmp;
            }
         }
      }

      #ifndef INTER_NOPAIR
      if (!system().pairPotential().isPairListCurrent()) {
         system().pairPotential().buildPairList();
      } 
      #endif

      system().calculateForces();

      /* the second step of the explicitly reversible integrator consists of the following to sub-steps

         6) v(t+dt) = v'' + 1/2 * a(t+dt)*dt
         7) eta(t+dt/2) -> eta(t+dt)
       */

      // v(t+dt) = v'' + 1/2 * a(t+dt)*dt
      for (iSpecies=0; iSpecies < nSpecies; ++iSpecies) {
         system().begin(iSpecies, molIter); 
         for ( ; molIter.notEnd(); ++molIter)
         {
            for (ia=0; ia < molIter->nAtom(); ++ia) {
               atomPtr = &molIter->atom(ia);
               prefactor = prefactors_[atomPtr->typeId()];
               dv.multiply(atomPtr->force(), prefactor);
               atomPtr->velocity() += dv;
            }
         }
      }

      // now compute pressure tensor with updated virial and velocities
      system().computeStress(currP_);

      //  advance eta(t+dt/2) -> eta(t+dt)
      if (mode_ == Orthorhombic) {
         double Vdthalf = 1.0/2.0 * volumeFinal * dt_;
         eta_[0] += Vdthalf/lengthsFinal[0] * (currP_[0] - extP);
         eta_[1] += Vdthalf/lengthsFinal[1] * (currP_[1] - extP);
         eta_[2] += Vdthalf/lengthsFinal[2] * (currP_[2] - extP);
      } else if (mode_ == Tetragonal) {
         double Vdthalf = 1.0/2.0 * volumeFinal * dt_;
         eta_[0] += Vdthalf/lengthsFinal[0]*(currP_[0] - extP);
         eta_[1] += Vdthalf/lengthsFinal[1]*(currP_[1] + currP_[2] - 2.0*extP);
      } else if (mode_ == Cubic) {
         eta_[0] += 1.0/2.0*dt_*(1.0/3.0*(currP_[0]+currP_[1]+currP_[2]) - extP);
      }
 
      #ifndef INTER_NOPAIR
      if (!system().pairPotential().isPairListCurrent()) {
         system().pairPotential().buildPairList();
      }
      #endif
     
      /*
      // debug output
      double P;
      system().computeStress(P);
      std::cout << system().boundary() << std::endl;
      std::cout << "P = " << P << " ";
      std::cout << "Ekin = " << system().kineticEnergy() << " ";
      std::cout << "Epot = " << system().potentialEnergy() << " ";
      std::cout << "PV = " << extP * system().boundary().volume() << " ";
      std::cout << "Ebaro = " << barostatEnergy() << " "; 
      std::cout << "H = " << system().potentialEnergy() + system().kineticEnergy() +
                    extP * system().boundary().volume() + barostatEnergy() << std::endl;
      */
   }
Esempio n. 3
0
   // Create links and print.
   void Crosslinker::sample(long iStep) 
   {
      if (isAtInterval(iStep)) {

         // Clear the cellList
         cellList_.clear();
         // Add every atom in this System to the CellList
         System::MoleculeIterator molIter;
         Atom*                     atomPtr;
         for (int iSpec=0; iSpec < system().simulation().nSpecies(); ++iSpec) {
            for (system().begin(iSpec, molIter); molIter.notEnd(); ++molIter) {
               for (int ia=0; ia < molIter->nAtom(); ++ia) {
                  atomPtr = &molIter->atom(ia);
                  system().boundary().shift(atomPtr->position());
                  cellList_.addAtom(*atomPtr);
               }
            }
         }

         //Use the cell list to find neighbours and create links
         CellList::NeighborArray cellNeighbor;
         Vector  iPos, jPos;
         Atom   *iAtomPtr, *jAtomPtr;
         double  dRSq, cutoffSq=cutoff_*cutoff_;
         int     nCellNeighbor, nCellAtom, totCells;
         int     ic, ip, iAtomId, jp, jAtomId;
         // Loop over cells containing primary atom. ic = cell index
         totCells = cellList_.totCells();
         for (ic = 0; ic < totCells; ++ic) {
           // Get Array cellNeighbor of Ids of neighbor atoms for cell ic.
           // Elements 0,..., nCellAtom - 1 contain Ids for atoms in cell ic.
           // Elements nCellAtom,..., nCellNeighbor-1 are from neighboring cells.
           cellList_.getCellNeighbors(ic, cellNeighbor, nCellAtom);
           nCellNeighbor = cellNeighbor.size();
           // Loop over atoms in cell ic
           for (ip = 0; ip < nCellAtom; ++ip) {
              iAtomPtr = cellNeighbor[ip]; 
              iPos     = iAtomPtr->position();
              iAtomId  = iAtomPtr->id();
              // Loop over atoms in all neighboring cells, including cell ic.
              for (jp = 0; jp < nCellNeighbor; ++jp) {
                 jAtomPtr = cellNeighbor[jp]; 
                 jPos     = jAtomPtr->position();
                 jAtomId  = jAtomPtr->id();
                 // Avoid double counting: only count pairs with jAtomId > iAtomId
                 if ( jAtomId > iAtomId ) {
                   // Exclude bonded pairs
                   if (!iAtomPtr->mask().isMasked(*jAtomPtr))  {
                      // Calculate distance between atoms i and j
                      dRSq = system().boundary().distanceSq(iPos, jPos);
                      if (dRSq < cutoffSq) {
                         if(system().simulation().random().uniform(0.0, 1.0) < probability_){ 
                          //create a link between i and j atoms
                           system().linkMaster().addLink(*iAtomPtr, *jAtomPtr, 0);
                         }
                      }
                   }
                 } // end if jAtomId > iAtomId
              } // end for jp (j atom)
           } // end for ip (i atom)
         } // end for ic (i cell)

         // Construct a string representation of integer nSample
         std::stringstream ss;
         std::string       nSampleString;
         ss << nSample_;
         nSampleString = ss.str();

         // Construct new fileName: outputFileName + char(nSample)
         std::string filename;
         filename  = outputFileName();
         filename += nSampleString; 

         // Open output file, write data, and close file
         fileMaster().openOutputFile(filename, outputFile_);
         system().writeConfig(outputFile_);
         outputFile_.close();
         nSample_++;

         // Clear the LinkMaster
         system().linkMaster().clear();

      } // end isAtInterval
   }
   /*
   * Evaluate change in energy, add Boltzmann factor to accumulator.
   */
   void McMuExchange::sample(long iStep)
   {
      if (isAtInterval(iStep))  {

         // Preconditions
         if (!system().energyEnsemble().isIsothermal()) {
            UTIL_THROW("EnergyEnsemble is not isothermal");
         }
         if (nMolecule_ != system().nMolecule(speciesId_)) {
            UTIL_THROW("nMolecule has changed since setup");
         }

         McPairPotential& potential = system().pairPotential();
         const CellList& cellList = potential.cellList();
         System::MoleculeIterator molIter;
         Atom* ptr0 = 0;    // Pointer to first atom in molecule
         Atom* ptr1 = 0;    // Pointer to flipped atom
         Atom* ptr2 = 0;    // Pointer to neighboring atom
         Mask* maskPtr = 0; // Mask of flipped atom
         double rsq, dE, beta, boltzmann;
         int j, k, nNeighbor, nFlip;
         int i1, i2, id1, id2, t1, t2, t1New, iMol;
         beta = system().energyEnsemble().beta();
         nFlip = flipAtomIds_.size();

         // Loop over molecules in species
         iMol = 0;
         system().begin(speciesId_, molIter); 
         for ( ; molIter.notEnd(); ++molIter) {
            dE = 0.0;
            ptr0 = &molIter->atom(0);

            // Loop over flipped atoms
            for (j = 0; j < nFlip; ++j) {
               i1 = flipAtomIds_[j];
               t1New = newTypeIds_[i1];
               ptr1 = &molIter->atom(i1);
               id1 = ptr1->id();
               t1 = ptr1->typeId();
               maskPtr = &(ptr1->mask());

               // Loop over neighboring atoms
               cellList.getNeighbors(ptr1->position(), neighbors_);
               nNeighbor = neighbors_.size();
               for (k = 0; k < nNeighbor; ++k) {
                  ptr2 = neighbors_[k];
                  id2 = ptr2->id();

                  // Check if atoms are identical
                  if (id2 != id1) {
          
                     // Check if pair is masked
                     if (!maskPtr->isMasked(*ptr2)) {

                        rsq = boundary().distanceSq(ptr1->position(), 
                                                    ptr2->position());
                        t2 = ptr2->typeId();
                        if (&(ptr1->molecule()) != &(ptr2->molecule())) {

                           // Intermolecular atom pair 
                           dE -= potential.energy(rsq, t1, t2);
                           dE += potential.energy(rsq, t1New, t2);

                        } else {

                           // Intramolecular atom pair 
                           if (id2 > id1) {
                              dE -= potential.energy(rsq, t1, t2);
                              i2 = (int)(ptr2 - ptr0);
                              t2 = newTypeIds_[i2];
                              dE += potential.energy(rsq, t1New, t2);
                           } else {
                              i2 = (int)(ptr2 - ptr0);
                              if (!isAtomFlipped_[i2]) {
                                 dE -= potential.energy(rsq, t1, t2);
                                 t2 = newTypeIds_[i2];
                                 dE += potential.energy(rsq, t1New, t2);
                              }
                           }

                        }
                     }
                  }
               } // end loop over neighbors
            } // end loop over flipped atoms

            boltzmann = exp(-beta*dE);
            accumulators_[iMol].sample(boltzmann);
            ++iMol;
         } // end loop over molecules
      }
   }