Esempio n. 1
0
bool
ElevationQuery::getElevationImpl(const GeoPoint& point,
                                 double&         out_elevation,
                                 double          desiredResolution,
                                 double*         out_actualResolution)
{
    osg::Timer_t start = osg::Timer::instance()->tick();

    if ( _maxDataLevel == 0 || _tileSize == 0 )
    {
        // this means there are no heightfields.
        out_elevation = 0.0;
        return true;
    }

    
    //This is the max resolution that we actually have data at this point
    unsigned int bestAvailLevel = getMaxLevel( point.x(), point.y(), point.getSRS(), _mapf.getProfile());

    if (desiredResolution > 0.0)
    {
        unsigned int desiredLevel = _mapf.getProfile()->getLevelOfDetailForHorizResolution( desiredResolution, _tileSize );
        if (desiredLevel < bestAvailLevel) bestAvailLevel = desiredLevel;
    }

    OE_DEBUG << "Best available data level " << point.x() << ", " << point.y() << " = "  << bestAvailLevel << std::endl;

    // transform the input coords to map coords:
    GeoPoint mapPoint = point;
    if ( point.isValid() && !point.getSRS()->isEquivalentTo( _mapf.getProfile()->getSRS() ) )
    {
        mapPoint = point.transform(_mapf.getProfile()->getSRS());
        if ( !mapPoint.isValid() )
        {
            OE_WARN << LC << "Fail: coord transform failed" << std::endl;
            return false;
        }
    }

    osg::ref_ptr<osg::HeightField> tile;

    // get the tilekey corresponding to the tile we need:
    TileKey key = _mapf.getProfile()->createTileKey( mapPoint.x(), mapPoint.y(), bestAvailLevel );
    if ( !key.valid() )
    {
        OE_WARN << LC << "Fail: coords fall outside map" << std::endl;
        return false;
    }

    // Check the tile cache. Note that the TileSource already likely has a MemCache
    // attached to it. We employ a secondary cache here for a couple reasons. One, this
    // cache will store not only the heightfield, but also the tesselated tile in the event
    // that we're using GEOMETRIC mode. Second, since the call the getHeightField can 
    // fallback on a lower resolution, this cache will hold the final resolution heightfield
    // instead of trying to fetch the higher resolution one each item.

    TileCache::Record record;
    if ( _tileCache.get(key, record) )
    {
        tile = record.value().get();
    }

    // if we didn't find it, build it.
    if ( !tile.valid() )
    {
        // generate the heightfield corresponding to the tile key, automatically falling back
        // on lower resolution if necessary:
        _mapf.getHeightField( key, true, tile, 0L );

        // bail out if we could not make a heightfield a all.
        if ( !tile.valid() )
        {
            OE_WARN << LC << "Unable to create heightfield for key " << key.str() << std::endl;
            return false;
        }

        _tileCache.insert(key, tile.get());
    }

    OE_DEBUG << LC << "LRU Cache, hit ratio = " << _tileCache.getStats()._hitRatio << std::endl;

    // see what the actual resolution of the heightfield is.
    if ( out_actualResolution )
        *out_actualResolution = (double)tile->getXInterval();

    bool result = true;

    const GeoExtent& extent = key.getExtent();
    double xInterval = extent.width()  / (double)(tile->getNumColumns()-1);
    double yInterval = extent.height() / (double)(tile->getNumRows()-1);
    
    out_elevation = (double) HeightFieldUtils::getHeightAtLocation( 
        tile.get(), 
        mapPoint.x(), mapPoint.y(), 
        extent.xMin(), extent.yMin(), 
        xInterval, yInterval, _mapf.getMapInfo().getElevationInterpolation() );

    osg::Timer_t end = osg::Timer::instance()->tick();
    _queries++;
    _totalTime += osg::Timer::instance()->delta_s( start, end );

    return result;
}
Esempio n. 2
0
bool
ElevationQuery::getElevationImpl(const osg::Vec3d&       point,
                                 const SpatialReference* pointSRS,
                                 double&                 out_elevation,
                                 double                  desiredResolution,
                                 double*                 out_actualResolution)
{
    if ( _maxDataLevel == 0 || _tileSize == 0 )
    {
        // this means there are no heightfields.
        out_elevation = 0.0;
        return true;
    }
   
    // this is the ideal LOD for the requested resolution:
    unsigned int idealLevel = desiredResolution > 0.0
        ? _mapf.getProfile()->getLevelOfDetailForHorizResolution( desiredResolution, _tileSize )
        : _maxDataLevel;        

    // based on the heightfields available, this is the best we can theorically do:
    unsigned int bestAvailLevel = osg::minimum( idealLevel, _maxDataLevel );
    if (_maxLevelOverride >= 0)
    {
        bestAvailLevel = osg::minimum(bestAvailLevel, (unsigned int)_maxLevelOverride);
    }
    
    // transform the input coords to map coords:
    osg::Vec3d mapPoint = point;
    if ( pointSRS && !pointSRS->isEquivalentTo( _mapf.getProfile()->getSRS() ) )
    {
        if ( !pointSRS->transform2D( point.x(), point.y(), _mapf.getProfile()->getSRS(), mapPoint.x(), mapPoint.y() ) )
        {
            OE_WARN << LC << "Fail: coord transform failed" << std::endl;
            return false;
        }
    }

    osg::ref_ptr<osg::HeightField> hf;
    osg::ref_ptr<osgTerrain::TerrainTile> tile;

    // get the tilekey corresponding to the tile we need:
    TileKey key = _mapf.getProfile()->createTileKey( mapPoint.x(), mapPoint.y(), bestAvailLevel );
    if ( !key.valid() )
    {
        OE_WARN << LC << "Fail: coords fall outside map" << std::endl;
        return false;
    }

    // Check the tile cache. Note that the TileSource already likely has a MemCache
    // attached to it. We employ a secondary cache here for a couple reasons. One, this
    // cache will store not only the heightfield, but also the tesselated tile in the event
    // that we're using GEOMETRIC mode. Second, since the call the getHeightField can 
    // fallback on a lower resolution, this cache will hold the final resolution heightfield
    // instead of trying to fetch the higher resolution one each tiem.

    TileCache::Record record = _tileCache.get( key );
    if ( record.valid() )
        tile = record.value().get();
         
    // if we found it, make sure it has a heightfield in it:
    if ( tile.valid() )
    {
        osgTerrain::HeightFieldLayer* layer = dynamic_cast<osgTerrain::HeightFieldLayer*>(tile->getElevationLayer());
        if ( layer )
            hf = layer->getHeightField();

        if ( !hf.valid() )
            tile = 0L;
    }

    // if we didn't find it (or it didn't have heightfield data), build it.
    if ( !tile.valid() )
    {
        // generate the heightfield corresponding to the tile key, automatically falling back
        // on lower resolution if necessary:
        _mapf.getHeightField( key, true, hf, 0L, _interpolation );

        // bail out if we could not make a heightfield a all.
        if ( !hf.valid() )
        {
            OE_WARN << LC << "Unable to create heightfield for key " << key.str() << std::endl;
            return false;
        }

        // All this stuff is requires for GEOMETRIC mode. An optimization would be to
        // defer this so that PARAMETRIC mode doesn't waste time
        GeoLocator* locator = GeoLocator::createForKey( key, _mapf.getMapInfo() );

        tile = new osgTerrain::TerrainTile();

        osgTerrain::HeightFieldLayer* layer = new osgTerrain::HeightFieldLayer( hf.get() );
        layer->setLocator( locator );

        tile->setElevationLayer( layer );
        tile->setRequiresNormals( false );
        tile->setTerrainTechnique( new osgTerrain::GeometryTechnique );

        // store it in the local tile cache.
        _tileCache.insert( key, tile.get() );
    }

    OE_DEBUG << LC << "LRU Cache, hit ratio = " << _tileCache.getStats()._hitRatio << std::endl;

    // see what the actual resolution of the heightfield is.
    if ( out_actualResolution )
        *out_actualResolution = (double)hf->getXInterval();

    // finally it's time to get a height value:
    if ( _technique == TECHNIQUE_PARAMETRIC )
    {
        const GeoExtent& extent = key.getExtent();
        double xInterval = extent.width()  / (double)(hf->getNumColumns()-1);
        double yInterval = extent.height() / (double)(hf->getNumRows()-1);
        out_elevation = (double) HeightFieldUtils::getHeightAtLocation( 
            hf.get(), mapPoint.x(), mapPoint.y(), extent.xMin(), extent.yMin(), xInterval, yInterval );
        return true;
    }
    else // ( _technique == TECHNIQUE_GEOMETRIC )
    {
        osg::Vec3d start, end, zero;

        if ( _mapf.getMapInfo().isGeocentric() )
        {
            const SpatialReference* mapSRS = _mapf.getProfile()->getSRS();

            mapSRS->transformToECEF( osg::Vec3d(mapPoint.y(), mapPoint.x(),  50000.0), start );
            mapSRS->transformToECEF( osg::Vec3d(mapPoint.y(), mapPoint.x(), -50000.0), end );
            mapSRS->transformToECEF( osg::Vec3d(mapPoint.y(), mapPoint.x(),      0.0), zero );
        }
        else // PROJECTED
        {
            start.set( mapPoint.x(), mapPoint.y(),  50000.0 );
            end.set  ( mapPoint.x(), mapPoint.y(), -50000.0 );
            zero.set ( mapPoint.x(), mapPoint.y(),      0.0 );
        }

        osgUtil::LineSegmentIntersector* i = new osgUtil::LineSegmentIntersector( start, end );
        osgUtil::IntersectionVisitor iv;
        iv.setIntersector( i );

        tile->accept( iv );

        osgUtil::LineSegmentIntersector::Intersections& results = i->getIntersections();
        if ( !results.empty() )
        {
            const osgUtil::LineSegmentIntersector::Intersection& result = *results.begin();
            osg::Vec3d isectPoint = result.getWorldIntersectPoint();
            out_elevation = (isectPoint-end).length2() > (zero-end).length2()
                ? (isectPoint-zero).length()
                : -(isectPoint-zero).length();
            return true;            
        }

        OE_DEBUG << LC << "No intersection" << std::endl;
        return false;
    }
}
Esempio n. 3
0
bool
ElevationQuery::getElevationImpl(const GeoPoint& point,
                                 double&         out_elevation,
                                 double          desiredResolution,
                                 double*         out_actualResolution)
{
    osg::Timer_t start = osg::Timer::instance()->tick();

    if ( _mapf.elevationLayers().empty() )
    {
        // this means there are no heightfields.
        out_elevation = 0.0;
        return true;        
    }

    // tile size (resolution of elevation tiles)
    unsigned tileSize = std::max(_mapf.getMapOptions().elevationTileSize().get(), 2u);

    //This is the max resolution that we actually have data at this point
    unsigned int bestAvailLevel = getMaxLevel( point.x(), point.y(), point.getSRS(), _mapf.getProfile());

    if (desiredResolution > 0.0)
    {
        unsigned int desiredLevel = _mapf.getProfile()->getLevelOfDetailForHorizResolution( desiredResolution, tileSize );
        if (desiredLevel < bestAvailLevel) bestAvailLevel = desiredLevel;
    }

    OE_DEBUG << LC << "Best available data level " << point.x() << ", " << point.y() << " = "  << bestAvailLevel << std::endl;

    // transform the input coords to map coords:
    GeoPoint mapPoint = point;
    if ( point.isValid() && !point.getSRS()->isHorizEquivalentTo( _mapf.getProfile()->getSRS() ) )
    {
        mapPoint = point.transform(_mapf.getProfile()->getSRS());
        if ( !mapPoint.isValid() )
        {
            OE_WARN << LC << "Fail: coord transform failed" << std::endl;
            return false;
        }
    }    

    // get the tilekey corresponding to the tile we need:
    TileKey key = _mapf.getProfile()->createTileKey( mapPoint.x(), mapPoint.y(), bestAvailLevel );
    if ( !key.valid() )
    {
        OE_WARN << LC << "Fail: coords fall outside map" << std::endl;
        return false;
    }
        
    bool result = false;      
    while (!result)
    {      
        GeoHeightField geoHF;
        TileCache::Record record;
        // Try to get the hf from the cache
        if ( _cache.get( key, record ) )
        {                        
            geoHF = record.value();
        }
        else
        {
            // Create it            
            osg::ref_ptr<osg::HeightField> hf = new osg::HeightField();
            hf->allocate( tileSize, tileSize );

            // Initialize the heightfield to nodata
            for (unsigned int i = 0; i < hf->getFloatArray()->size(); i++)
            {
                hf->getFloatArray()->at( i ) = NO_DATA_VALUE;
            }   

            if (_mapf.populateHeightField( hf, key ) )
            {                
                geoHF = GeoHeightField( hf.get(), key.getExtent() );
                _cache.insert( key, geoHF );
            }
        }

        if (geoHF.valid())
        {            
            float elevation = 0.0f;                 
            result = geoHF.getElevation( mapPoint.getSRS(), mapPoint.x(), mapPoint.y(), _mapf.getMapInfo().getElevationInterpolation(), mapPoint.getSRS(), elevation);                              
            if (result && elevation != NO_DATA_VALUE)
            {                        
                // see what the actual resolution of the heightfield is.
                if ( out_actualResolution )
                    *out_actualResolution = geoHF.getXInterval(); 
                out_elevation = (double)elevation;                
                break;
            }
            else
            {                               
                result = false;
            }
        }

        if (!result)
        {
            key = key.createParentKey();                        
            if (!key.valid())
            {
                break;
            }
        }         
    }

         

    osg::Timer_t end = osg::Timer::instance()->tick();
    _queries++;
    _totalTime += osg::Timer::instance()->delta_s( start, end );

    return result;
}
Esempio n. 4
0
bool
ElevationQuery::getElevationImpl(const GeoPoint& point, /* abs */
                                 double&         out_elevation,
                                 double          desiredResolution,
                                 double*         out_actualResolution)
{
    // assertion.
    if ( !point.isAbsolute() )
    {
        OE_WARN << LC << "Assertion failure; input must be absolute" << std::endl;
        return false;
    }

    osg::Timer_t begin = osg::Timer::instance()->tick();

    // first try the terrain patches.
    if ( _patchLayers.size() > 0 )
    {
        osgUtil::IntersectionVisitor iv;

        for(std::vector<ModelLayer*>::iterator i = _patchLayers.begin(); i != _patchLayers.end(); ++i)
        {
            // find the scene graph for this layer:
            osg::Node* node = (*i)->getSceneGraph( _mapf.getUID() );
            if ( node )
            {
                // configure for intersection:
                osg::Vec3d surface;
                point.toWorld( surface );

                // trivial bounds check:
                if ( node->getBound().contains(surface) )
                {
                    osg::Vec3d nvector;
                    point.createWorldUpVector(nvector);

                    osg::Vec3d start( surface + nvector*5e5 );
                    osg::Vec3d end  ( surface - nvector*5e5 );
                
                    // first time through, set up the intersector on demand
                    if ( !_patchLayersLSI.valid() )
                    {
                        _patchLayersLSI = new DPLineSegmentIntersector(start, end);
                        _patchLayersLSI->setIntersectionLimit( _patchLayersLSI->LIMIT_NEAREST );
                    }
                    else
                    {
                        _patchLayersLSI->reset();
                        _patchLayersLSI->setStart( start );
                        _patchLayersLSI->setEnd  ( end );
                    }

                    // try it.
                    iv.setIntersector( _patchLayersLSI.get() );
                    node->accept( iv );

                    // check for a result!!
                    if ( _patchLayersLSI->containsIntersections() )
                    {
                        osg::Vec3d isect = _patchLayersLSI->getIntersections().begin()->getWorldIntersectPoint();

                        // transform back to input SRS:
                        GeoPoint output;
                        output.fromWorld( point.getSRS(), isect );
                        out_elevation = output.z();
                        if ( out_actualResolution )
                            *out_actualResolution = 0.0;

                        return true;
                    }
                }
                else
                {
                    //OE_INFO << LC << "Trivial rejection (bounds check)" << std::endl;
                }
            }
        }
    }

    if ( _mapf.elevationLayers().empty() )
    {
        // this means there are no heightfields.
        out_elevation = 0.0;
        return true;        
    }

    // tile size (resolution of elevation tiles)
    unsigned tileSize = std::max(_mapf.getMapOptions().elevationTileSize().get(), 2u);

    //This is the max resolution that we actually have data at this point
    unsigned int bestAvailLevel = getMaxLevel( point.x(), point.y(), point.getSRS(), _mapf.getProfile());

    if (desiredResolution > 0.0)
    {
        unsigned int desiredLevel = _mapf.getProfile()->getLevelOfDetailForHorizResolution( desiredResolution, tileSize );
        if (desiredLevel < bestAvailLevel) bestAvailLevel = desiredLevel;
    }

    OE_DEBUG << LC << "Best available data level " << point.x() << ", " << point.y() << " = "  << bestAvailLevel << std::endl;

    // transform the input coords to map coords:
    GeoPoint mapPoint = point;
    if ( point.isValid() && !point.getSRS()->isHorizEquivalentTo( _mapf.getProfile()->getSRS() ) )
    {
        mapPoint = point.transform(_mapf.getProfile()->getSRS());
        if ( !mapPoint.isValid() )
        {
            OE_WARN << LC << "Fail: coord transform failed" << std::endl;
            return false;
        }
    }    

    // get the tilekey corresponding to the tile we need:
    TileKey key = _mapf.getProfile()->createTileKey( mapPoint.x(), mapPoint.y(), bestAvailLevel );
    if ( !key.valid() )
    {
        OE_WARN << LC << "Fail: coords fall outside map" << std::endl;
        return false;
    }
        
    bool result = false;      
    while (!result)
    {      
        GeoHeightField geoHF;
        TileCache::Record record;
        // Try to get the hf from the cache
        if ( _cache.get( key, record ) )
        {                        
            geoHF = record.value();
        }
        else
        {
            // Create it            
            osg::ref_ptr<osg::HeightField> hf = new osg::HeightField();
            hf->allocate( tileSize, tileSize );

            // Initialize the heightfield to nodata
            for (unsigned int i = 0; i < hf->getFloatArray()->size(); i++)
            {
                hf->getFloatArray()->at( i ) = NO_DATA_VALUE;
            }   

            if (_mapf.populateHeightField(hf, key, false))
            {                
                geoHF = GeoHeightField( hf.get(), key.getExtent() );
                _cache.insert( key, geoHF );
            }
        }

        if (geoHF.valid())
        {            
            float elevation = 0.0f;                 
            result = geoHF.getElevation( mapPoint.getSRS(), mapPoint.x(), mapPoint.y(), _mapf.getMapInfo().getElevationInterpolation(), mapPoint.getSRS(), elevation);                              
            if (result && elevation != NO_DATA_VALUE)
            {                        
                // see what the actual resolution of the heightfield is.
                if ( out_actualResolution )
                    *out_actualResolution = geoHF.getXInterval(); 
                out_elevation = (double)elevation;                
                break;
            }
            else
            {                               
                result = false;
            }
        }

        if (!result)
        {
            key = key.createParentKey();                        
            if (!key.valid())
            {
                break;
            }
        }         
    }

         

    osg::Timer_t end = osg::Timer::instance()->tick();
    _queries++;
    _totalTime += osg::Timer::instance()->delta_s( begin, end );

    return result;
}