Esempio n. 1
0
TransformMatrixType GetVoxelSpaceToRASPhysicalSpaceMatrix(typename ImageType::Pointer image)
  {
  // Generate intermediate terms
  vnl_matrix<double> m_dir, m_ras_matrix;
  vnl_diag_matrix<double> m_scale, m_lps_to_ras;
  vnl_vector<double> v_origin, v_ras_offset;

  // Compute the matrix
  m_dir = image->GetDirection().GetVnlMatrix();
  m_scale.set(image->GetSpacing().GetVnlVector());
  m_lps_to_ras.set(vnl_vector<double>(ImageType::ImageDimension, 1.0));
  m_lps_to_ras[0] = -1;
  m_lps_to_ras[1] = -1;
  m_ras_matrix = m_lps_to_ras * m_dir * m_scale;

  // Compute the vector
  v_origin = image->GetOrigin().GetVnlVector();
  v_ras_offset = m_lps_to_ras * v_origin;

  // Create the larger matrix
  TransformMatrixType mat;
  vnl_vector<double> vcol(ImageType::ImageDimension+1, 1.0);
  vcol.update(v_ras_offset);
  mat.SetIdentity();
  mat.GetVnlMatrix().update(m_ras_matrix);
  mat.GetVnlMatrix().set_column(ImageType::ImageDimension, vcol);

  return mat;
  }
Esempio n. 2
0
    void operator()(Parameters& params)
    {
        typedef typename ::itk::Image< PIXELTYPE, 3 > ImageType;
        const typename ImageType::Pointer itkImage = ::fwItkIO::itkImageFactory< ImageType >(params.i_image);

        typename ::itk::ResampleImageFilter<ImageType, ImageType>::Pointer resampler =
            ::itk::ResampleImageFilter<ImageType, ImageType>::New();

        typename ::itk::MinimumMaximumImageCalculator< ImageType >::Pointer minCalculator =
            ::itk::MinimumMaximumImageCalculator< ImageType >::New();

        minCalculator->SetImage(itkImage);
        minCalculator->ComputeMinimum();
        resampler->SetDefaultPixelValue(minCalculator->GetMinimum());

        resampler->SetTransform(params.i_trf.GetPointer());
        resampler->SetInput(itkImage);

        typename ImageType::SizeType size           = itkImage->GetLargestPossibleRegion().GetSize();
        typename ImageType::PointType origin        = itkImage->GetOrigin();
        typename ImageType::SpacingType spacing     = itkImage->GetSpacing();
        typename ImageType::DirectionType direction = itkImage->GetDirection();

        SLM_ASSERT("Input spacing can't be null along any axis", spacing[0] > 0 && spacing[1] > 0 && spacing[2] > 0);

        if(params.i_targetImage)
        {
            for(std::uint8_t i = 0; i < 3; ++i)
            {
                // ITK uses unsigned long to store sizes.
                size[i] = static_cast<typename ImageType::SizeType::SizeValueType>(params.i_targetImage->getSize()[i]);

                origin[i]  = params.i_targetImage->getOrigin()[i];
                spacing[i] = params.i_targetImage->getSpacing()[i];

                SLM_ASSERT("Output spacing can't be null along any axis.", spacing[i] > 0);
            }
        }

        resampler->SetSize(size);
        resampler->SetOutputOrigin(origin);
        resampler->SetOutputDirection(direction);
        resampler->SetOutputSpacing(spacing);

        resampler->Update();

        typename ImageType::Pointer outputImage = resampler->GetOutput();

        ::fwItkIO::itkImageToFwDataImage(outputImage, params.o_image);
    }
    template <class ImagePixelType, class MaskPixelType> int update()
    {
        typedef itk::Image<ImagePixelType, 3> ImageType;
        typedef itk::Image<MaskPixelType,  3> MaskType;

        if ( !input ||!input->data() || !mask ||!mask->data())
            return EXIT_FAILURE;

        typedef itk::MaskImageFilter< ImageType,  MaskType> MaskFilterType;
        typename MaskFilterType::Pointer maskFilter = MaskFilterType::New();

        typename ImageType::Pointer imgInput = dynamic_cast<ImageType *> ( ( itk::Object* ) ( input->data() )) ;
        typename MaskType::Pointer maskInput = dynamic_cast<MaskType *>  ( ( itk::Object* ) ( mask->data() )) ;

        try
        {
            maskInput->SetOrigin(imgInput->GetOrigin());
            maskInput->SetSpacing(imgInput->GetSpacing());
            maskFilter->SetInput(imgInput);
            maskFilter->SetMaskingValue(maskBackgroundValue);
            maskFilter->SetMaskImage(maskInput);

            //Outside values set to the lowest reachable value

            typedef itk::MinimumMaximumImageCalculator <ImageType> ImageCalculatorFilterType;
 
            typename ImageCalculatorFilterType::Pointer imageCalculatorFilter
                    = ImageCalculatorFilterType::New ();
            imageCalculatorFilter->SetImage(imgInput);
            imageCalculatorFilter->ComputeMinimum();
            maskFilter->SetOutsideValue(std::min(double(imageCalculatorFilter->GetMinimum()), 0.0));
            maskFilter->Update();
            output->setData(maskFilter->GetOutput());
        }
        catch( itk::ExceptionObject & err )
        {
            std::cerr << "ExceptionObject caught in medMaskApplication!" << std::endl;
            std::cerr << err << std::endl;
            return EXIT_FAILURE;
        }

        medUtilities::setDerivedMetaData(output, input, "masked");

        return EXIT_SUCCESS;
    }
template <class inputType, unsigned int Dimension> medAbstractJob::medJobExitStatus medItkBiasCorrectionProcess::N4BiasCorrectionCore()
{
    medJobExitStatus eRes = medAbstractJob::MED_JOB_EXIT_SUCCESS;

    typedef itk::Image<inputType, Dimension > ImageType;
    typedef itk::Image <float, Dimension> OutputImageType;
    typedef itk::Image<unsigned char, Dimension> MaskImageType;
    typedef itk::N4BiasFieldCorrectionImageFilter<OutputImageType, MaskImageType, OutputImageType> BiasFilter;
    typedef itk::ConstantPadImageFilter<OutputImageType, OutputImageType> PadderType;
    typedef itk::ConstantPadImageFilter<MaskImageType, MaskImageType> MaskPadderType;
    typedef itk::ShrinkImageFilter<OutputImageType, OutputImageType> ShrinkerType;
    typedef itk::ShrinkImageFilter<MaskImageType, MaskImageType> MaskShrinkerType;
    typedef itk::BSplineControlPointImageFilter<typename BiasFilter::BiasFieldControlPointLatticeType, typename BiasFilter::ScalarImageType> BSplinerType;
    typedef itk::ExpImageFilter<OutputImageType, OutputImageType> ExpFilterType;
    typedef itk::DivideImageFilter<OutputImageType, OutputImageType, OutputImageType> DividerType;
    typedef itk::ExtractImageFilter<OutputImageType, OutputImageType> CropperType;

    unsigned int uiThreadNb = static_cast<unsigned int>(m_poUIThreadNb->value());
    unsigned int uiShrinkFactors = static_cast<unsigned int>(m_poUIShrinkFactors->value());
    unsigned int uiSplineOrder = static_cast<unsigned int>(m_poUISplineOrder->value());
    float fWienerFilterNoise = static_cast<float>(m_poFWienerFilterNoise->value());
    float fbfFWHM = static_cast<float>(m_poFbfFWHM->value());
    float fConvergenceThreshold = static_cast<float>(m_poFConvergenceThreshold->value());
    float fSplineDistance = static_cast<float>(m_poFSplineDistance->value());

    float fProgression = 0;

    QStringList oListValue = m_poSMaxIterations->value().split("x");

    std::vector<unsigned int> oMaxNumbersIterationsVector(oListValue.size());
    std::vector<float> oInitialMeshResolutionVect(Dimension);
    for (int i=0; i<oMaxNumbersIterationsVector.size(); ++i)
    {
       oMaxNumbersIterationsVector[i] = (unsigned int)oListValue[i].toInt();
    }
    oInitialMeshResolutionVect[0] = static_cast<float>(m_poFInitialMeshResolutionVect1->value());
    oInitialMeshResolutionVect[1] = static_cast<float>(m_poFInitialMeshResolutionVect2->value());
    oInitialMeshResolutionVect[2] = static_cast<float>(m_poFInitialMeshResolutionVect3->value());

    typename ImageType::Pointer image = dynamic_cast<ImageType *>((itk::Object*)(this->input()->data()));
    typedef itk::CastImageFilter <ImageType, OutputImageType> CastFilterType;
    typename CastFilterType::Pointer castFilter = CastFilterType::New();
    castFilter->SetInput(image);

    /********************************************************************************/
    /***************************** PREPARING STARTING *******************************/
    /********************************************************************************/

    /*** 0 ******************* Create filter and accessories ******************/
    ABORT_CHECKING(m_bAborting);
    typename BiasFilter::Pointer filter = BiasFilter::New();
    typename BiasFilter::ArrayType oNumberOfControlPointsArray;
    m_filter = filter;

    /*** 1 ******************* Read input image *******************************/
    ABORT_CHECKING(m_bAborting);
    fProgression = 1;
    updateProgression(fProgression);

    /*** 2 ******************* Creating Otsu mask *****************************/
    ABORT_CHECKING(m_bAborting);
    itk::TimeProbe timer;
    timer.Start();
    typename MaskImageType::Pointer maskImage = ITK_NULLPTR;
    typedef itk::OtsuThresholdImageFilter<OutputImageType, MaskImageType> ThresholderType;
    typename ThresholderType::Pointer otsu = ThresholderType::New();
    m_filter = otsu;
    otsu->SetInput(castFilter->GetOutput());
    otsu->SetNumberOfHistogramBins(200);
    otsu->SetInsideValue(0);
    otsu->SetOutsideValue(1);

    otsu->SetNumberOfThreads(uiThreadNb);
    otsu->Update();
    updateProgression(fProgression);
    maskImage = otsu->GetOutput();


    /*** 3A *************** Set Maximum number of Iterations for the filter ***/
    ABORT_CHECKING(m_bAborting);
    typename BiasFilter::VariableSizeArrayType itkTabMaximumIterations;
    itkTabMaximumIterations.SetSize(oMaxNumbersIterationsVector.size());
    for (int i = 0; i < oMaxNumbersIterationsVector.size(); ++i)
    {
        itkTabMaximumIterations[i] = oMaxNumbersIterationsVector[i];
    }
    filter->SetMaximumNumberOfIterations(itkTabMaximumIterations);

    /*** 3B *************** Set Fitting Levels for the filter *****************/
    typename BiasFilter::ArrayType oFittingLevelsTab;
    oFittingLevelsTab.Fill(oMaxNumbersIterationsVector.size());
    filter->SetNumberOfFittingLevels(oFittingLevelsTab);

    updateProgression(fProgression);

    /*** 4 ******************* Save image's index, size, origine **************/
    ABORT_CHECKING(m_bAborting);
    typename ImageType::IndexType oImageIndex = image->GetLargestPossibleRegion().GetIndex();
    typename ImageType::SizeType oImageSize = image->GetLargestPossibleRegion().GetSize();
    typename ImageType::PointType newOrigin = image->GetOrigin();

    typename OutputImageType::Pointer outImage = castFilter->GetOutput();

    if (fSplineDistance > 0)
    {
        /*** 5 ******************* Compute number of control points  **************/
        ABORT_CHECKING(m_bAborting);
        itk::SizeValueType lowerBound[3];
        itk::SizeValueType upperBound[3];

        for (unsigned int i = 0; i < 3; i++)
        {
            float domain = static_cast<float>(image->GetLargestPossibleRegion().GetSize()[i] - 1) * image->GetSpacing()[i];
            unsigned int numberOfSpans = static_cast<unsigned int>(std::ceil(domain / fSplineDistance));
            unsigned long extraPadding = static_cast<unsigned long>((numberOfSpans * fSplineDistance - domain) / image->GetSpacing()[i] + 0.5);
            lowerBound[i] = static_cast<unsigned long>(0.5 * extraPadding);
            upperBound[i] = extraPadding - lowerBound[i];
            newOrigin[i] -= (static_cast<float>(lowerBound[i]) * image->GetSpacing()[i]);
            oNumberOfControlPointsArray[i] = numberOfSpans + filter->GetSplineOrder();
        }
        updateProgression(fProgression);

        /*** 6 ******************* Padder  ****************************************/
        ABORT_CHECKING(m_bAborting);
        typename PadderType::Pointer imagePadder = PadderType::New();
        m_filter = imagePadder;
        imagePadder->SetInput(castFilter->GetOutput());
        imagePadder->SetPadLowerBound(lowerBound);
        imagePadder->SetPadUpperBound(upperBound);
        imagePadder->SetConstant(0);
        imagePadder->SetNumberOfThreads(uiThreadNb);
        imagePadder->Update();
        updateProgression(fProgression);

        outImage = imagePadder->GetOutput();

        /*** 7 ******************** Handle the mask image *************************/
        ABORT_CHECKING(m_bAborting);
        typename MaskPadderType::Pointer maskPadder = MaskPadderType::New();
        m_filter = maskPadder;
        maskPadder->SetInput(maskImage);
        maskPadder->SetPadLowerBound(lowerBound);
        maskPadder->SetPadUpperBound(upperBound);
        maskPadder->SetConstant(0);
        maskPadder->SetNumberOfThreads(uiThreadNb);
        maskPadder->Update();
        updateProgression(fProgression);

        maskImage = maskPadder->GetOutput();

        /*** 8 ******************** SetNumber Of Control Points *******************/
        ABORT_CHECKING(m_bAborting);
        filter->SetNumberOfControlPoints(oNumberOfControlPointsArray);
    }
    else if (oInitialMeshResolutionVect.size() == 3)
    {
        /*** 9 ******************** SetNumber Of Control Points alternative *******/
        ABORT_CHECKING(m_bAborting);
        for (unsigned i = 0; i < 3; i++)
        {
            oNumberOfControlPointsArray[i] = static_cast<unsigned int>(oInitialMeshResolutionVect[i]) + filter->GetSplineOrder();
        }
        filter->SetNumberOfControlPoints(oNumberOfControlPointsArray);

        updateProgression(fProgression, 3);
    }
    else
    {
        fProgression = 0;
        updateProgression(fProgression);
        std::cout << "No BSpline distance and Mesh Resolution is ignored because not 3 dimensions" << std::endl;
    }

    /*** 10 ******************* Shrinker image ********************************/
    ABORT_CHECKING(m_bAborting);
    typename ShrinkerType::Pointer imageShrinker = ShrinkerType::New();
    m_filter = imageShrinker;
    imageShrinker->SetInput(outImage);

    /*** 11 ******************* Shrinker mask *********************************/
    ABORT_CHECKING(m_bAborting);
    typename MaskShrinkerType::Pointer maskShrinker = MaskShrinkerType::New();
    m_filter = maskShrinker;
    maskShrinker->SetInput(maskImage);

    /*** 12 ******************* Shrink mask and image *************************/
    ABORT_CHECKING(m_bAborting);
    imageShrinker->SetShrinkFactors(uiShrinkFactors);
    maskShrinker->SetShrinkFactors(uiShrinkFactors);
    imageShrinker->SetNumberOfThreads(uiThreadNb);
    maskShrinker->SetNumberOfThreads(uiThreadNb);
    imageShrinker->Update();
    updateProgression(fProgression);
    maskShrinker->Update();
    updateProgression(fProgression);

    /*** 13 ******************* Filter setings ********************************/
    ABORT_CHECKING(m_bAborting);
    filter->SetSplineOrder(uiSplineOrder);
    filter->SetWienerFilterNoise(fWienerFilterNoise);
    filter->SetBiasFieldFullWidthAtHalfMaximum(fbfFWHM);
    filter->SetConvergenceThreshold(fConvergenceThreshold);
    filter->SetInput(imageShrinker->GetOutput());
    filter->SetMaskImage(maskShrinker->GetOutput());

    /*** 14 ******************* Apply filter **********************************/
    ABORT_CHECKING(m_bAborting);
    try
    {
        filter->SetNumberOfThreads(uiThreadNb);
        filter->Update();
        updateProgression(fProgression, 5);
    }
    catch (itk::ExceptionObject & err)
    {
        std::cerr << "ExceptionObject caught !" << std::endl;
        std::cerr << err << std::endl;
        eRes = medAbstractJob::MED_JOB_EXIT_FAILURE;
        return eRes;
    }


    /**
    * Reconstruct the bias field at full image resolution.  Divide
    * the original input image by the bias field to get the final
    * corrected image.
    */
    ABORT_CHECKING(m_bAborting);
    typename BSplinerType::Pointer bspliner = BSplinerType::New();
    m_filter = bspliner;
    bspliner->SetInput(filter->GetLogBiasFieldControlPointLattice());
    bspliner->SetSplineOrder(filter->GetSplineOrder());
    bspliner->SetSize(image->GetLargestPossibleRegion().GetSize());
    bspliner->SetOrigin(newOrigin);
    bspliner->SetDirection(image->GetDirection());
    bspliner->SetSpacing(image->GetSpacing());
    bspliner->SetNumberOfThreads(uiThreadNb);
    bspliner->Update();
    updateProgression(fProgression);


    /*********************** Logarithm phase ***************************/
    ABORT_CHECKING(m_bAborting);
    typename OutputImageType::Pointer logField = OutputImageType::New();
    logField->SetOrigin(image->GetOrigin());
    logField->SetSpacing(image->GetSpacing());
    logField->SetRegions(image->GetLargestPossibleRegion());
    logField->SetDirection(image->GetDirection());
    logField->Allocate();

    itk::ImageRegionIterator<typename BiasFilter::ScalarImageType> IB(bspliner->GetOutput(), bspliner->GetOutput()->GetLargestPossibleRegion());

    itk::ImageRegionIterator<OutputImageType> IF(logField, logField->GetLargestPossibleRegion());

    for (IB.GoToBegin(), IF.GoToBegin(); !IB.IsAtEnd(); ++IB, ++IF)
    {
        IF.Set(IB.Get()[0]);
    }


    /*********************** Exponential phase *************************/
    ABORT_CHECKING(m_bAborting);
    typename ExpFilterType::Pointer expFilter = ExpFilterType::New();
    m_filter = expFilter;
    expFilter->SetInput(logField);
    expFilter->SetNumberOfThreads(uiThreadNb);
    expFilter->Update();
    updateProgression(fProgression);

    /************************ Dividing phase ***************************/
    ABORT_CHECKING(m_bAborting);
    typename DividerType::Pointer divider = DividerType::New();
    m_filter = divider;
    divider->SetInput1(castFilter->GetOutput());
    divider->SetInput2(expFilter->GetOutput());
    divider->SetNumberOfThreads(uiThreadNb);
    divider->Update();
    updateProgression(fProgression);


    /******************** Prepare cropping phase ***********************/
    ABORT_CHECKING(m_bAborting);
    typename ImageType::RegionType inputRegion;
    inputRegion.SetIndex(oImageIndex);
    inputRegion.SetSize(oImageSize);

    /************************ Cropping phase ***************************/
    ABORT_CHECKING(m_bAborting);
    typename CropperType::Pointer cropper = CropperType::New();
    m_filter = cropper;
    cropper->SetInput(divider->GetOutput());
    cropper->SetExtractionRegion(inputRegion);
    cropper->SetDirectionCollapseToSubmatrix();
    cropper->SetNumberOfThreads(uiThreadNb);
    cropper->Update();
    updateProgression(fProgression);

    /********************** Write output image *************************/
    ABORT_CHECKING(m_bAborting);
    medAbstractImageData *out = qobject_cast<medAbstractImageData *>(medAbstractDataFactory::instance()->create("itkDataImageFloat3"));
    out->setData(cropper->GetOutput());
    this->setOutput(out);

    m_filter = 0;
    
    return eRes;
}