TEUCHOS_UNIT_TEST( Rythmos_ExplicitRKStepper, basePoint ) { RCP<SinCosModel> model = sinCosModel(false); { RCP<ParameterList> pl = Teuchos::parameterList(); pl->set("Accept model parameters",true); model->setParameterList(pl); } Thyra::ModelEvaluatorBase::InArgs<double> ic = model->getNominalValues(); // t_ic double t_ic = 1.0; // not used // x_ic RCP<VectorBase<double> > x_ic = Thyra::createMember(*model->get_x_space()); { Thyra::DetachedVectorView<double> x_ic_view( *x_ic ); x_ic_view[0] = 5.0; x_ic_view[1] = 6.0; } // parameter 0 ic RCP<VectorBase<double> > p_ic = Thyra::createMember(*model->get_p_space(0)); { Thyra::DetachedVectorView<double> p_ic_view( *p_ic ); p_ic_view[0] = 2.0; // a p_ic_view[1] = 3.0; // f p_ic_view[2] = 4.0; // L } ic.set_p(0,p_ic); ic.set_x(x_ic); ic.set_t(t_ic); RCP<ExplicitRKStepper<double> > stepper = explicitRKStepper<double>(); stepper->setModel(model); stepper->setInitialCondition(ic); stepper->setRKButcherTableau(createRKBT<double>("Forward Euler")); double dt = 0.2; double dt_taken; dt_taken = stepper->takeStep(dt,STEP_TYPE_FIXED); TEST_EQUALITY_CONST( dt_taken, 0.2 ); const StepStatus<double> status = stepper->getStepStatus(); TEST_ASSERT( !is_null(status.solution) ); double tol = 1.0e-10; { Thyra::ConstDetachedVectorView<double> x_new_view( *(status.solution) ); TEST_FLOATING_EQUALITY( x_new_view[0], 5.0 + 0.2*(6.0), tol ); TEST_FLOATING_EQUALITY( x_new_view[1], 6.0 + 0.2*( (3.0/4.0)*(3.0/4.0)*(2.0-5.0) ), tol ); } }
void Piro::RythmosSolver<Scalar>::evalModelImpl( #endif const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs, const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const { using Teuchos::RCP; using Teuchos::rcp; // TODO: Support more than 1 parameter and 1 response const int j = 0; const int l = 0; // Parse InArgs RCP<const Thyra::VectorBase<Scalar> > p_in; if (num_p > 0) { p_in = inArgs.get_p(l); } RCP<const Thyra::VectorBase<Scalar> > p_in2; //JF add for multipoint if (num_p > 1) { p_in2 = inArgs.get_p(l+1); } // Parse OutArgs RCP<Thyra::VectorBase<Scalar> > g_out; if (num_g > 0) { g_out = outArgs.get_g(j); } const RCP<Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g); Thyra::ModelEvaluatorBase::InArgs<Scalar> state_ic = model->getNominalValues(); // Set initial time in ME if needed if(t_initial > 0.0 && state_ic.supports(Thyra::ModelEvaluatorBase::IN_ARG_t)) state_ic.set_t(t_initial); if (Teuchos::nonnull(initialConditionModel)) { // The initial condition depends on the parameter // It is found by querying the auxiliary model evaluator as the last response const RCP<Thyra::VectorBase<Scalar> > initialState = Thyra::createMember(model->get_x_space()); { Thyra::ModelEvaluatorBase::InArgs<Scalar> initCondInArgs = initialConditionModel->createInArgs(); if (num_p > 0) { initCondInArgs.set_p(l, inArgs.get_p(l)); } Thyra::ModelEvaluatorBase::OutArgs<Scalar> initCondOutArgs = initialConditionModel->createOutArgs(); initCondOutArgs.set_g(initCondOutArgs.Ng() - 1, initialState); initialConditionModel->evalModel(initCondInArgs, initCondOutArgs); } state_ic.set_x(initialState); } // Set paramters p_in as part of initial conditions if (num_p > 0) { if (Teuchos::nonnull(p_in)) { state_ic.set_p(l, p_in); } } if (num_p > 1) { //JF added for multipoint if (Teuchos::nonnull(p_in2)) { state_ic.set_p(l+1, p_in2); } } *out << "\nstate_ic:\n" << Teuchos::describe(state_ic, solnVerbLevel); //JF may need a version of the following for multipoint, i.e. num_p>1, l+1, if we want sensitivities RCP<Thyra::MultiVectorBase<Scalar> > dgxdp_out; Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv_out; if (num_p > 0) { const Thyra::ModelEvaluatorBase::DerivativeSupport dgxdp_support = outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, num_g, l); if (dgxdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) { const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgxdp_deriv = outArgs.get_DgDp(num_g, l); dgxdp_out = dgxdp_deriv.getMultiVector(); } if (num_g > 0) { const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support = outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l); if (!dgdp_support.none()) { dgdp_deriv_out = outArgs.get_DgDp(j, l); } } } const bool requestedSensitivities = Teuchos::nonnull(dgxdp_out) || !dgdp_deriv_out.isEmpty(); RCP<const Thyra::VectorBase<Scalar> > finalSolution; if (!requestedSensitivities) { // *out << "\nE) Solve the forward problem ...\n"; // fwdStateStepper->setInitialCondition(state_ic); fwdStateIntegrator->setStepper(fwdStateStepper, t_final, true); *out << "T final : " << t_final << " \n"; Teuchos::Array<RCP<const Thyra::VectorBase<Scalar> > > x_final_array; fwdStateIntegrator->getFwdPoints( Teuchos::tuple<Scalar>(t_final), &x_final_array, NULL, NULL); finalSolution = x_final_array[0]; if (Teuchos::VERB_MEDIUM <= solnVerbLevel) { std::cout << "Final Solution\n" << *finalSolution << std::endl; } } else { // Computing sensitivities // *out << "\nE) Solve the forward problem with Sensitivities...\n"; // RCP<Rythmos::ForwardSensitivityStepper<Scalar> > stateAndSensStepper = Rythmos::forwardSensitivityStepper<Scalar>(); stateAndSensStepper->initializeSyncedSteppers( model, l, model->getNominalValues(), fwdStateStepper, fwdTimeStepSolver); // // Set the initial condition for the state and forward sensitivities // const RCP<Thyra::VectorBase<Scalar> > s_bar_init = Thyra::createMember(stateAndSensStepper->getFwdSensModel()->get_x_space()); const RCP<Thyra::VectorBase<Scalar> > s_bar_dot_init = Thyra::createMember(stateAndSensStepper->getFwdSensModel()->get_x_space()); if (Teuchos::is_null(initialConditionModel)) { // The initial condition is assumed to be independent from the parameters // Therefore, the initial condition for the sensitivity is zero Thyra::assign(s_bar_init.ptr(), Teuchos::ScalarTraits<Scalar>::zero()); } else { // Use initialConditionModel to compute initial condition for sensitivity Thyra::ModelEvaluatorBase::InArgs<Scalar> initCondInArgs = initialConditionModel->createInArgs(); initCondInArgs.set_p(l, inArgs.get_p(l)); Thyra::ModelEvaluatorBase::OutArgs<Scalar> initCondOutArgs = initialConditionModel->createOutArgs(); typedef Thyra::DefaultMultiVectorProductVector<Scalar> DMVPV; const RCP<DMVPV> s_bar_init_downcasted = Teuchos::rcp_dynamic_cast<DMVPV>(s_bar_init); const Thyra::ModelEvaluatorBase::Derivative<Scalar> initCond_deriv( s_bar_init_downcasted->getNonconstMultiVector(), Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM); initCondOutArgs.set_DgDp(initCondOutArgs.Ng() - 1, l, initCond_deriv); initialConditionModel->evalModel(initCondInArgs, initCondOutArgs); } Thyra::assign(s_bar_dot_init.ptr(), Teuchos::ScalarTraits<Scalar>::zero()); RCP<const Rythmos::StateAndForwardSensitivityModelEvaluator<Scalar> > stateAndSensModel = stateAndSensStepper->getStateAndFwdSensModel(); Thyra::ModelEvaluatorBase::InArgs<Scalar> state_and_sens_ic = stateAndSensStepper->getModel()->createInArgs(); // Copy time, parameters etc. state_and_sens_ic.setArgs(state_ic); // Set initial condition for x_bar = [ x; s_bar ] state_and_sens_ic.set_x(stateAndSensModel->create_x_bar_vec(state_ic.get_x(), s_bar_init)); // Set initial condition for x_bar_dot = [ x_dot; s_bar_dot ] state_and_sens_ic.set_x_dot(stateAndSensModel->create_x_bar_vec(state_ic.get_x_dot(), s_bar_dot_init)); stateAndSensStepper->setInitialCondition(state_and_sens_ic); // // Use a StepperAsModelEvaluator to integrate the state+sens // const RCP<Rythmos::StepperAsModelEvaluator<Scalar> > stateAndSensIntegratorAsModel = Rythmos::stepperAsModelEvaluator( Teuchos::rcp_implicit_cast<Rythmos::StepperBase<Scalar> >(stateAndSensStepper), Teuchos::rcp_implicit_cast<Rythmos::IntegratorBase<Scalar> >(fwdStateIntegrator), state_and_sens_ic); // StepperAsModelEvaluator outputs the solution as its last response const int stateAndSensModelStateResponseIndex = stateAndSensIntegratorAsModel->Ng() - 1; *out << "\nUse the StepperAsModelEvaluator to integrate state + sens x_bar(p,t_final) ... \n"; Teuchos::OSTab tab(out); // Solution sensitivity in column-oriented (Jacobian) MultiVector form RCP<const Thyra::MultiVectorBase<Scalar> > dxdp; const RCP<Thyra::VectorBase<Scalar> > x_bar_final = Thyra::createMember(stateAndSensIntegratorAsModel->get_g_space(stateAndSensModelStateResponseIndex)); // Extract pieces of x_bar_final to prepare output { const RCP<const Thyra::ProductVectorBase<Scalar> > x_bar_final_downcasted = Thyra::productVectorBase<Scalar>(x_bar_final); // Solution const int solutionBlockIndex = 0; finalSolution = x_bar_final_downcasted->getVectorBlock(solutionBlockIndex); // Sensitivity const int sensitivityBlockIndex = 1; const RCP<const Thyra::VectorBase<Scalar> > s_bar_final = x_bar_final_downcasted->getVectorBlock(sensitivityBlockIndex); { typedef Thyra::DefaultMultiVectorProductVector<Scalar> DMVPV; const RCP<const DMVPV> s_bar_final_downcasted = Teuchos::rcp_dynamic_cast<const DMVPV>(s_bar_final); dxdp = s_bar_final_downcasted->getMultiVector(); } } Thyra::eval_g( *stateAndSensIntegratorAsModel, l, *state_ic.get_p(l), t_final, stateAndSensModelStateResponseIndex, x_bar_final.get() ); *out << "\nx_bar_final = x_bar(p,t_final) evaluated using " << "stateAndSensIntegratorAsModel:\n" << Teuchos::describe(*x_bar_final,solnVerbLevel); if (Teuchos::nonnull(dgxdp_out)) { Thyra::assign(dgxdp_out.ptr(), *dxdp); } if (!dgdp_deriv_out.isEmpty()) { RCP<Thyra::DefaultAddedLinearOp<Scalar> > dgdp_op_out; { const RCP<Thyra::LinearOpBase<Scalar> > dgdp_op = dgdp_deriv_out.getLinearOp(); if (Teuchos::nonnull(dgdp_op)) { dgdp_op_out = Teuchos::rcp_dynamic_cast<Thyra::DefaultAddedLinearOp<Scalar> >(dgdp_op); dgdp_op_out.assert_not_null(); } } Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs = model->createInArgs(); { modelInArgs.set_x(finalSolution); if (num_p > 0) { modelInArgs.set_p(l, p_in); } } // require dgdx, dgdp from model Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model->createOutArgs(); { const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdx_deriv(model->create_DgDx_op(j)); modelOutArgs.set_DgDx(j, dgdx_deriv); Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv; if (Teuchos::nonnull(dgdp_op_out)) { dgdp_deriv = model->create_DgDp_op(j, l); } else { dgdp_deriv = dgdp_deriv_out; } modelOutArgs.set_DgDp(j, l, dgdp_deriv); } model->evalModel(modelInArgs, modelOutArgs); const RCP<const Thyra::LinearOpBase<Scalar> > dgdx = modelOutArgs.get_DgDx(j).getLinearOp(); // dgdp_out = dgdp + <dgdx, dxdp> if (Teuchos::nonnull(dgdp_op_out)) { Teuchos::Array<RCP<const Thyra::LinearOpBase<Scalar> > > op_args(2); { op_args[0] = modelOutArgs.get_DgDp(j, l).getLinearOp(); op_args[1] = Thyra::multiply<Scalar>(dgdx, dxdp); } dgdp_op_out->initialize(op_args); } else { const RCP<Thyra::MultiVectorBase<Scalar> > dgdp_mv_out = dgdp_deriv_out.getMultiVector(); Thyra::apply( *dgdx, Thyra::NOTRANS, *dxdp, dgdp_mv_out.ptr(), Teuchos::ScalarTraits<Scalar>::one(), Teuchos::ScalarTraits<Scalar>::one()); } } } *out << "\nF) Check the solution to the forward problem ...\n"; // As post-processing step, calculate responses at final solution { Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs = model->createInArgs(); { modelInArgs.set_x(finalSolution); if (num_p > 0) { modelInArgs.set_p(l, p_in); } if (num_p > 1) { //JF added for multipoint modelInArgs.set_p(l+1, p_in2); } //Set time to be final time at which the solve occurs (< t_final in the case we don't make it to t_final). modelInArgs.set_t(fwdStateStepper->getTimeRange().lower()); } Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model->createOutArgs(); if (Teuchos::nonnull(g_out)) { Thyra::put_scalar(Teuchos::ScalarTraits<Scalar>::zero(), g_out.ptr()); modelOutArgs.set_g(j, g_out); } model->evalModel(modelInArgs, modelOutArgs); } // Return the final solution as an additional g-vector, if requested if (Teuchos::nonnull(gx_out)) { Thyra::copy(*finalSolution, gx_out.ptr()); } }