void DiscreteBoundaryOperator<ValueType>::applyImpl( const Thyra::EOpTransp M_trans, const Thyra::MultiVectorBase<ValueType> &X_in, const Teuchos::Ptr<Thyra::MultiVectorBase<ValueType>> &Y_inout, const ValueType alpha, const ValueType beta) const { typedef Thyra::Ordinal Ordinal; // Note: the name is VERY misleading: these asserts don't disappear in // release runs, and in case of failure throw exceptions rather than // abort. TEUCHOS_ASSERT(this->opSupported(M_trans)); TEUCHOS_ASSERT(X_in.range()->isCompatible(*this->domain())); TEUCHOS_ASSERT(Y_inout->range()->isCompatible(*this->range())); TEUCHOS_ASSERT(Y_inout->domain()->isCompatible(*X_in.domain())); const Ordinal colCount = X_in.domain()->dim(); // Loop over the input columns for (Ordinal col = 0; col < colCount; ++col) { // Get access the the elements of X_in's and Y_inout's column #col Thyra::ConstDetachedSpmdVectorView<ValueType> xVec(X_in.col(col)); Thyra::DetachedSpmdVectorView<ValueType> yVec(Y_inout->col(col)); const Teuchos::ArrayRCP<const ValueType> xArray(xVec.sv().values()); const Teuchos::ArrayRCP<ValueType> yArray(yVec.sv().values()); // Wrap the Trilinos array in an Armadillo vector. const_cast is used // because it's more natural to have a const arma::Col<ValueType> array // than an arma::Col<const ValueType> one. const arma::Col<ValueType> xCol(const_cast<ValueType *>(xArray.get()), xArray.size(), false /* copy_aux_mem */); arma::Col<ValueType> yCol(yArray.get(), yArray.size(), false); applyBuiltInImpl(static_cast<TranspositionMode>(M_trans), xCol, yCol, alpha, beta); } }
void Piro::MatrixFreeLinearOp<Scalar>::applyImpl( const Thyra::EOpTransp M_trans, const Thyra::MultiVectorBase<Scalar> &X, const Teuchos::Ptr<Thyra::MultiVectorBase<Scalar> > &Y, const Scalar alpha, const Scalar beta) const { using Teuchos::RCP; using Teuchos::Ptr; TEUCHOS_TEST_FOR_EXCEPTION( !this->opSupported(M_trans), Thyra::Exceptions::OpNotSupported, this->description() << " does not support operation " << Thyra::toString(M_trans)); TEUCHOS_TEST_FOR_EXCEPTION( !X.range()->isCompatible(*this->domain()), Thyra::Exceptions::IncompatibleVectorSpaces, "Domain of " << this->description() << ": " << this->domain()->description() << " is not compatible with column space of " << X.description() << ": " << X.range()->description()); TEUCHOS_TEST_FOR_EXCEPTION( !Y->range()->isCompatible(*this->range()), Thyra::Exceptions::IncompatibleVectorSpaces, "Range of " << this->description() << ": " << this->range()->description() << " is not compatible with column space of " << Y->description() << ": " << Y->range()->description()); TEUCHOS_TEST_FOR_EXCEPTION( !Y->domain()->isCompatible(*X.domain()), Thyra::Exceptions::IncompatibleVectorSpaces, "Row space of " << Y->description() << ": " << Y->domain()->description() << " is not compatible with row space of " << X.description() << ": " << X.domain()->description()); TEUCHOS_TEST_FOR_EXCEPTION( &X == Y.get(), std::logic_error, "X and Y arguments are both aliases of " << X.description()); if (alpha == Teuchos::ScalarTraits<Scalar>::zero()) { // Y <- beta * Y Thyra::Vt_S(Y, beta); return; } typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType ScalarMagnitude; RCP<const Thyra::VectorBase<Scalar> > x_dot_base; if (basePoint_.supports(Thyra::ModelEvaluatorBase::IN_ARG_x_dot)) x_dot_base = basePoint_.get_x_dot(); RCP<const Thyra::VectorBase<Scalar> > x_base = basePoint_.get_x(); if (Teuchos::is_null(x_base)) { x_base = model_->getNominalValues().get_x(); } x_base.assert_not_null(); const ScalarMagnitude norm_x_base = Thyra::norm_2(*x_base); // Number of columns common to both vectors X and Y // (X and Y have compatible row spaces) const Thyra::Ordinal colCount = X.domain()->dim(); for (Teuchos::Ordinal j = Teuchos::Ordinal(); j < colCount; ++j) { const RCP<const Thyra::VectorBase<Scalar> > X_vec = X.col(j); const RCP<Thyra::VectorBase<Scalar> > Y_vec = Y->col(j); const ScalarMagnitude norm_dx = Thyra::norm_2(*X_vec); if (norm_dx == Teuchos::ScalarTraits<ScalarMagnitude>::zero()) { if (beta == Teuchos::ScalarTraits<Scalar>::zero()) { // Y_vec <- 0 Thyra::put_scalar(Teuchos::ScalarTraits<ScalarMagnitude>::zero(), Y_vec.ptr()); } else { // Y_vec <- beta * Y_vec Thyra::scale(beta, Y_vec.ptr()); } } else { // Scalar perturbation const ScalarMagnitude relative_pert_ratio = static_cast<ScalarMagnitude>(lambda_); const ScalarMagnitude eta = (relative_pert_ratio * ((norm_x_base / norm_dx) + relative_pert_ratio)); // Compute perturbed residual // Dynamic: f_pert <- f(x_dot_base + eta * (W_alpha * X), x_base + eta * (W_beta * X)) // Static: f_pert <- f(x_base + eta * X) const RCP<Thyra::VectorBase<Scalar> > f_pert = Thyra::createMember(this->range()); { Thyra::ModelEvaluatorBase::InArgs<Scalar> pertInArgs = model_->createInArgs(); { pertInArgs.setArgs(basePoint_); const bool isDynamic = Teuchos::nonnull(x_dot_base); if (isDynamic) { const RCP<Thyra::VectorBase<Scalar> > x_dot_pert = Thyra::createMember(this->domain()); const Scalar W_alpha = pertInArgs.get_alpha(); Thyra::V_VpStV<Scalar>(x_dot_pert.ptr(), *x_dot_base, W_alpha * eta, *X_vec); pertInArgs.set_x_dot(x_dot_pert); } const RCP<Thyra::VectorBase<Scalar> > x_pert = Thyra::createMember(this->domain()); const Scalar W_beta = isDynamic ? pertInArgs.get_beta() : Teuchos::ScalarTraits<Scalar>::one(); Thyra::V_VpStV<Scalar>(x_pert.ptr(), *x_base, W_beta * eta, *X_vec); pertInArgs.set_x(x_pert); } Thyra::ModelEvaluatorBase::OutArgs<Scalar> pertOutArgs = model_->createOutArgs(); { pertOutArgs.set_f(f_pert); } model_->evalModel(pertInArgs, pertOutArgs); } // Y <- alpha * (1/eta) * (f_pert - f_base) + beta * Y const Scalar alpha_over_eta = alpha / eta; if (beta == Teuchos::ScalarTraits<Scalar>::zero()) { // Y <- alpha * (1/eta) * (f_pert - f_base) Thyra::V_StVpStV<Scalar>(Y_vec.ptr(), alpha_over_eta, *f_pert, -alpha_over_eta, *f_base_); } else { // Aliasing f_pert and alpha_op_X (f_pert == alpha_op_X) const RCP<Thyra::VectorBase<Scalar> > alpha_op_X = f_pert; // alpha_op_X <- alpha * (1/eta) * (f_pert - f_base) Thyra::Vp_StV(alpha_op_X.ptr(), -Teuchos::ScalarTraits<Scalar>::one(), *f_base_); const Scalar alpha_over_eta = alpha / eta; Thyra::Vt_S(alpha_op_X.ptr(), alpha_over_eta); // Y <- alpha_op_X + beta * Y Thyra::Vp_V<Scalar>(Y_vec.ptr(), *alpha_op_X, beta); } } } }