void TMVARegressionApplication( int wMs,int wM, string st,string st2,string option="",TString myMethodList = "" ) 
{
   //---------------------------------------------------------------
   // This loads the library
   TMVA::Tools::Instance();

   // Default MVA methods to be trained + tested
   std::map<std::string,int> Use;

   // --- Mutidimensional likelihood and Nearest-Neighbour methods
   Use["PDERS"]           = 0;
   Use["PDEFoam"]         = 0; 
   Use["KNN"]             = 0;
   // 
   // --- Linear Discriminant Analysis
   Use["LD"]		        = 0;
   // 
   // --- Function Discriminant analysis
   Use["FDA_GA"]          = 0;
   Use["FDA_MC"]          = 0;
   Use["FDA_MT"]          = 0;
   Use["FDA_GAMT"]        = 0;
   // 
   // --- Neural Network
   Use["MLP"]             = 0; 
   // 
   // --- Support Vector Machine 
   Use["SVM"]             = 0;
   // 
   // --- Boosted Decision Trees
   Use["BDT"]             = 0;
   Use["BDTG"]            = 1;
   // ---------------------------------------------------------------

   std::cout << std::endl;
   std::cout << "==> Start TMVARegressionApplication" << std::endl;

   // Select methods (don't look at this code - not of interest)
   if (myMethodList != "") {
      for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;

      std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' );
      for (UInt_t i=0; i<mlist.size(); i++) {
         std::string regMethod(mlist[i]);

         if (Use.find(regMethod) == Use.end()) {
            std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
            for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " ";
            std::cout << std::endl;
            return;
         }
         Use[regMethod] = 1;
      }
   }

   // --------------------------------------------------------------------------------------------------

   // --- Create the Reader object

   TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" );    

   // Create a set of variables and declare them to the reader
   // - the variable names MUST corresponds in name and type to those given in the weight file(s) used
   //Float_t var1, var2;
   //reader->AddVariable( "var1", &var1 );
   //reader->AddVariable( "var2", &var2 );
   Float_t pt_AK8MatchedToHbb,eta_AK8MatchedToHbb,nsv_AK8MatchedToHbb,sv0mass_AK8MatchedToHbb,sv1mass_AK8MatchedToHbb,
   nch_AK8MatchedToHbb,nmu_AK8MatchedToHbb,nel_AK8MatchedToHbb,muenfr_AK8MatchedToHbb,emenfr_AK8MatchedToHbb;
   reader->AddVariable( "pt_AK8MatchedToHbb", &pt_AK8MatchedToHbb );
   reader->AddVariable( "eta_AK8MatchedToHbb", &eta_AK8MatchedToHbb );
   reader->AddVariable( "nsv_AK8MatchedToHbb", &nsv_AK8MatchedToHbb );
   reader->AddVariable( "sv0mass_AK8MatchedToHbb", &sv0mass_AK8MatchedToHbb );
   reader->AddVariable( "sv1mass_AK8MatchedToHbb", &sv1mass_AK8MatchedToHbb );
   reader->AddVariable( "nch_AK8MatchedToHbb", &nch_AK8MatchedToHbb );
   reader->AddVariable( "nmu_AK8MatchedToHbb", &nmu_AK8MatchedToHbb );
   reader->AddVariable( "nel_AK8MatchedToHbb", &nel_AK8MatchedToHbb );
   reader->AddVariable( "muenfr_AK8MatchedToHbb", &muenfr_AK8MatchedToHbb );
   reader->AddVariable( "emenfr_AK8MatchedToHbb", &emenfr_AK8MatchedToHbb );

   
   // Spectator variables declared in the training have to be added to the reader, too
   Float_t spec1,spec2;
    reader->AddSpectator( "spec1:=n_pv",  &spec1 );
   reader->AddSpectator( "spec2:=msoftdrop_AK8MatchedToHbb",  &spec2 );

   // --- Book the MVA methods

   TString dir    = "weights/";
   TString prefix = "TMVARegression";

   // Book method(s)
   for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
      if (it->second) {
         TString methodName = it->first + " method";
         TString weightfile = dir + prefix + "_" + TString(it->first) + ".weights.xml";
         reader->BookMVA( methodName, weightfile ); 
      }
   }
   
     TH1* hists[100];
   Int_t nhists = -1;
      for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
         TH1* h = new TH1F( it->first.c_str(), TString(it->first) + " method", 100, -100, 600 );
         if (it->second) hists[++nhists] = h;
      }
      nhists++;
   
  //1=signal ,0=QCD ,2=data
	int nameRoot=1;
	if((st2.find("QCD")!= std::string::npos)||
	(st2.find("bGen")!= std::string::npos)||
	(st2.find("bEnriched")!= std::string::npos))nameRoot=0;
	if(st2.find("data")!= std::string::npos)nameRoot=2;
	cout<<"nameRoot = "<<nameRoot<<endl;
	
	//option-----------------------------------------------------------
	
	int JESOption=0;
	
   
   // Prepare input tree (this must be replaced by your data source)
   // in this example, there is a toy tree with signal and one with background events
   // we'll later on use only the "signal" events for the test in this example.
   //   
   TFile *f;
	TTree *tree;
	int nPass[20]={0};
	int total=0;
	double fixScaleNum[2]={0};
	
	TH1D* th1=new TH1D("a","a",150,50,200);	
	
	string massName[nMass]={"Thea","HCorr","Reg"};
	string catName[nCat]={"PP","PF","FP","FF"};
	string tau21Name[2]={"withTau21","woTau21"};
	
	string catNameShort[nCat]={"P","F"};
	string looseTight[2]={"loose","tight"};
	TF1 *fa[nMass][2][2][2];
	
	for(int i=0;i<nMass;i++){
		for(int j=0;j<2;j++){
			for(int k=0;k<2;k++){
				for(int w=0;w<2;w++){
					fa[i][j][k][w] = new TF1("fa","[0]+[1]*x+[2]*x*x+[3]*pow(x,3)",-3,3);
					ifstream myfile (Form("PFRatio/%s_%s_%s_%s.txt",looseTight[w].data(),massName[i].data(),catNameShort[j].data(),tau21Name[k].data()));
					double para[4];
					for(int m=0;m<4;m++){
						myfile>>para[m];
					}
					fa[i][j][k][w]->SetParameters(para[0],para[1],para[2],para[3]);
				}
			}
		}
	}
	
	/*
	TH1D* th2[nMass][nCat][2];
	TH1D* th3[nMass][nCat][2];
	for(int i=0;i<nMass;i++){
		for(int j=0;j<nCat;j++){
			for(int k=0;k<2;k++){
				th2[i][j][k]=(TH1D*)th1->Clone(Form("loose_%s_%s_%s",massName[i].data(),catName[j].data(),tau21Name[k].data()));
				th3[i][j][k]=(TH1D*)th1->Clone(Form("tight_%s_%s_%s",massName[i].data(),catName[j].data(),tau21Name[k].data()));
				
				th2[i][j][k]->Sumw2();
				th3[i][j][k]->Sumw2();
			}
		}
	}
	*/
	TH1D* th2d[14];
	
	th2d[0]=new TH1D("0a","0a",4000,1000,5000);	
	th2d[1]=new TH1D("0c","0c",4000,1000,5000);
	th2d[2]=new TH1D("1a","1a",4000,1000,5000);	
	th2d[3]=new TH1D("1c","1c",4000,1000,5000);	
	th2d[4]=new TH1D("2a","2a",4000,1000,5000);	
	th2d[5]=new TH1D("2b","2b",4000,1000,5000);	
	th2d[6]=new TH1D("2d","2d",4000,1000,5000);	
	
	
	th2d[7]=new TH1D("0aL","0aL",4000,1000,5000);		
	th2d[8]=new TH1D("0cL","0cL",4000,1000,5000);		
	th2d[9]=new TH1D("1aL","1aL",4000,1000,5000);		
	th2d[10]=new TH1D("1cL","1cL",4000,1000,5000);		
	th2d[11]=new TH1D("2aL","2aL",4000,1000,5000);	
	th2d[12]=new TH1D("2bL","2bL",4000,1000,5000);	
	th2d[13]=new TH1D("2dL","2dL",4000,1000,5000);	
		
	
		
	
	//int nWidth=5,nBmin=11;
	 int width [nWidth]={25,30,35,40};
	 int bmin[nBmin]={100,105,110,115};
	 
	
	 TH1D* th3d[14][nWidth][nBmin][2];
	 TH1D* th3f[14][nWidth][nBmin][2];
	 TH1D* th3v[14][nWidth][nBmin][2];
	 
	 for(int i=0;i<nWidth;i++){
		 for(int j=0;j<nBmin;j++){
			 for(int k=0;k<2;k++){
				  for(int l=0;l<14;l++){
					  th3d[l][i][j][k]=(TH1D*) th2d[l]->Clone(Form("%s_%d_%d_%s",th2d[l]->GetTitle(),bmin[j],width[i]+bmin[j],tau21Name[k].data()));
					  th3f[l][i][j][k]=(TH1D*) th2d[l]->Clone(Form("fill_%s_%d_%d_%s",th2d[l]->GetTitle(),bmin[j],width[i]+bmin[j],tau21Name[k].data()));
					  th3v[l][i][j][k]=(TH1D*) th2d[l]->Clone(Form("valid_%s_%d_%d_%s",th2d[l]->GetTitle(),bmin[j],width[i]+bmin[j],tau21Name[k].data()));
					   
					  th3d[l][i][j][k]->Sumw2();
					  th3f[l][i][j][k]->Sumw2();
					  th3v[l][i][j][k]->Sumw2();
				  }
			 }
		 }
	 }
   
   for (int w=wMs;w<wM;w++){
		if(w%20==0)cout<<w<<endl;
		
		if (nameRoot!=1)f = TFile::Open(Form("%s%d.root",st.data(),w));
		else f = TFile::Open(st.data());
		if (!f || !f->IsOpen())continue;
		
		TDirectory * dir;
		if (nameRoot!=1)dir = (TDirectory*)f->Get(Form("%s%d.root:/tree",st.data(),w));
		else dir = (TDirectory*)f->Get(Form("%s:/tree",st.data()));
		
		dir->GetObject("treeMaker",tree);
		
		//tree=(TTree*)f->Get("treeMaker");
		TreeReader data(tree);
		total+=data.GetEntriesFast();
		for(Long64_t jEntry=0; jEntry<data.GetEntriesFast() ;jEntry++){
			data.GetEntry(jEntry);
			
			
			
			Int_t nVtx        = data.GetInt("nVtx");
			//0. has a good vertex
			if(nVtx<1)continue;
			nPass[0]++;
			
			//1.trigger
			std::string* trigName = data.GetPtrString("hlt_trigName");
		 	vector<bool> &trigResult = *((vector<bool>*) data.GetPtr("hlt_trigResult"));
			bool passTrigger=false;
			for(int it=0; it< data.GetPtrStringSize();it++){
				std::string thisTrig= trigName[it];
				bool results = trigResult[it];
				if( ((thisTrig.find("HLT_PFHT800")!= std::string::npos||
					thisTrig.find("HLT_AK8DiPFJet300_200_TrimMass30_BTagCSV_p20")!= std::string::npos
						) && results==1)){
					passTrigger=true;
					break;
				}
			}
			if(!passTrigger && nameRoot==2)continue;
			nPass[1]++;

			const int nAK8Jet=data.GetInt("AK8PuppinJet");
			//2.nJets
			if(nAK8Jet<2)continue;nPass[2]++;
			int* AK8PuppinSubSDJet=data.GetPtrInt("AK8PuppinSubSDJet");
			if(AK8PuppinSubSDJet[0]!=2||AK8PuppinSubSDJet[1]!=2)continue;
			TClonesArray* AK8PuppijetP4 = (TClonesArray*) data.GetPtrTObject("AK8PuppijetP4");
			float*  AK8PuppijetCorrUncUp = data.GetPtrFloat("AK8PuppijetCorrUncUp"); 
			float*  AK8PuppijetCorrUncDown = data.GetPtrFloat("AK8PuppijetCorrUncDown"); 
			TLorentzVector* thisJet ,* thatJet;
			
			
			thisJet=(TLorentzVector*)AK8PuppijetP4->At(0);
			thatJet=(TLorentzVector*)AK8PuppijetP4->At(1);
			
			//3. Pt 
			if(thisJet->Pt()>99998 ||thatJet->Pt()>99998 )continue;
			if(thisJet->Pt()<300)continue;
			if(thatJet->Pt()<300)continue;
			nPass[3]++;
			//4tightId-----------------------------------------
			vector<bool>    &AK8PuppijetPassIDTight = *((vector<bool>*) data.GetPtr("AK8PuppijetPassIDTight"));
			if(AK8PuppijetPassIDTight[0]==0)continue;
			if(AK8PuppijetPassIDTight[1]==0)continue;
			Float_t*  AK8PuppijetCEmEF = data.GetPtrFloat("AK8PuppijetCEmEF");
			Float_t*  AK8PuppijetMuoEF = data.GetPtrFloat("AK8PuppijetMuoEF");
			if(AK8PuppijetMuoEF[0]>0.8)continue;
			if(AK8PuppijetCEmEF[0]>0.9)continue;
			if(AK8PuppijetMuoEF[1]>0.8)continue;
			if(AK8PuppijetCEmEF[1]>0.9)continue;
			nPass[4]++;
			//5. Eta-----------------------------------------
			if(fabs(thisJet->Eta())>2.4)continue;
			if(fabs(thatJet->Eta())>2.4)continue;
			nPass[5]++;
			//6. DEta-----------------------------------------
			float dEta = fabs(thisJet->Eta()-thatJet->Eta());
			if(dEta>1.3)continue;
			nPass[6]++;
			//7. Mjj-----------------------------------------
			//float mjjRed = (*thisJet+*thatJet).M()+250-thisJet->M()-thatJet->M();
			//if(mjjRed<1000)continue;
			nPass[7]++;
			//8. fatjetPRmassL2L3Corr-----------------------------------------
			nPass[8]++;
			//9.-----------------------------------------
		
			
    
			Float_t*  AK8Puppijet_DoubleSV = data.GetPtrFloat("AK8Puppijet_DoubleSV");
			
			
			int looseStat=-1;
			int tightStat=-1;
			
			if(AK8Puppijet_DoubleSV[0]>0.3 && AK8Puppijet_DoubleSV[1]>0.3)looseStat=0;
			else if(AK8Puppijet_DoubleSV[0]>0.3 && AK8Puppijet_DoubleSV[1]<0.3)looseStat=1;
			else if(AK8Puppijet_DoubleSV[0]<0.3 && AK8Puppijet_DoubleSV[1]>0.3)looseStat=2;
			else looseStat=3;
			
			if(AK8Puppijet_DoubleSV[0]>0.8 && AK8Puppijet_DoubleSV[1]>0.8)tightStat=0;
			else if(AK8Puppijet_DoubleSV[0]>0.8 && AK8Puppijet_DoubleSV[1]<0.8)tightStat=1;
			else if(AK8Puppijet_DoubleSV[0]<0.3 && AK8Puppijet_DoubleSV[1]>0.8)tightStat=2;
			else if(AK8Puppijet_DoubleSV[0]<0.3 && AK8Puppijet_DoubleSV[1]<0.8)tightStat=3;
			else tightStat=-1;
			
			
			double varTemp[2];
			
			Float_t*  AK8PuppijetSDmass = data.GetPtrFloat("AK8PuppijetSDmass");
			
			if(AK8PuppijetSDmass[0]<50||AK8PuppijetSDmass[1]<50)continue;
			
			Int_t* AK8Puppijet_nSV=data.GetPtrInt("AK8Puppijet_nSV");
			vector<float>   *AK8Puppijet_SVMass  =  data.GetPtrVectorFloat("AK8Puppijet_SVMass");
			int nEle= data.GetInt("nEle");
			int nMu=data.GetInt("nMu");
			Float_t*  AK8PuppijetEleEF = data.GetPtrFloat("AK8PuppijetEleEF");
			//Float_t*  AK8PuppijetMuoEF = data.GetPtrFloat("AK8PuppijetMuoEF");
			Int_t* AK8PuppijetCMulti=data.GetPtrInt("AK8PuppijetCMulti");
			Int_t* AK8PuppijetEleMulti=data.GetPtrInt("AK8PuppijetEleMulti");
			Int_t* AK8PuppijetMuoMulti=data.GetPtrInt("AK8PuppijetMuoMulti");
			
			for(int i=0; i<2;i++){
		
				TLorentzVector* thisAK8Jet ;
				
				if(i==1)thisAK8Jet=thatJet;
				else thisAK8Jet=thisJet;
				
				
				pt_AK8MatchedToHbb=thisAK8Jet->Pt();
				eta_AK8MatchedToHbb=thisAK8Jet->Eta();
				nsv_AK8MatchedToHbb=AK8Puppijet_nSV[i];
				sv0mass_AK8MatchedToHbb=AK8Puppijet_SVMass[i][0];
				sv1mass_AK8MatchedToHbb=AK8Puppijet_SVMass[i][1];
				nmu_AK8MatchedToHbb=AK8PuppijetMuoMulti[i];
				nel_AK8MatchedToHbb=AK8PuppijetEleMulti[i];
				muenfr_AK8MatchedToHbb=AK8PuppijetMuoEF[i];
				nch_AK8MatchedToHbb=AK8PuppijetCMulti[i];
				emenfr_AK8MatchedToHbb=AK8PuppijetEleEF[i];
				spec1=nVtx;
				spec2=AK8PuppijetSDmass[i];
				Float_t val ;
				for (Int_t ih=0; ih<nhists; ih++) {
				TString title = hists[ih]->GetTitle();
				val= (reader->EvaluateRegression( title ))[0];
				}
				varTemp[i]=val;
			}
			
			double PUPPIweight[2]={0};
			PUPPIweight[0]=getPUPPIweight(thisJet->Pt(),thisJet->Eta());
			PUPPIweight[1]=getPUPPIweight(thatJet->Pt(),thatJet->Eta());
			
			double PUPPIweightThea[2]={0};
			PUPPIweightThea[0]=getPUPPIweight_o(thisJet->Pt(),thisJet->Eta());
			PUPPIweightThea[1]=getPUPPIweight_o(thatJet->Pt(),thatJet->Eta());
	
			double Mjja= ((*thisJet)+(*thatJet)).M()+250
									-((*thisJet)).M()-((*thatJet)).M();
									
			TLorentzVector  thisJetReg, thatJetReg;
			thisJetReg=(*thisJet)*varTemp[0];
			thatJetReg=(*thatJet)*varTemp[1];
			
			double Mjjb= (thisJetReg+thatJetReg).M()+250
									-(thisJetReg).M()-(thatJetReg).M();
			
			double PUPPIweightOnRegressed[2]={0};			
			PUPPIweightOnRegressed[0]=getPUPPIweightOnRegressed(thisJetReg.Pt(),thisJetReg.Eta());
			PUPPIweightOnRegressed[1]=getPUPPIweightOnRegressed(thatJetReg.Pt(),thatJetReg.Eta());
			
			vector<float>   *subjetSDPx  =  data.GetPtrVectorFloat("AK8PuppisubjetSDPx");
			vector<float>   *subjetSDPy  =  data.GetPtrVectorFloat("AK8PuppisubjetSDPy");
			vector<float>   *subjetSDPz  =  data.GetPtrVectorFloat("AK8PuppisubjetSDPz");
			vector<float>   *subjetSDE   =  data.GetPtrVectorFloat("AK8PuppisubjetSDE");
			vector<float>   *AK8PuppisubjetSDRawFactor =  data.GetPtrVectorFloat("AK8PuppisubjetSDRawFactor");
			
			TLorentzVector thisSDJet, thatSDJet;
			TLorentzVector* subjetP4[2][2];
			for(int i=0;i<2;i++){
				for(int j=0;j<2;j++){
					subjetP4[i][j]=new TLorentzVector(0,0,0,0);
					subjetP4[i][j]->SetPxPyPzE(subjetSDPx[i][j],subjetSDPy[i][j],subjetSDPz[i][j],subjetSDE[i][j]);
				//	subjetP4[i][j]*=AK8PuppisubjetSDRawFactor[i][j];
				}
			}
			thisSDJet=(*subjetP4[0][0])*AK8PuppisubjetSDRawFactor[0][0]+(*subjetP4[0][1])*AK8PuppisubjetSDRawFactor[0][1];
			thatSDJet=(*subjetP4[1][0])*AK8PuppisubjetSDRawFactor[1][0]+(*subjetP4[1][1])*AK8PuppisubjetSDRawFactor[1][1];
			//thatSDJet=(*subjetP4[1][0])+(*subjetP4[1][1]);
			TLorentzVector thisSDJetReg, thatSDJetReg;			
			thisSDJetReg=	thisSDJet*varTemp[0]*PUPPIweightOnRegressed[0];			
			thatSDJetReg=	thatSDJet*varTemp[1]*PUPPIweightOnRegressed[1];			
			
			
			//double Mjjc= ((thisSDJet)+(thatSDJet)).M()+250
			//						-((thisSDJet)).M()-((thatSDJet)).M();
			
			
			double Mjjd= ((thisSDJet)+(thatSDJet)).M()+250
									-((thisSDJet)).M()-((thatSDJet)).M();
			
			
			Float_t*  AK8PuppijetTau1 = data.GetPtrFloat("AK8PuppijetTau1");
			Float_t*  AK8PuppijetTau2 = data.GetPtrFloat("AK8PuppijetTau2");
			double puppiTau21[2];
			puppiTau21[0]=(AK8PuppijetTau2[0]/AK8PuppijetTau1[0]),puppiTau21[1]=(AK8PuppijetTau2[1]/AK8PuppijetTau1[1]);
			
			double mass_j0,mass_j1,MjjLoop;
			int massCat;
			for(int k=0;k<7;k++){
				
				if(k==0||k==2||k==4){
					if(thisJet->Pt()<300)continue;
					if(thatJet->Pt()<300)continue;
				}
				else if (k==1){
					if((thisSDJet*PUPPIweightThea[0]).Pt()<300)continue;
					if((thatSDJet*PUPPIweightThea[1]).Pt()<300)continue;
				}
				else if (k==3){
					if((thisSDJet*PUPPIweight[0]).Pt()<300)continue;
					if((thatSDJet*PUPPIweight[1]).Pt()<300)continue;
				}
				else if (k==5){
					if(thisJetReg.Pt()<300)continue;
					if(thatJetReg.Pt()<300)continue;
				}
				else{
					if(thisSDJetReg.Pt()<300)continue;
					if(thatSDJetReg.Pt()<300)continue;
				}
				
				
				if(k==0||k==1){
					mass_j0=AK8PuppijetSDmass[0]*PUPPIweightThea[0];
					mass_j1=AK8PuppijetSDmass[1]*PUPPIweightThea[1];
					massCat=0;
				}
				else if (k==2||k==3){
					mass_j0=AK8PuppijetSDmass[0]*PUPPIweight[0];
					mass_j1=AK8PuppijetSDmass[1]*PUPPIweight[1];
					massCat=1;
				}
				
				else{
					mass_j0=AK8PuppijetSDmass[0]*varTemp[0]*PUPPIweightOnRegressed[0];
					mass_j1=AK8PuppijetSDmass[1]*varTemp[1]*PUPPIweightOnRegressed[1];
					massCat=2;
				} 
				
				
				
				if(k==0||k==2||k==4)MjjLoop=Mjja;
				else if (k==1)MjjLoop=((thisSDJet)*PUPPIweightThea[0]+(thatSDJet)*PUPPIweightThea[1]).M()+250-((thisSDJet)*PUPPIweightThea[0]).M()-((thatSDJet)*PUPPIweightThea[1]).M();
				else if (k==3)MjjLoop=((thisSDJet)*PUPPIweight[0]+(thatSDJet)*PUPPIweight[1]).M()+250-((thisSDJet)*PUPPIweight[0]).M()-((thatSDJet)*PUPPIweight[1]).M();
				else if (k==5)MjjLoop=Mjjb;
				else MjjLoop=Mjjd;
				
				
				//cout<<mass_j0<<","<<mass_j1<<",k="<<k<<endl;
				for(int i=0;i<nWidth;i++){
					for(int j=0;j<nBmin;j++){
						if(mass_j0<bmin[j] ||mass_j0>width[i]+bmin[j]
						||mass_j1<bmin[j] ||mass_j1>width[i]+bmin[j] )continue;
						
						for(int m=0;m<2;m++){
							if(m==0 && (puppiTau21[0]>0.6 || puppiTau21[1]>0.6))continue;
							double tightPFRatio=0,loosePFRatio=0;
							tightPFRatio=fa[massCat][0][m][1]->Eval(mass_j0);
							loosePFRatio=fa[massCat][0][m][0]->Eval(mass_j0);
							if(tightStat==0){
								th3d[k][i][j][m]->Fill(MjjLoop);
							}
							else if (tightStat==1){
								th3f[k][i][j][m]->Fill(MjjLoop);
							}
							else if(tightStat==3){
								tightPFRatio=fa[massCat][1][m][1]->Eval(mass_j0);
								th3v[k][i][j][m]->Fill(MjjLoop,tightPFRatio);
							}
							
							if(looseStat==0 && tightStat!=0){
								th3d[k+7][i][j][m]->Fill(MjjLoop);
							}
							else if (looseStat==1){
								th3f[k+7][i][j][m]->Fill(MjjLoop);
							}
							else if(looseStat==3){
								loosePFRatio=fa[massCat][1][m][0]->Eval(mass_j0);
								th3v[k+7][i][j][m]->Fill(MjjLoop,loosePFRatio);
							}
						}
						
					}
				}
			}
			
			
			
		}
	}	
	
	for(int i=0;i<10;i++)cout<<"npass["<<i<<"]="<<nPass[i]<<endl;
   

	TFile* outFile;//= new TFile(Form("PFRatio/%s.root",st2.data()),"recreate");
	outFile= new TFile(Form("MjjVC/%s.root",st2.data()),"recreate");
	for(int i=0;i<nWidth;i++){
		 for(int j=0;j<nBmin;j++){
			 for(int k=0;k<2;k++){
				  for(int l=0;l<14;l++){
					  th3d[l][i][j][k]->Write();
					  th3f[l][i][j][k]->Write();
					  th3v[l][i][j][k]->Write();
					  
				  }
			 }
		 }
	 }
	outFile->Close();
	
	for(int i=0;i<nWidth;i++){
		 for(int j=0;j<nBmin;j++){
			 for(int k=0;k<2;k++){
				  for(int l=0;l<14;l++){
					  delete th3d[l][i][j][k];
					  delete th3f[l][i][j][k];
					  delete th3v[l][i][j][k];
					  
				  }
			 }
		 }
	 }
  
   delete reader;
    
   
}
Esempio n. 2
0
void TMVARegressionApplication( TString myMethodList = "" ) 
{
   //---------------------------------------------------------------
   // This loads the library
   TMVA::Tools::Instance();

   // Default MVA methods to be trained + tested
   std::map<std::string,int> Use;

   // --- Mutidimensional likelihood and Nearest-Neighbour methods
   Use["PDERS"]           = 0;
   Use["PDEFoam"]         = 1; 
   Use["KNN"]             = 1;
   // 
   // --- Linear Discriminant Analysis
   Use["LD"]		        = 1;
   // 
   // --- Function Discriminant analysis
   Use["FDA_GA"]          = 1;
   Use["FDA_MC"]          = 0;
   Use["FDA_MT"]          = 0;
   Use["FDA_GAMT"]        = 0;
   // 
   // --- Neural Network
   Use["MLP"] = 1;
   Use["DNN_CPU"] = 0;
   // 
   // --- Support Vector Machine 
   Use["SVM"]             = 0;
   // 
   // --- Boosted Decision Trees
   Use["BDT"]             = 0;
   Use["BDTG"]            = 1;
   // ---------------------------------------------------------------

   std::cout << std::endl;
   std::cout << "==> Start TMVARegressionApplication" << std::endl;

   // Select methods (don't look at this code - not of interest)
   if (myMethodList != "") {
      for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;

      std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' );
      for (UInt_t i=0; i<mlist.size(); i++) {
         std::string regMethod(mlist[i]);

         if (Use.find(regMethod) == Use.end()) {
            std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
            for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " ";
            std::cout << std::endl;
            return;
         }
         Use[regMethod] = 1;
      }
   }

   // --------------------------------------------------------------------------------------------------

   // --- Create the Reader object

   TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" );    

   // Create a set of variables and declare them to the reader
   // - the variable names MUST corresponds in name and type to those given in the weight file(s) used
   Float_t var1, var2;
   reader->AddVariable( "var1", &var1 );
   reader->AddVariable( "var2", &var2 );

   // Spectator variables declared in the training have to be added to the reader, too
   Float_t spec1,spec2;
   reader->AddSpectator( "spec1:=var1*2",  &spec1 );
   reader->AddSpectator( "spec2:=var1*3",  &spec2 );

   // --- Book the MVA methods

   TString dir    = "dataset/weights/";
   TString prefix = "TMVARegression";

   // Book method(s)
   for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
      if (it->second) {
         TString methodName = it->first + " method";
         TString weightfile = dir + prefix + "_" + TString(it->first) + ".weights.xml";
         reader->BookMVA( methodName, weightfile ); 
      }
   }
   
   // Book output histograms
   TH1* hists[100];
   Int_t nhists = -1;
   for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
      TH1* h = new TH1F( it->first.c_str(), TString(it->first) + " method", 100, -100, 600 );
      if (it->second) hists[++nhists] = h;
   }
   nhists++;
   
   // Prepare input tree (this must be replaced by your data source)
   // in this example, there is a toy tree with signal and one with background events
   // we'll later on use only the "signal" events for the test in this example.
   //
   TFile *input(0);
   TString fname = "./tmva_reg_example.root";
   if (!gSystem->AccessPathName( fname )) {
      input = TFile::Open( fname ); // check if file in local directory exists
   }
   else {
      TFile::SetCacheFileDir(".");
      input = TFile::Open("http://root.cern.ch/files/tmva_reg_example.root", "CACHEREAD"); // if not: download from ROOT server
   }
   if (!input) {
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }
   std::cout << "--- TMVARegressionApp        : Using input file: " << input->GetName() << std::endl;

   // --- Event loop

   // Prepare the tree
   // - here the variable names have to corresponds to your tree
   // - you can use the same variables as above which is slightly faster,
   //   but of course you can use different ones and copy the values inside the event loop
   //
   TTree* theTree = (TTree*)input->Get("TreeR");
   std::cout << "--- Select signal sample" << std::endl;
   theTree->SetBranchAddress( "var1", &var1 );
   theTree->SetBranchAddress( "var2", &var2 );

   std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl;
   TStopwatch sw;
   sw.Start();
   for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) {

      if (ievt%1000 == 0) {
         std::cout << "--- ... Processing event: " << ievt << std::endl;
      }

      theTree->GetEntry(ievt);

      // Retrieve the MVA target values (regression outputs) and fill into histograms
      // NOTE: EvaluateRegression(..) returns a vector for multi-target regression

      for (Int_t ih=0; ih<nhists; ih++) {
         TString title = hists[ih]->GetTitle();
         Float_t val = (reader->EvaluateRegression( title ))[0];
         hists[ih]->Fill( val );    
      }
   }
   sw.Stop();
   std::cout << "--- End of event loop: "; sw.Print();

   // --- Write histograms

   TFile *target  = new TFile( "TMVARegApp.root","RECREATE" );
   for (Int_t ih=0; ih<nhists; ih++) hists[ih]->Write();
   target->Close();

   std::cout << "--- Created root file: \"" << target->GetName() 
             << "\" containing the MVA output histograms" << std::endl;
  
   delete reader;
    
   std::cout << "==> TMVARegressionApplication is done!" << std::endl << std::endl;
}
Esempio n. 3
0
////////////////////////////////////////////////////////////////////////////////
/// Main                                                                     ///
////////////////////////////////////////////////////////////////////////////////
void GrowTree(TString process, std::string regMethod="BDTG", Long64_t beginEntry=0, Long64_t endEntry=-1)
{
    gROOT->SetBatch(1);
    TH1::SetDefaultSumw2(1);
    gROOT->LoadMacro("HelperFunctions.h");  //< make functions visible to TTreeFormula

    if (!TString(gROOT->GetVersion()).Contains("5.34")) {
        std::cout << "INCORRECT ROOT VERSION! Please use 5.34:" << std::endl;
        std::cout << "source /uscmst1/prod/sw/cms/slc5_amd64_gcc462/lcg/root/5.34.02-cms/bin/thisroot.csh" << std::endl;
        std::cout << "Return without doing anything." << std::endl;
        return;
    }

    const TString indir   = "/afs/cern.ch/work/d/degrutto/public/MiniAOD/ZnnHbb_Phys14_PU20bx25/skimV11/";
    const TString outdir  = "/afs/cern.ch/work/d/degrutto/public/MiniAOD/ZnnHbb_Phys14_PU20bx25/skimV11/step3/";
    const TString prefix  = "skim_";
    const TString suffix  = ".root";

    TFile *input = TFile::Open(indir + prefix + process + suffix);
    if (!input) {
        std::cout << "ERROR: Could not open input file." << std::endl;
        exit(1);
    }
    /// Make output directory if it doesn't exist
    if (gSystem->AccessPathName(outdir))
        gSystem->mkdir(outdir);

    std::cout << "--- GrowTree                 : Using input file: " << input->GetName() << std::endl;
    TTree *inTree = (TTree *) input->Get("tree");
    TH1F  *hcount = (TH1F *) input->Get("Count");
    TFile *output(0);
    if (beginEntry == 0 && endEntry == -1)
        output = TFile::Open(outdir + "Step3_" + process + suffix, "RECREATE");
    else
        output = TFile::Open(outdir + "Step3_" + process + TString::Format("_%Li_%Li", beginEntry, endEntry) + suffix, "RECREATE");
    TTree *outTree = inTree->CloneTree(0); // Do no copy the data yet
    /// The clone should not delete any shared i/o buffers.
    ResetDeleteBranches(outTree);
    


    ///-- Set branch addresses -------------------------------------------------
    EventInfo EVENT;
    double hJet_pt[MAXJ], hJet_eta[MAXJ], hJet_phi[MAXJ], hJet_m[MAXJ], hJet_ptRaw[MAXJ], hJet_genPt[MAXJ];
    int hJCidx[2];

    inTree->SetBranchStatus("*", 1);

    inTree->SetBranchStatus("hJCidx",1);
    inTree->SetBranchStatus("Jet_*",1);
    inTree->SetBranchAddress("hJCidx", &hJCidx);
    inTree->SetBranchAddress("Jet_pt", &hJet_pt);

    inTree->SetBranchAddress("Jet_eta", &hJet_eta);
    inTree->SetBranchAddress("Jet_phi", &hJet_phi);
    inTree->SetBranchAddress("Jet_mass", &hJet_m);
    inTree->SetBranchAddress("Jet_rawPt", &hJet_ptRaw);

    inTree->SetBranchAddress("Jet_mcPt", &hJet_genPt);


    ///-- Make new branches ----------------------------------------------------
    int EVENT_run, EVENT_event;  // set these as TTree index?
    float lumi_ = lumi, efflumi, efflumi_old, 
        efflumi_UEPS_up, efflumi_UEPS_down;
    float hJet_ptReg[2];
    float HptNorm, HptGen, HptReg;
    float HmassNorm, HmassGen, HmassReg;

    outTree->Branch("EVENT_run", &EVENT_run, "EVENT_run/I");
    outTree->Branch("EVENT_event", &EVENT_event, "EVENT_event/I");
    outTree->Branch("lumi", &lumi_, "lumi/F");
    outTree->Branch("efflumi", &efflumi, "efflumi/F");
    outTree->Branch("efflumi_old", &efflumi_old, "efflumi_old/F");
    outTree->Branch("efflumi_UEPS_up", &efflumi_UEPS_up, "efflumi_UEPS_up/F");
    outTree->Branch("efflumi_UEPS_down", &efflumi_UEPS_down, "efflumi_UEPS_down/F");
    outTree->Branch("hJet_ptReg", &hJet_ptReg, "hJet_ptReg[2]/F");
    
    outTree->Branch("HptNorm", &HptNorm, "HptNorm/F");
    outTree->Branch("HptGen", &HptGen, "HptGen/F");
    outTree->Branch("HptReg", &HptReg, "HptReg/F");
    outTree->Branch("HmassNorm", &HmassNorm, "HmassNorm/F");
    outTree->Branch("HmassGen", &HmassGen, "HmassGen/F");
    outTree->Branch("HmassReg", &HmassReg, "HmassReg/F");

    /// Get effective lumis
    std::map < std::string, float > efflumis = GetLumis();
    efflumi = efflumis[process.Data()];
    assert(efflumi > 0);
    efflumi_old       = efflumi;
    efflumi_UEPS_up   = efflumi * hcount->GetBinContent(2) / hcount->GetBinContent(3);
    efflumi_UEPS_down = efflumi * hcount->GetBinContent(2) / hcount->GetBinContent(4);



    TTreeFormula* ttf_lheweight = new TTreeFormula("ttf_lheweight", Form("%f", efflumi), inTree);
#ifdef STITCH
    std::map < std::string, std::string > lheweights = GetLHEWeights();
    TString process_lhe = process;
    if (process_lhe.BeginsWith("WJets") && process_lhe != "WJetsHW")
        process_lhe = "WJets";
    else if (process_lhe.BeginsWith("ZJets") && process_lhe != "ZJetsHW")
        process_lhe = "ZJets";
    else 
        process_lhe = "";
    TString lheweight = lheweights[process_lhe.Data()];
    if (lheweight != "") {
        delete ttf_lheweight;
        
        // Bug fix for ZJetsPtZ100
        if (process == "ZJetsPtZ100")
            lheweight.ReplaceAll("lheV_pt", "999");
        std::cout << "BUGFIX: " << lheweight << std::endl;
        ttf_lheweight = new TTreeFormula("ttf_lheweight", lheweight, inTree);
    }
#endif
    ttf_lheweight->SetQuickLoad(1);

    // regression stuff here

    
    ///-- Setup TMVA Reader ----------------------------------------------------
    TMVA::Tools::Instance();  //< This loads the library
    TMVA::Reader * reader = new TMVA::Reader("!Color:!Silent");

    /// Get the variables
    const std::vector < std::string > & inputExpressionsReg = GetInputExpressionsReg();
    
   const UInt_t nvars = inputExpressionsReg.size();
   
    Float_t readerVars[nvars];
    int idx_rawpt = -1, idx_pt = -1, idx_et = -1, idx_mt = -1;
   
    for (UInt_t iexpr = 0; iexpr < nvars; iexpr++) {
        const TString& expr = inputExpressionsReg.at(iexpr);
        reader->AddVariable(expr, &readerVars[iexpr]);
        if      (expr.BeginsWith("breg_rawptJER := "))  idx_rawpt = iexpr;
        else if (expr.BeginsWith("breg_pt := "))        idx_pt = iexpr;
        else if (expr.BeginsWith("breg_et := "))        idx_et = iexpr;
        else if (expr.BeginsWith("breg_mt := "))        idx_mt = iexpr;
    }
    //    assert(idx_rawpt!=-1 && idx_pt!=-1 && idx_et!=-1 && idx_mt!=-1);
    assert(idx_rawpt!=-1 && idx_pt!=-1 );

    /// Setup TMVA regression inputs
    const std::vector < std::string > & inputExpressionsReg0 = GetInputExpressionsReg0();
    const std::vector < std::string > & inputExpressionsReg1 = GetInputExpressionsReg1();
    assert(inputExpressionsReg0.size() == nvars);
    assert(inputExpressionsReg1.size() == nvars);

    /// Load TMVA weights
    TString weightdir  = "weights/";
    TString weightfile = weightdir + "TMVARegression_" + regMethod + ".testweights.xml";
    reader->BookMVA(regMethod + " method", weightfile);
    
    TStopwatch sw;
    sw.Start();


    /// Create TTreeFormulas
    TTreeFormula *ttf = 0;
    std::vector < TTreeFormula * >::const_iterator formIt, formItEnd;
    std::vector < TTreeFormula * > inputFormulasReg0;
    std::vector < TTreeFormula * > inputFormulasReg1;
    std::vector < TTreeFormula * > inputFormulasFJReg0;
    std::vector < TTreeFormula * > inputFormulasFJReg1;
    std::vector < TTreeFormula * > inputFormulasFJReg2;

    
    for (UInt_t iexpr = 0; iexpr < nvars; iexpr++) {
        ttf = new TTreeFormula(Form("ttfreg%i_0", iexpr), inputExpressionsReg0.at(iexpr).c_str(), inTree);
        ttf->SetQuickLoad(1);
        inputFormulasReg0.push_back(ttf);
        ttf = new TTreeFormula(Form("ttfreg%i_1", iexpr), inputExpressionsReg1.at(iexpr).c_str(), inTree);
        ttf->SetQuickLoad(1);
        inputFormulasReg1.push_back(ttf);
    }
 


    ///-- Loop over events -----------------------------------------------------
    Int_t curTree = inTree->GetTreeNumber();
    const Long64_t nentries = inTree->GetEntries();
    if (endEntry < 0)  endEntry = nentries;

    Long64_t ievt = 0;
    for (ievt=TMath::Max(ievt, beginEntry); ievt<TMath::Min(nentries, endEntry); ievt++) {
        if (ievt % 2000 == 0)
            std::cout << "--- ... Processing event: " << ievt << std::endl;
    
        const Long64_t local_entry = inTree->LoadTree(ievt);  // faster, but only for TTreeFormula
        if (local_entry < 0)  break;
        inTree->GetEntry(ievt);  // same event as received by LoadTree()

        if (inTree->GetTreeNumber() != curTree) {
            curTree = inTree->GetTreeNumber();

            for (formIt=inputFormulasReg0.begin(), formItEnd=inputFormulasReg0.end(); formIt!=formItEnd; formIt++)
                (*formIt)->UpdateFormulaLeaves();  // if using TChain
            for (formIt=inputFormulasReg1.begin(), formItEnd=inputFormulasReg1.end(); formIt!=formItEnd; formIt++)
                (*formIt)->UpdateFormulaLeaves();  // if using TChain
            for (formIt=inputFormulasFJReg0.begin(), formItEnd=inputFormulasFJReg0.end(); formIt!=formItEnd; formIt++)
                (*formIt)->UpdateFormulaLeaves();  // if using TChain
            for (formIt=inputFormulasFJReg1.begin(), formItEnd=inputFormulasFJReg1.end(); formIt!=formItEnd; formIt++)
                (*formIt)->UpdateFormulaLeaves();  // if using TChain
            for (formIt=inputFormulasFJReg2.begin(), formItEnd=inputFormulasFJReg2.end(); formIt!=formItEnd; formIt++)
                (*formIt)->UpdateFormulaLeaves();  // if using TChain

            ttf_lheweight->UpdateFormulaLeaves();
        }


        /// These need to be called when arrays of variable size are used in TTree.
        for (formIt=inputFormulasReg0.begin(), formItEnd=inputFormulasReg0.end(); formIt!=formItEnd; formIt++)
            (*formIt)->GetNdata();
        for (formIt=inputFormulasReg1.begin(), formItEnd=inputFormulasReg1.end(); formIt!=formItEnd; formIt++)
            (*formIt)->GetNdata();
        for (formIt=inputFormulasFJReg0.begin(), formItEnd=inputFormulasFJReg0.end(); formIt!=formItEnd; formIt++)
            (*formIt)->GetNdata();
        for (formIt=inputFormulasFJReg1.begin(), formItEnd=inputFormulasFJReg1.end(); formIt!=formItEnd; formIt++)
            (*formIt)->GetNdata();
        for (formIt=inputFormulasFJReg2.begin(), formItEnd=inputFormulasFJReg2.end(); formIt!=formItEnd; formIt++)
            (*formIt)->GetNdata();

        ttf_lheweight->GetNdata();
        /// Fill branches
        EVENT_run = EVENT.run;
        EVENT_event = EVENT.event;



#ifdef STITCH        
        efflumi           = ttf_lheweight->EvalInstance();
	//        efflumi_UEPS_up   = efflumi * hcount->GetBinContent(2) / hcount->GetBinContent(3);
        //efflumi_UEPS_down = efflumi * hcount->GetBinContent(2) / hcount->GetBinContent(4);
#endif
    
        bool verbose = false;
 
	for (Int_t ihj = 0; ihj < 2; ihj++) {

   
            /// Evaluate TMVA regression output
            for (UInt_t iexpr = 0; iexpr < nvars; iexpr++) {
                if (ihj==0) {
                    readerVars[iexpr] = inputFormulasReg0.at(iexpr)->EvalInstance();

                } else if (ihj==1) {
                    readerVars[iexpr] = inputFormulasReg1.at(iexpr)->EvalInstance();
                }
            }

	    hJet_ptReg[ihj]               = (reader->EvaluateRegression(regMethod + " method"))[0];
            if (verbose)  std::cout << readerVars[idx_pt] << " " << readerVars[idx_rawpt] <<  " " << hJet_pt[ihj] << " " << hJet_ptReg[ihj] << " " << hJet_genPt[ihj] << std::endl;
        const TLorentzVector p4Zero                     = TLorentzVector(0., 0., 0., 0.);
	//	int idx =  hJCidx[0] ;
	//	std::cout << "the regressed pt for jet 0 is " << hJet_ptReg[0] << "; the hJCidx is " << hJCidx[0] << ", hence the origianl pt is " <<  hJet_pt[idx] << std::endl;

	
       
        const TLorentzVector& hJet_p4Norm_0             = makePtEtaPhiM(hJet_pt[hJCidx[0]]                , hJet_pt[hJCidx[0]], hJet_eta[hJCidx[0]], hJet_phi[hJCidx[0]], hJet_m[hJCidx[0]]);
        const TLorentzVector& hJet_p4Norm_1             = makePtEtaPhiM(hJet_pt[hJCidx[1]]                , hJet_pt[hJCidx[1]], hJet_eta[hJCidx[1]], hJet_phi[hJCidx[1]], hJet_m[hJCidx[1]]);
        const TLorentzVector& hJet_p4Gen_0              = hJet_genPt[hJCidx[0]] > 0 ? 
                                                          makePtEtaPhiM(hJet_genPt[hJCidx[0]]             , hJet_pt[hJCidx[0]], hJet_eta[hJCidx[0]], hJet_phi[hJCidx[0]], hJet_m[hJCidx[0]]) : p4Zero;
        const TLorentzVector& hJet_p4Gen_1              = hJet_genPt[hJCidx[1]] > 0 ? 
                                                          makePtEtaPhiM(hJet_genPt[hJCidx[1]]             , hJet_pt[hJCidx[1]], hJet_eta[hJCidx[1]], hJet_phi[hJCidx[1]], hJet_m[hJCidx[1]]) : p4Zero;
        const TLorentzVector& hJet_p4Reg_0              = makePtEtaPhiM(hJet_ptReg[0]             , hJet_pt[hJCidx[0]], hJet_eta[hJCidx[0]], hJet_phi[hJCidx[0]], hJet_m[hJCidx[0]]);
        const TLorentzVector& hJet_p4Reg_1              = makePtEtaPhiM(hJet_ptReg[1]             , hJet_pt[hJCidx[1]], hJet_eta[hJCidx[1]], hJet_phi[hJCidx[1]], hJet_m[hJCidx[1]]);
        HptNorm             = (hJet_p4Norm_0             + hJet_p4Norm_1            ).Pt();
        HptGen              = (hJet_p4Gen_0              + hJet_p4Gen_1             ).Pt();
        HptReg              = (hJet_p4Reg_0              + hJet_p4Reg_1             ).Pt();
        HmassNorm             = (hJet_p4Norm_0             + hJet_p4Norm_1            ).M();
        HmassGen              = (hJet_p4Gen_0              + hJet_p4Gen_1             ).M();
        HmassReg              = (hJet_p4Reg_0              + hJet_p4Reg_1             ).M();
	//        std::cout << "HmassReg is " << HmassReg << std::endl; 
	
	}
        outTree->Fill();  // fill it!
    }  // end loop over TTree entries

    /// Get elapsed time
    sw.Stop();
    std::cout << "--- End of event loop: ";
    sw.Print();

    output->cd();
    outTree->Write();
    output->Close();
    input->Close();

    delete input;
    delete output;
    for (formIt=inputFormulasReg0.begin(), formItEnd=inputFormulasReg0.end(); formIt!=formItEnd; formIt++)
        delete *formIt;
    for (formIt=inputFormulasReg1.begin(), formItEnd=inputFormulasReg1.end(); formIt!=formItEnd; formIt++)
        delete *formIt;
    for (formIt=inputFormulasFJReg0.begin(), formItEnd=inputFormulasFJReg0.end(); formIt!=formItEnd; formIt++)
        delete *formIt;
    for (formIt=inputFormulasFJReg1.begin(), formItEnd=inputFormulasFJReg1.end(); formIt!=formItEnd; formIt++)
        delete *formIt;
    for (formIt=inputFormulasFJReg2.begin(), formItEnd=inputFormulasFJReg2.end(); formIt!=formItEnd; formIt++)
        delete *formIt;

    delete ttf_lheweight;

    std::cout << "==> GrowTree is done!" << std::endl << std::endl;
    return;
}
Esempio n. 4
0
TString useAutoencoder (TString method_name)
{
    TMVA::Tools::Instance();

    std::cout << "==> Start useAutoencoder" << std::endl;
    TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" );

    Float_t signal = 0.0;
    Float_t outSignal = 0.0;
    Float_t inSignal = 0.0;

    std::vector<std::string> localVariableNames (variableNames+additionalVariableNames);
  
    std::vector<Float_t> variables (localVariableNames.size ());
    auto itVar = begin (variables);
    for (auto varName : localVariableNames)
    {
	Float_t* pVar = &(*itVar);
	reader->AddVariable(varName.c_str(), pVar);
	(*itVar) = 0.0;
	++itVar;
    }
    int idxSignal = std::distance (localVariableNames.begin (),
				   std::find (localVariableNames.begin (), localVariableNames.end (),std::string ("signal")));

  
    TString dir    = "weights/";
    TString prefix = "TMVAAutoencoder";
    TString weightfile = dir + prefix + TString("_") + method_name + TString(".weights.xml");
    TString outPrefix = "transformed";
    TString outfilename = pathToData + outPrefix + TString("_") + method_name + TString(".root");
    reader->BookMVA( method_name, weightfile );

  
    TFile* outFile = new TFile (outfilename.Data (), "RECREATE");

  
  
    std::vector<std::string> inputNames = {"training"};
    std::map<std::string,std::vector<std::string>> varsForInput;
    varsForInput["training"].emplace_back ("id");
    varsForInput["training"].emplace_back ("signal");

  
    for (auto inputName : inputNames)
    {
	std::stringstream outfilename;
	outfilename << inputName << "_transformed__" << method_name.Data () << ".root";
	std::cout << outfilename.str () << std::endl;
	/* return; */
      
	std::stringstream infilename;
	infilename << pathToData.Data () << inputName << ".root";

	TTree* outTree = new TTree("transformed","transformed");
      
	std::vector<Float_t> outVariables (localVariableNames.size ());
	itVar = begin (variables);
	auto itOutVar = begin (outVariables);
	for (auto varName : localVariableNames)
        {
	    Float_t* pOutVar = &(*itOutVar);
	    outTree->Branch (varName.c_str (), pOutVar, "F");
	    (*itOutVar) = 0.0;
	    ++itOutVar;

	    Float_t* pVar = &(*itVar);
	    std::stringstream svar;
	    svar << varName << "_in";
	    outTree->Branch (svar.str ().c_str (), pVar, "F");
	    (*itVar) = 0.0;
	    ++itVar;
        }
	Float_t signal_original = 0.0;
	outTree->Branch ("signal_original", &signal_original, "F");

	TFile *input(0);
	std::cout << "infilename = " << infilename.str ().c_str () << std::endl;
	input = TFile::Open (infilename.str ().c_str ());
	TTree* tree = (TTree*)input->Get("data");
  
	Int_t ids;

	// id field if needed
	if (std::find (varsForInput[inputName].begin (), varsForInput[inputName].end (), "id") != varsForInput[inputName].end ())
	    tree->SetBranchAddress("id", &ids);

      
	// variables for prediction
	itVar = begin (variables);
	for (auto inputName : localVariableNames)
        {
	    Float_t* pVar = &(*itVar);
	    tree->SetBranchAddress (inputName.c_str(), pVar);
	    ++itVar;
        }
 
	for (Long64_t ievt=0; ievt < tree->GetEntries(); ievt++)
        {
	    tree->GetEntry(ievt);
	    // predict

	    signal_original = variables.at (idxSignal);
	    for (int forcedSignal = 0; forcedSignal <= 1; ++forcedSignal)
            {
		variables.at (idxSignal) = forcedSignal;
		std::vector<Float_t> regressionValues = reader->EvaluateRegression (method_name);
		size_t idx = 0;
		for (auto it = std::begin (regressionValues), itEnd = std::end (regressionValues); it != itEnd; ++it)
                {
		    outVariables.at (idx) = *it;
		    ++idx;
                }
		outTree->Fill ();
            }
          
        }

	outFile->Write ();
	input->Close();
    }
    delete reader;
    return outfilename;
}