コード例 #1
0
ファイル: abcAbc8.c プロジェクト: kyotobay/ABC_withFD_check
ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Converts old ABC network into new ABC network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Nwk_Man_t * Abc_NtkToNtkNew( Abc_Ntk_t * pNtk )
{
    Vec_Ptr_t * vNodes;
    Nwk_Man_t * pNtkNew;
    Nwk_Obj_t * pObjNew;
    Abc_Obj_t * pObj, * pFanin;
    int i, k;
    if ( !Abc_NtkIsLogic(pNtk) )
    {
        fprintf( stdout, "This is not a logic network.\n" );
        return 0;
    }
    // convert into the AIG
    if ( !Abc_NtkToAig(pNtk) )
    {
        fprintf( stdout, "Converting to AIGs has failed.\n" );
        return 0;
    }
    assert( Abc_NtkHasAig(pNtk) );
    // construct the network
    pNtkNew = Nwk_ManAlloc();
    pNtkNew->pName = Extra_UtilStrsav( pNtk->pName );
    pNtkNew->pSpec = Extra_UtilStrsav( pNtk->pSpec );
    Abc_NtkForEachCi( pNtk, pObj, i )
        pObj->pCopy = (Abc_Obj_t *)Nwk_ManCreateCi( pNtkNew, Abc_ObjFanoutNum(pObj) );
    vNodes = Abc_NtkDfs( pNtk, 1 );
    Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
    {
        pObjNew = Nwk_ManCreateNode( pNtkNew, Abc_ObjFaninNum(pObj), Abc_ObjFanoutNum(pObj) );
        Abc_ObjForEachFanin( pObj, pFanin, k )
            Nwk_ObjAddFanin( pObjNew, (Nwk_Obj_t *)pFanin->pCopy );
        pObjNew->pFunc = Hop_Transfer( (Hop_Man_t *)pNtk->pManFunc, pNtkNew->pManHop, (Hop_Obj_t *)pObj->pData, Abc_ObjFaninNum(pObj) );
        pObj->pCopy = (Abc_Obj_t *)pObjNew;
    }
コード例 #2
0
ファイル: abcSat.c プロジェクト: ultracold273/abc_glift
/**Function*************************************************************

  Synopsis    [Returns the array of nodes to be combined into one multi-input AND-gate.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkCollectSupergate_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vSuper, int fFirst, int fStopAtMux )
{
    int RetValue1, RetValue2, i;
    // check if the node is visited
    if ( Abc_ObjRegular(pNode)->fMarkB )
    {
        // check if the node occurs in the same polarity
        for ( i = 0; i < vSuper->nSize; i++ )
            if ( vSuper->pArray[i] == pNode )
                return 1;
        // check if the node is present in the opposite polarity
        for ( i = 0; i < vSuper->nSize; i++ )
            if ( vSuper->pArray[i] == Abc_ObjNot(pNode) )
                return -1;
        assert( 0 );
        return 0;
    }
    // if the new node is complemented or a PI, another gate begins
    if ( !fFirst )
        if ( Abc_ObjIsComplement(pNode) || !Abc_ObjIsNode(pNode) || Abc_ObjFanoutNum(pNode) > 1 || (fStopAtMux && Abc_NodeIsMuxType(pNode)) )
        {
            Vec_PtrPush( vSuper, pNode );
            Abc_ObjRegular(pNode)->fMarkB = 1;
            return 0;
        }
    assert( !Abc_ObjIsComplement(pNode) );
    assert( Abc_ObjIsNode(pNode) );
    // go through the branches
    RetValue1 = Abc_NtkCollectSupergate_rec( Abc_ObjChild0(pNode), vSuper, 0, fStopAtMux );
    RetValue2 = Abc_NtkCollectSupergate_rec( Abc_ObjChild1(pNode), vSuper, 0, fStopAtMux );
    if ( RetValue1 == -1 || RetValue2 == -1 )
        return -1;
    // return 1 if at least one branch has a duplicate
    return RetValue1 || RetValue2;
}
コード例 #3
0
ファイル: csat_apis.c プロジェクト: aakarsh/ABC
/**Function*************************************************************

  Synopsis    [Checks integraty of the manager.]

  Description [Checks if there are gates that are not used by any primary output.
  If no such gates exist, return 1 else return 0.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int ABC_Check_Integrity( ABC_Manager mng )
{
    Abc_Ntk_t * pNtk = mng->pNtk;
    Abc_Obj_t * pObj;
    int i;

    // check that there are no dangling nodes
    Abc_NtkForEachNode( pNtk, pObj, i )
    {
        if ( i == 0 ) 
            continue;
        if ( Abc_ObjFanoutNum(pObj) == 0 )
        {
//            printf( "ABC_Check_Integrity: The network has dangling nodes.\n" );
            return 0;
        }
    }

    // make sure everything is okay with the network structure
    if ( !Abc_NtkDoCheck( pNtk ) )
    {
        printf( "ABC_Check_Integrity: The internal network check has failed.\n" );
        return 0;
    }
    return 1;
}
コード例 #4
0
void Abc_NtkPrintFanoutProfile( Abc_Obj_t * pObj )
{
    Abc_Obj_t * pFanout;
    int i;
    printf( "Obj %6d fanouts (%d):\n", Abc_ObjId(pObj), Abc_ObjFanoutNum(pObj) );
    Abc_ObjForEachFanout( pObj, pFanout, i )
    {
        printf( "%3d : time = %7.2f ps   load = %7.2f ff  ", i, Bus_SclObjETime(pFanout), Bus_SclObjCin(pFanout) );
        printf( "%s\n", Abc_ObjFaninPhase( pFanout, Abc_NodeFindFanin(pFanout, pObj) ) ? "*" : " " );
    }
コード例 #5
0
/**Function*************************************************************

  Synopsis    [Transfers fanout from the old node to the new node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ObjTransferFanout( Abc_Obj_t * pNodeFrom, Abc_Obj_t * pNodeTo )
{
    Vec_Ptr_t * vFanouts;
    int nFanoutsOld, i;
    assert( !Abc_ObjIsComplement(pNodeFrom) );
    assert( !Abc_ObjIsComplement(pNodeTo) );
    assert( !Abc_ObjIsPo(pNodeFrom) && !Abc_ObjIsPo(pNodeTo) );
    assert( pNodeFrom->pNtk == pNodeTo->pNtk );
    assert( pNodeFrom != pNodeTo );
    assert( Abc_ObjFanoutNum(pNodeFrom) > 0 );
    // get the fanouts of the old node
    nFanoutsOld = Abc_ObjFanoutNum(pNodeTo);
    vFanouts = Vec_PtrAlloc( nFanoutsOld );
    Abc_NodeCollectFanouts( pNodeFrom, vFanouts );
    // patch the fanin of each of them
    for ( i = 0; i < vFanouts->nSize; i++ )
        Abc_ObjPatchFanin( vFanouts->pArray[i], pNodeFrom, pNodeTo );
    assert( Abc_ObjFanoutNum(pNodeFrom) == 0 );
    assert( Abc_ObjFanoutNum(pNodeTo) == nFanoutsOld + vFanouts->nSize );
    Vec_PtrFree( vFanouts );
}
コード例 #6
0
float Abc_NtkComputeNodeLoad( Bus_Man_t * p, Abc_Obj_t * pObj )
{
    Abc_Obj_t * pFanout;
    float Load;
    int i;
    assert( Bus_SclObjLoad(pObj) == 0 );
    Load = Abc_SclFindWireLoad( p->vWireCaps, Abc_ObjFanoutNum(pObj) );
    Abc_ObjForEachFanout( pObj, pFanout, i )
        Load += Bus_SclObjCin( pFanout );
    Bus_SclObjSetLoad( pObj, Load );
    return Load;
}
コード例 #7
0
/**Function*************************************************************

  Synopsis    [Replaces the node by a new node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ObjReplace( Abc_Obj_t * pNodeOld, Abc_Obj_t * pNodeNew )
{
    assert( !Abc_ObjIsComplement(pNodeOld) );
    assert( !Abc_ObjIsComplement(pNodeNew) );
    assert( pNodeOld->pNtk == pNodeNew->pNtk );
    assert( pNodeOld != pNodeNew );
    assert( Abc_ObjFanoutNum(pNodeOld) > 0 );
    // transfer the fanouts to the old node
    Abc_ObjTransferFanout( pNodeOld, pNodeNew );
    // remove the old node
    Abc_NtkDeleteObj_rec( pNodeOld, 1 );
}
コード例 #8
0
ファイル: abcPlace.c プロジェクト: kyotobay/ABC_withFD_check
/**Function*************************************************************

  Synopsis    [Updates the net.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Abc_PlaceUpdateNet( Abc_Obj_t * pObj )
{
    Abc_Obj_t * pFanout;
    int k;
    // free the old array of net terminals
    if ( nets[pObj->Id].m_terms )
        free( nets[pObj->Id].m_terms );
    // fill in the net with the new information
    nets[pObj->Id].m_id = pObj->Id;
    nets[pObj->Id].m_weight = 1.0;
    nets[pObj->Id].m_numTerms = Abc_ObjFanoutNum(pObj); //fanout
    nets[pObj->Id].m_terms = ALLOC(ConcreteCell*, Abc_ObjFanoutNum(pObj));
    Abc_ObjForEachFanout( pObj, pFanout, k )
        nets[pObj->Id].m_terms[k] = &(cells[pFanout->Id]);
    addConcreteNet(&(nets[pObj->Id]));
}
コード例 #9
0
/**Function*************************************************************

  Synopsis    [Tranfers names to the old network.]

  Description [Assumes that the new nodes are attached using pObj->pCopy.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkTrasferNamesNoLatches( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew )
{
    Abc_Obj_t * pObj;
    int i;
    assert( Abc_NtkPiNum(pNtk) == Abc_NtkPiNum(pNtkNew) );
    assert( Abc_NtkPoNum(pNtk) == Abc_NtkPoNum(pNtkNew) );
    assert( Nm_ManNumEntries(pNtk->pManName) > 0 );
    assert( Nm_ManNumEntries(pNtkNew->pManName) == 0 );
    // copy the CI/CO/box name and skip latches and theirs inputs/outputs
    Abc_NtkForEachCi( pNtk, pObj, i )
        if ( Abc_ObjFaninNum(pObj) == 0 || !Abc_ObjIsLatch(Abc_ObjFanin0(pObj)) )
            Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanout0Ntk(pObj)), NULL );
    Abc_NtkForEachCo( pNtk, pObj, i ) 
        if ( Abc_ObjFanoutNum(pObj) == 0 || !Abc_ObjIsLatch(Abc_ObjFanout0(pObj)) )
            Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanin0Ntk(pObj)), NULL );
    Abc_NtkForEachBox( pNtk, pObj, i ) 
        if ( !Abc_ObjIsLatch(pObj) )
            Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
コード例 #10
0
/**Function*************************************************************

  Synopsis    [Selects the best cut to represent the node in the mapping.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Cut_Cut_t * Seq_FpgaMappingSelectCut( Abc_Obj_t * pAnd )
{
    Abc_Obj_t * pFanin;
    Cut_Cut_t * pCut, * pCutBest, * pList;
    float CostCur, CostMin = ABC_INFINITY;
    int ArrivalCut, ArrivalMin, i;
    // get the arrival time of the best non-trivial cut
    ArrivalMin = Seq_NodeGetLValue( pAnd );
    // iterate through the cuts and select the one with the minimum cost
    pList = Abc_NodeReadCuts( Seq_NodeCutMan(pAnd), pAnd );
    CostMin = ABC_INFINITY;
    pCutBest = NULL;
    for ( pCut = pList->pNext; pCut; pCut = pCut->pNext )
    {
        ArrivalCut = *((int *)&pCut->uSign);
//        assert( ArrivalCut >= ArrivalMin );
        if ( ArrivalCut > ArrivalMin )
            continue;
        CostCur = 0.0;
        for ( i = 0; i < (int)pCut->nLeaves; i++ )
        {
            pFanin = Abc_NtkObj( pAnd->pNtk, pCut->pLeaves[i] >> 8 );
            if ( Abc_ObjIsPi(pFanin) )
                continue;
            if ( Abc_NodeIsTravIdCurrent(pFanin) )
                continue;
            CostCur += (float)(1.0 / Abc_ObjFanoutNum(pFanin));
//            CostCur += Seq_NodeGetFlow( pFanin );
        }
        if ( CostMin > CostCur )
        {
            CostMin = CostCur;
            pCutBest = pCut;
        }
    }
    assert( pCutBest != NULL );
    return pCutBest;
}
コード例 #11
0
ファイル: retIncrem.c プロジェクト: aakarsh/ABC
/**Function*************************************************************

  Synopsis    [Prepares the network for retiming.]

  Description [Hash latches into their number in the original network.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
 st__table * Abc_NtkRetimePrepareLatches( Abc_Ntk_t * pNtk )
{
    st__table * tLatches;
    Abc_Obj_t * pLatch, * pLatchIn, * pLatchOut, * pFanin;
    int i, nOffSet = Abc_NtkBoxNum(pNtk) - Abc_NtkLatchNum(pNtk);
    // collect latches and remove CIs/COs
    tLatches = st__init_table( st__ptrcmp, st__ptrhash );
    Abc_NtkForEachLatch( pNtk, pLatch, i )
    {
        // map latch into its true number
        st__insert( tLatches, (char *)(ABC_PTRUINT_T)pLatch, (char *)(ABC_PTRUINT_T)(i-nOffSet) );
        // disconnect LI     
        pLatchIn = Abc_ObjFanin0(pLatch);
        pFanin = Abc_ObjFanin0(pLatchIn);
        Abc_ObjTransferFanout( pLatchIn, pFanin );
        Abc_ObjDeleteFanin( pLatchIn, pFanin );
        // disconnect LO     
        pLatchOut = Abc_ObjFanout0(pLatch);
        pFanin = Abc_ObjFanin0(pLatchOut);
        if ( Abc_ObjFanoutNum(pLatchOut) > 0 )
            Abc_ObjTransferFanout( pLatchOut, pFanin );
        Abc_ObjDeleteFanin( pLatchOut, pFanin );
    }
コード例 #12
0
/**Function*************************************************************

  Synopsis    [Transforms the node to take fanout sharing into account.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Seq_NodeShareFanouts( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes )
{
    Abc_Obj_t * pFanout;
    Abc_InitType_t Type;
    int nLatches[4], i;
    // skip the node with only one fanout
    if ( Abc_ObjFanoutNum(pNode) < 2 )
        return;
    // clean the the fanout counters
    for ( i = 0; i < 4; i++ )
        nLatches[i] = 0;
    // find the number of fanouts having latches of each type
    Abc_ObjForEachFanout( pNode, pFanout, i )  
    {
        if ( Seq_ObjFanoutL(pNode, pFanout) == 0 )
            continue;
        Type = Seq_NodeGetInitLast( pFanout, Abc_ObjFanoutEdgeNum(pNode, pFanout) );
        nLatches[Type]++;
    }
    // decide what to do
    if ( nLatches[ABC_INIT_ZERO] > 1 && nLatches[ABC_INIT_ONE] > 1 ) // 0-group and 1-group
    {
        Seq_NodeShareOne( pNode, ABC_INIT_ZERO, vNodes );     // shares 0 and DC
        Seq_NodeShareOne( pNode, ABC_INIT_ONE,  vNodes );     // shares 1 and DC
    }
    else if ( nLatches[ABC_INIT_ZERO] > 1 ) // 0-group
        Seq_NodeShareOne( pNode, ABC_INIT_ZERO, vNodes );     // shares 0 and DC
    else if ( nLatches[ABC_INIT_ONE] > 1 ) // 1-group
        Seq_NodeShareOne( pNode, ABC_INIT_ONE,  vNodes );     // shares 1 and DC
    else if ( nLatches[ABC_INIT_DC] > 1 ) // DC-group
    {
        if ( nLatches[ABC_INIT_ZERO] > 0 )
            Seq_NodeShareOne( pNode, ABC_INIT_ZERO, vNodes ); // shares 0 and DC
        else 
            Seq_NodeShareOne( pNode, ABC_INIT_ONE,  vNodes ); // shares 1 and DC
    }
}
コード例 #13
0
/**Function*************************************************************

  Synopsis    [Transforms the AIG into nodes.]

  Description [Threhold is the max number of nodes duplicated at a node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkMultiInt( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew )
{
    ProgressBar * pProgress;
    Abc_Obj_t * pNode, * pConst1, * pNodeNew;
    int i;

    // set the constant node
    pConst1 = Abc_AigConst1(pNtk);
    if ( Abc_ObjFanoutNum(pConst1) > 0 )
    {
        pNodeNew = Abc_NtkCreateNode( pNtkNew );  
        pNodeNew->pData = Cudd_ReadOne( pNtkNew->pManFunc );   Cudd_Ref( pNodeNew->pData );
        pConst1->pCopy = pNodeNew;
    }

    // perform renoding for POs
    pProgress = Extra_ProgressBarStart( stdout, Abc_NtkCoNum(pNtk) );
    Abc_NtkForEachCo( pNtk, pNode, i )
    {
        Extra_ProgressBarUpdate( pProgress, i, NULL );
        if ( Abc_ObjIsCi(Abc_ObjFanin0(pNode)) )
            continue;
        Abc_NtkMulti_rec( pNtkNew, Abc_ObjFanin0(pNode) );
    }
コード例 #14
0
ファイル: rwrEva.c プロジェクト: kate900115/EECS478P2
/**Function*************************************************************

  Synopsis    [Performs rewriting for one node.]

  Description [This procedure considers all the cuts computed for the node
  and tries to rewrite each of them using the "forest" of different AIG
  structures precomputed and stored in the RWR manager. 
  Determines the best rewriting and computes the gain in the number of AIG
  nodes in the final network. In the end, p->vFanins contains information 
  about the best cut that can be used for rewriting, while p->pGraph gives 
  the decomposition dag (represented using decomposition graph data structure).
  Returns gain in the number of nodes or -1 if node cannot be rewritten.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Rwr_NodeRewrite( Rwr_Man_t * p, Cut_Man_t * pManCut, Abc_Obj_t * pNode, int fUpdateLevel, int fUseZeros, int fPlaceEnable )
{
    int fVeryVerbose = 0;
    Dec_Graph_t * pGraph;
    Cut_Cut_t * pCut;//, * pTemp;
    Abc_Obj_t * pFanin;
    unsigned uPhase, uTruthBest, uTruth;
    char * pPerm;
    int Required, nNodesSaved, nNodesSaveCur;
    int i, GainCur, GainBest = -1;
    int clk, clk2;//, Counter;

    p->nNodesConsidered++;
    // get the required times
    Required = fUpdateLevel? Abc_ObjRequiredLevel(pNode) : ABC_INFINITY;

    // get the node's cuts
clk = clock();
    pCut = (Cut_Cut_t *)Abc_NodeGetCutsRecursive( pManCut, pNode, 0, 0 );
    assert( pCut != NULL );
p->timeCut += clock() - clk;

//printf( " %d", Rwr_CutCountNumNodes(pNode, pCut) );
/*
    Counter = 0;
    for ( pTemp = pCut->pNext; pTemp; pTemp = pTemp->pNext )
        Counter++;
    printf( "%d ", Counter );
*/
    // go through the cuts
clk = clock();
    for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
    {
        // consider only 4-input cuts
        if ( pCut->nLeaves < 4 )
            continue;
//            Cut_CutPrint( pCut, 0 ), printf( "\n" );

        // get the fanin permutation
        uTruth = 0xFFFF & *Cut_CutReadTruth(pCut);
        pPerm = p->pPerms4[ p->pPerms[uTruth] ];
        uPhase = p->pPhases[uTruth];
        // collect fanins with the corresponding permutation/phase
        Vec_PtrClear( p->vFaninsCur );
        Vec_PtrFill( p->vFaninsCur, (int)pCut->nLeaves, 0 );
        for ( i = 0; i < (int)pCut->nLeaves; i++ )
        {
            pFanin = Abc_NtkObj( pNode->pNtk, pCut->pLeaves[pPerm[i]] );
            if ( pFanin == NULL )
                break;
            pFanin = Abc_ObjNotCond(pFanin, ((uPhase & (1<<i)) > 0) );
            Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin );
        }
        if ( i != (int)pCut->nLeaves )
        {
            p->nCutsBad++;
            continue;
        }
        p->nCutsGood++;

        {
            int Counter = 0;
            Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
                if ( Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) == 1 )
                    Counter++;
            if ( Counter > 2 )
                continue;
        }

clk2 = clock();
/*
        printf( "Considering: (" );
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            printf( "%d ", Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) );
        printf( ")\n" );
*/
        // mark the fanin boundary 
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize++;

        // label MFFC with current ID
        Abc_NtkIncrementTravId( pNode->pNtk );
        nNodesSaved = Abc_NodeMffcLabelAig( pNode );
        // unmark the fanin boundary
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize--;
p->timeMffc += clock() - clk2;

        // evaluate the cut
clk2 = clock();
        pGraph = Rwr_CutEvaluate( p, pNode, pCut, p->vFaninsCur, nNodesSaved, Required, &GainCur, fPlaceEnable );
p->timeEval += clock() - clk2;

        // check if the cut is better than the current best one
        if ( pGraph != NULL && GainBest < GainCur )
        {
            // save this form
            nNodesSaveCur = nNodesSaved;
            GainBest  = GainCur;
            p->pGraph  = pGraph;
            p->fCompl = ((uPhase & (1<<4)) > 0);
            uTruthBest = 0xFFFF & *Cut_CutReadTruth(pCut);
            // collect fanins in the
            Vec_PtrClear( p->vFanins );
            Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
                Vec_PtrPush( p->vFanins, pFanin );
        }
    }
p->timeRes += clock() - clk;

    if ( GainBest == -1 )
        return -1;
/*
    if ( GainBest > 0 )
    {
        printf( "Class %d  ", p->pMap[uTruthBest] );
        printf( "Gain = %d. Node %d : ", GainBest, pNode->Id );
        Vec_PtrForEachEntry( p->vFanins, pFanin, i )
            printf( "%d ", Abc_ObjRegular(pFanin)->Id );
        Dec_GraphPrint( stdout, p->pGraph, NULL, NULL );
        printf( "\n" );
    }
*/

//    printf( "%d", nNodesSaveCur - GainBest );
/*
    if ( GainBest > 0 )
    {
        if ( Rwr_CutIsBoolean( pNode, p->vFanins ) )
            printf( "b" );
        else
        {
            printf( "Node %d : ", pNode->Id );
            Vec_PtrForEachEntry( p->vFanins, pFanin, i )
                printf( "%d ", Abc_ObjRegular(pFanin)->Id );
            printf( "a" );
        }
    }
*/
/*
    if ( GainBest > 0 )
        if ( p->fCompl )
            printf( "c" );
        else
            printf( "." );
*/

    // copy the leaves
    Vec_PtrForEachEntry( p->vFanins, pFanin, i )
        Dec_GraphNode(p->pGraph, i)->pFunc = pFanin;
/*
    printf( "(" );
    Vec_PtrForEachEntry( p->vFanins, pFanin, i )
        printf( " %d", Abc_ObjRegular(pFanin)->vFanouts.nSize - 1 );
    printf( " )  " );
*/
//    printf( "%d ", Rwr_NodeGetDepth_rec( pNode, p->vFanins ) );

    p->nScores[p->pMap[uTruthBest]]++;
    p->nNodesGained += GainBest;
    if ( fUseZeros || GainBest > 0 )
    {
        p->nNodesRewritten++;
    }

    // report the progress
    if ( fVeryVerbose && GainBest > 0 )
    {
        printf( "Node %6s :   ", Abc_ObjName(pNode) );
        printf( "Fanins = %d. ", p->vFanins->nSize );
        printf( "Save = %d.  ", nNodesSaveCur );
        printf( "Add = %d.  ",  nNodesSaveCur-GainBest );
        printf( "GAIN = %d.  ", GainBest );
        printf( "Cone = %d.  ", p->pGraph? Dec_GraphNodeNum(p->pGraph) : 0 );
        printf( "Class = %d.  ", p->pMap[uTruthBest] );
        printf( "\n" );
    }
    return GainBest;
}
コード例 #15
0
ファイル: abcRewrite.c プロジェクト: Shubhankar007/ECEN-699
/**Function*************************************************************

  Synopsis    [Performs incremental rewriting of the AIG.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRewrite( Abc_Ntk_t * pNtk, int fUpdateLevel, int fUseZeros, int fVerbose, int fVeryVerbose, int fPlaceEnable )
{
    extern void           Dec_GraphUpdateNetwork( Abc_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain );
    ProgressBar * pProgress;
    Cut_Man_t * pManCut;
    Rwr_Man_t * pManRwr;
    Abc_Obj_t * pNode;
//    Vec_Ptr_t * vAddedCells = NULL, * vUpdatedNets = NULL;
    Dec_Graph_t * pGraph;
    int i, nNodes, nGain, fCompl;
    abctime clk, clkStart = Abc_Clock();

    assert( Abc_NtkIsStrash(pNtk) );
    // cleanup the AIG
    Abc_AigCleanup((Abc_Aig_t *)pNtk->pManFunc);
/*
    {
        Vec_Vec_t * vParts;
        vParts = Abc_NtkPartitionSmart( pNtk, 50, 1 );
        Vec_VecFree( vParts );
    }
*/

    // start placement package
//    if ( fPlaceEnable )
//    {
//        Abc_PlaceBegin( pNtk );
//        vAddedCells = Abc_AigUpdateStart( pNtk->pManFunc, &vUpdatedNets );
//    }

    // start the rewriting manager
    pManRwr = Rwr_ManStart( 0 );
    if ( pManRwr == NULL )
        return 0;
    // compute the reverse levels if level update is requested
    if ( fUpdateLevel )
        Abc_NtkStartReverseLevels( pNtk, 0 );
    // start the cut manager
clk = Abc_Clock();
    pManCut = Abc_NtkStartCutManForRewrite( pNtk );
Rwr_ManAddTimeCuts( pManRwr, Abc_Clock() - clk );
    pNtk->pManCut = pManCut;

    if ( fVeryVerbose )
        Rwr_ScoresClean( pManRwr );

    // resynthesize each node once
    pManRwr->nNodesBeg = Abc_NtkNodeNum(pNtk);
    nNodes = Abc_NtkObjNumMax(pNtk);
    pProgress = Extra_ProgressBarStart( stdout, nNodes );
    Abc_NtkForEachNode( pNtk, pNode, i )
    {
        Extra_ProgressBarUpdate( pProgress, i, NULL );
        // stop if all nodes have been tried once
        if ( i >= nNodes )
            break;
        // skip persistant nodes
        if ( Abc_NodeIsPersistant(pNode) )
            continue;
        // skip the nodes with many fanouts
        if ( Abc_ObjFanoutNum(pNode) > 1000 )
            continue;

        // for each cut, try to resynthesize it
        nGain = Rwr_NodeRewrite( pManRwr, pManCut, pNode, fUpdateLevel, fUseZeros, fPlaceEnable );
        if ( !(nGain > 0 || (nGain == 0 && fUseZeros)) )
            continue;
        // if we end up here, a rewriting step is accepted

        // get hold of the new subgraph to be added to the AIG
        pGraph = (Dec_Graph_t *)Rwr_ManReadDecs(pManRwr);
        fCompl = Rwr_ManReadCompl(pManRwr);

        // reset the array of the changed nodes
        if ( fPlaceEnable )
            Abc_AigUpdateReset( (Abc_Aig_t *)pNtk->pManFunc );

        // complement the FF if needed
        if ( fCompl ) Dec_GraphComplement( pGraph );
clk = Abc_Clock();
        Dec_GraphUpdateNetwork( pNode, pGraph, fUpdateLevel, nGain );
Rwr_ManAddTimeUpdate( pManRwr, Abc_Clock() - clk );
        if ( fCompl ) Dec_GraphComplement( pGraph );

        // use the array of changed nodes to update placement
//        if ( fPlaceEnable )
//            Abc_PlaceUpdate( vAddedCells, vUpdatedNets );
    }
コード例 #16
0
/**Function*************************************************************

  Synopsis    [Writes the graph structure of network for DOT.]

  Description [Useful for graph visualization using tools such as GraphViz: 
  http://www.graphviz.org/]
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Io_WriteDotNtk( Abc_Ntk_t * pNtk, Vec_Ptr_t * vNodes, Vec_Ptr_t * vNodesShow, char * pFileName, int fGateNames, int fUseReverse )
{
    FILE * pFile;
    Abc_Obj_t * pNode, * pFanin;
    char * pSopString;
    int LevelMin, LevelMax, fHasCos, Level, i, k, fHasBdds, fCompl;
    int Limit = 300;

    assert( Abc_NtkIsStrash(pNtk) || Abc_NtkIsLogic(pNtk) );

    if ( vNodes->nSize < 1 )
    {
        printf( "The set has no nodes. DOT file is not written.\n" );
        return;
    }

    if ( vNodes->nSize > Limit )
    {
        printf( "The set has more than %d nodes. DOT file is not written.\n", Limit );
        return;
    }

    // start the stream
    if ( (pFile = fopen( pFileName, "w" )) == NULL )
    {
        fprintf( stdout, "Cannot open the intermediate file \"%s\".\n", pFileName );
        return;
    }

    // transform logic functions from BDD to SOP
    if ( fHasBdds = Abc_NtkIsBddLogic(pNtk) )
    {
        if ( !Abc_NtkBddToSop(pNtk, 0) )
        {
            printf( "Io_WriteDotNtk(): Converting to SOPs has failed.\n" );
            return;
        }
    }

    // mark the nodes from the set
    Vec_PtrForEachEntry( vNodes, pNode, i )
        pNode->fMarkC = 1;
    if ( vNodesShow )
        Vec_PtrForEachEntry( vNodesShow, pNode, i )
            pNode->fMarkB = 1;

    // get the levels of nodes
    LevelMax = Abc_NtkLevel( pNtk );
    if ( fUseReverse )
    {
        LevelMin = Abc_NtkLevelReverse( pNtk );
        assert( LevelMax == LevelMin );
        Vec_PtrForEachEntry( vNodes, pNode, i )
            if ( Abc_ObjIsNode(pNode) )
                pNode->Level = LevelMax - pNode->Level + 1;
    }

    // find the largest and the smallest levels
    LevelMin = 10000;
    LevelMax = -1;
    fHasCos  = 0;
    Vec_PtrForEachEntry( vNodes, pNode, i )
    {
        if ( Abc_ObjIsCo(pNode) )
        {
            fHasCos = 1;
            continue;
        }
        if ( LevelMin > (int)pNode->Level )
            LevelMin = pNode->Level;
        if ( LevelMax < (int)pNode->Level )
            LevelMax = pNode->Level;
    }

    // set the level of the CO nodes
    if ( fHasCos )
    {
        LevelMax++;
        Vec_PtrForEachEntry( vNodes, pNode, i )
        {
            if ( Abc_ObjIsCo(pNode) )
                pNode->Level = LevelMax;
        }
    }

    // write the DOT header
    fprintf( pFile, "# %s\n",  "Network structure generated by ABC" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "digraph network {\n" );
    fprintf( pFile, "size = \"7.5,10\";\n" );
//    fprintf( pFile, "size = \"10,8.5\";\n" );
//    fprintf( pFile, "size = \"14,11\";\n" );
//    fprintf( pFile, "page = \"8,11\";\n" );
//  fprintf( pFile, "ranksep = 0.5;\n" );
//  fprintf( pFile, "nodesep = 0.5;\n" );
    fprintf( pFile, "center = true;\n" );
//    fprintf( pFile, "orientation = landscape;\n" );
//  fprintf( pFile, "edge [fontsize = 10];\n" );
//  fprintf( pFile, "edge [dir = none];\n" );
    fprintf( pFile, "edge [dir = back];\n" );
    fprintf( pFile, "\n" );

    // labels on the left of the picture
    fprintf( pFile, "{\n" );
    fprintf( pFile, "  node [shape = plaintext];\n" );
    fprintf( pFile, "  edge [style = invis];\n" );
    fprintf( pFile, "  LevelTitle1 [label=\"\"];\n" );
    fprintf( pFile, "  LevelTitle2 [label=\"\"];\n" );
    // generate node names with labels
    for ( Level = LevelMax; Level >= LevelMin; Level-- )
    {
        // the visible node name
        fprintf( pFile, "  Level%d", Level );
        fprintf( pFile, " [label = " );
        // label name
        fprintf( pFile, "\"" );
        fprintf( pFile, "\"" );
        fprintf( pFile, "];\n" );
    }

    // genetate the sequence of visible/invisible nodes to mark levels
    fprintf( pFile, "  LevelTitle1 ->  LevelTitle2 ->" );
    for ( Level = LevelMax; Level >= LevelMin; Level-- )
    {
        // the visible node name
        fprintf( pFile, "  Level%d",  Level );
        // the connector
        if ( Level != LevelMin )
            fprintf( pFile, " ->" );
        else
            fprintf( pFile, ";" );
    }
    fprintf( pFile, "\n" );
    fprintf( pFile, "}" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "\n" );

    // generate title box on top
    fprintf( pFile, "{\n" );
    fprintf( pFile, "  rank = same;\n" );
    fprintf( pFile, "  LevelTitle1;\n" );
    fprintf( pFile, "  title1 [shape=plaintext,\n" );
    fprintf( pFile, "          fontsize=20,\n" );
    fprintf( pFile, "          fontname = \"Times-Roman\",\n" );
    fprintf( pFile, "          label=\"" );
    fprintf( pFile, "%s", "Network structure visualized by ABC" );
    fprintf( pFile, "\\n" );
    fprintf( pFile, "Benchmark \\\"%s\\\". ", pNtk->pName );
    fprintf( pFile, "Time was %s. ",  Extra_TimeStamp() );
    fprintf( pFile, "\"\n" );
    fprintf( pFile, "         ];\n" );
    fprintf( pFile, "}" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "\n" );

    // generate statistics box
    fprintf( pFile, "{\n" );
    fprintf( pFile, "  rank = same;\n" );
    fprintf( pFile, "  LevelTitle2;\n" );
    fprintf( pFile, "  title2 [shape=plaintext,\n" );
    fprintf( pFile, "          fontsize=18,\n" );
    fprintf( pFile, "          fontname = \"Times-Roman\",\n" );
    fprintf( pFile, "          label=\"" );
    if ( Abc_NtkObjNum(pNtk) == Vec_PtrSize(vNodes) )
        fprintf( pFile, "The network contains %d logic nodes and %d latches.", Abc_NtkNodeNum(pNtk), Abc_NtkLatchNum(pNtk) );
    else
        fprintf( pFile, "The set contains %d logic nodes and spans %d levels.", Abc_NtkCountLogicNodes(vNodes), LevelMax - LevelMin + 1 );
    fprintf( pFile, "\\n" );
    fprintf( pFile, "\"\n" );
    fprintf( pFile, "         ];\n" );
    fprintf( pFile, "}" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "\n" );

    // generate the POs
    if ( fHasCos )
    {
        fprintf( pFile, "{\n" );
        fprintf( pFile, "  rank = same;\n" );
        // the labeling node of this level
        fprintf( pFile, "  Level%d;\n",  LevelMax );
        // generate the PO nodes
        Vec_PtrForEachEntry( vNodes, pNode, i )
        {
            if ( !Abc_ObjIsCo(pNode) )
                continue;
            fprintf( pFile, "  Node%d [label = \"%s%s\"", 
                pNode->Id, 
                (Abc_ObjIsBi(pNode)? Abc_ObjName(Abc_ObjFanout0(pNode)):Abc_ObjName(pNode)), 
                (Abc_ObjIsBi(pNode)? "_in":"") );
            fprintf( pFile, ", shape = %s", (Abc_ObjIsBi(pNode)? "box":"invtriangle") );
            if ( pNode->fMarkB )
                fprintf( pFile, ", style = filled" );
            fprintf( pFile, ", color = coral, fillcolor = coral" );
            fprintf( pFile, "];\n" );
        }
        fprintf( pFile, "}" );
        fprintf( pFile, "\n" );
        fprintf( pFile, "\n" );
    }

    // generate nodes of each rank
    for ( Level = LevelMax - fHasCos; Level >= LevelMin && Level > 0; Level-- )
    {
        fprintf( pFile, "{\n" );
        fprintf( pFile, "  rank = same;\n" );
        // the labeling node of this level
        fprintf( pFile, "  Level%d;\n",  Level );
        Vec_PtrForEachEntry( vNodes, pNode, i )
        {
            if ( (int)pNode->Level != Level )
                continue;
            if ( Abc_ObjFaninNum(pNode) == 0 )
                continue;
//            fprintf( pFile, "  Node%d [label = \"%d\"", pNode->Id, pNode->Id );
            if ( Abc_NtkIsStrash(pNtk) )
                pSopString = "";
            else if ( Abc_NtkHasMapping(pNtk) && fGateNames )
                pSopString = Mio_GateReadName(pNode->pData);
            else if ( Abc_NtkHasMapping(pNtk) )
                pSopString = Abc_NtkPrintSop(Mio_GateReadSop(pNode->pData));
            else
                pSopString = Abc_NtkPrintSop(pNode->pData);
            fprintf( pFile, "  Node%d [label = \"%d\\n%s\"", pNode->Id, pNode->Id, pSopString );

            fprintf( pFile, ", shape = ellipse" );
            if ( pNode->fMarkB )
                fprintf( pFile, ", style = filled" );
            fprintf( pFile, "];\n" );
        }
        fprintf( pFile, "}" );
        fprintf( pFile, "\n" );
        fprintf( pFile, "\n" );
    }

    // generate the PI nodes if any
    if ( LevelMin == 0 )
    {
        fprintf( pFile, "{\n" );
        fprintf( pFile, "  rank = same;\n" );
        // the labeling node of this level
        fprintf( pFile, "  Level%d;\n",  LevelMin );
        // generate the PO nodes
        Vec_PtrForEachEntry( vNodes, pNode, i )
        {
            if ( !Abc_ObjIsCi(pNode) )
            {
                // check if the costant node is present
                if ( Abc_ObjFaninNum(pNode) == 0 && Abc_ObjFanoutNum(pNode) > 0 )
                {
                    fprintf( pFile, "  Node%d [label = \"Const%d\"", pNode->Id, Abc_NtkIsStrash(pNode->pNtk) || Abc_NodeIsConst1(pNode) );
                    fprintf( pFile, ", shape = ellipse" );
                    if ( pNode->fMarkB )
                        fprintf( pFile, ", style = filled" );
                    fprintf( pFile, ", color = coral, fillcolor = coral" );
                    fprintf( pFile, "];\n" );
                }
                continue;
            }
            fprintf( pFile, "  Node%d [label = \"%s\"", 
                pNode->Id, 
                (Abc_ObjIsBo(pNode)? Abc_ObjName(Abc_ObjFanin0(pNode)):Abc_ObjName(pNode)) );
            fprintf( pFile, ", shape = %s", (Abc_ObjIsBo(pNode)? "box":"triangle") );
            if ( pNode->fMarkB )
                fprintf( pFile, ", style = filled" );
            fprintf( pFile, ", color = coral, fillcolor = coral" );
            fprintf( pFile, "];\n" );
        }
        fprintf( pFile, "}" );
        fprintf( pFile, "\n" );
        fprintf( pFile, "\n" );
    }
コード例 #17
0
ファイル: fretMain.c プロジェクト: kyotobay/ABC_withFD_check
/**Function*************************************************************

  Synopsis    [Performs minimum-register retiming.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t *
Abc_FlowRetime_MinReg( Abc_Ntk_t * pNtk, int fVerbose, 
                       int fComputeInitState, int fGuaranteeInitState, int fBlockConst,
                       int fForwardOnly, int fBackwardOnly, int nMaxIters,
                       int maxDelay, int fFastButConservative ) {

  int i;
  Abc_Obj_t   *pObj, *pNext;
  InitConstraint_t *pData;

  // create manager
  pManMR = ALLOC( MinRegMan_t, 1 );

  pManMR->pNtk = pNtk;
  pManMR->fVerbose = fVerbose;
  pManMR->fComputeInitState = fComputeInitState;
  pManMR->fGuaranteeInitState = fGuaranteeInitState;
  pManMR->fBlockConst = fBlockConst;
  pManMR->fForwardOnly = fForwardOnly;
  pManMR->fBackwardOnly = fBackwardOnly;
  pManMR->nMaxIters = nMaxIters;
  pManMR->maxDelay = maxDelay;
  pManMR->fComputeInitState = fComputeInitState;
  pManMR->fConservTimingOnly = fFastButConservative;
  pManMR->vNodes = Vec_PtrAlloc(100);
  pManMR->vInitConstraints = Vec_PtrAlloc(2);
  pManMR->pInitNtk = NULL;
  pManMR->pInitToOrig = NULL;
  pManMR->sizeInitToOrig = 0;

  vprintf("Flow-based minimum-register retiming...\n");  

  if (!Abc_NtkHasOnlyLatchBoxes(pNtk)) {
    printf("\tERROR: Can not retime with black/white boxes\n");
    return pNtk;
  }

  if (maxDelay) {
    vprintf("\tmax delay constraint = %d\n", maxDelay);
    if (maxDelay < (i = Abc_NtkLevel(pNtk))) {
      printf("ERROR: max delay constraint (%d) must be > current max delay (%d)\n", maxDelay, i);
      return pNtk;
    }
  }

  // print info about type of network
  vprintf("\tnetlist type = ");
  if (Abc_NtkIsNetlist( pNtk )) { vprintf("netlist/"); }
  else if (Abc_NtkIsLogic( pNtk )) { vprintf("logic/"); }
  else if (Abc_NtkIsStrash( pNtk )) { vprintf("strash/"); }
  else { vprintf("***unknown***/"); }
  if (Abc_NtkHasSop( pNtk )) { vprintf("sop\n"); }
  else if (Abc_NtkHasBdd( pNtk )) { vprintf("bdd\n"); }
  else if (Abc_NtkHasAig( pNtk )) { vprintf("aig\n"); }
  else if (Abc_NtkHasMapping( pNtk )) { vprintf("mapped\n"); }
  else { vprintf("***unknown***\n"); }

  vprintf("\tinitial reg count = %d\n", Abc_NtkLatchNum(pNtk));
  vprintf("\tinitial levels = %d\n", Abc_NtkLevel(pNtk));

  // remove bubbles from latch boxes
  if (pManMR->fVerbose) Abc_FlowRetime_PrintInitStateInfo(pNtk);
  vprintf("\tpushing bubbles out of latch boxes\n");
  Abc_NtkForEachLatch( pNtk, pObj, i )
    Abc_FlowRetime_RemoveLatchBubbles(pObj);
  if (pManMR->fVerbose) Abc_FlowRetime_PrintInitStateInfo(pNtk);

  // check for box inputs/outputs
  Abc_NtkForEachLatch( pNtk, pObj, i ) {
    assert(Abc_ObjFaninNum(pObj) == 1);
    assert(Abc_ObjFanoutNum(pObj) == 1);
    assert(!Abc_ObjFaninC0(pObj));

    pNext = Abc_ObjFanin0(pObj);
    assert(Abc_ObjIsBi(pNext));
    assert(Abc_ObjFaninNum(pNext) <= 1);
    if(Abc_ObjFaninNum(pNext) == 0) // every Bi should have a fanin
      Abc_FlowRetime_AddDummyFanin( pNext );
 
    pNext = Abc_ObjFanout0(pObj);
    assert(Abc_ObjIsBo(pNext));
    assert(Abc_ObjFaninNum(pNext) == 1);
    assert(!Abc_ObjFaninC0(pNext));
  }
コード例 #18
0
ファイル: rwrEva.c プロジェクト: mrkj/abc
/**Function*************************************************************

  Synopsis    [Performs rewriting for one node.]

  Description [This procedure considers all the cuts computed for the node
  and tries to rewrite each of them using the "forest" of different AIG
  structures precomputed and stored in the RWR manager. 
  Determines the best rewriting and computes the gain in the number of AIG
  nodes in the final network. In the end, p->vFanins contains information 
  about the best cut that can be used for rewriting, while p->pGraph gives 
  the decomposition dag (represented using decomposition graph data structure).
  Returns gain in the number of nodes or -1 if node cannot be rewritten.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Rwr_NodeRewrite( Rwr_Man_t * p, Cut_Man_t * pManCut, Abc_Obj_t * pNode, int fUpdateLevel, int fUseZeros, int fPlaceEnable )
{
    int fVeryVerbose = 0;
    Dec_Graph_t * pGraph;
    Cut_Cut_t * pCut;//, * pTemp;
    Abc_Obj_t * pFanin;
    unsigned uPhase;
    unsigned uTruthBest = 0; // Suppress "might be used uninitialized"
    unsigned uTruth;
    char * pPerm;
    int Required, nNodesSaved;
    int nNodesSaveCur = -1; // Suppress "might be used uninitialized"
    int i, GainCur, GainBest = -1;
    int clk, clk2;//, Counter;

    p->nNodesConsidered++;
    // get the required times
    Required = fUpdateLevel? Abc_ObjRequiredLevel(pNode) : ABC_INFINITY;

    // get the node's cuts
clk = clock();
    pCut = (Cut_Cut_t *)Abc_NodeGetCutsRecursive( pManCut, pNode, 0, 0 );
    assert( pCut != NULL );
p->timeCut += clock() - clk;

//printf( " %d", Rwr_CutCountNumNodes(pNode, pCut) );
/*
    Counter = 0;
    for ( pTemp = pCut->pNext; pTemp; pTemp = pTemp->pNext )
        Counter++;
    printf( "%d ", Counter );
*/
    // go through the cuts
clk = clock();
    for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
    {
        // consider only 4-input cuts
        if ( pCut->nLeaves < 4 )
            continue;
//            Cut_CutPrint( pCut, 0 ), printf( "\n" );

        // get the fanin permutation
        uTruth = 0xFFFF & *Cut_CutReadTruth(pCut);
        pPerm = p->pPerms4[ (int)p->pPerms[uTruth] ];
        uPhase = p->pPhases[uTruth];
        // collect fanins with the corresponding permutation/phase
        Vec_PtrClear( p->vFaninsCur );
        Vec_PtrFill( p->vFaninsCur, (int)pCut->nLeaves, 0 );
        for ( i = 0; i < (int)pCut->nLeaves; i++ )
        {
            pFanin = Abc_NtkObj( pNode->pNtk, pCut->pLeaves[(int)pPerm[i]] );
            if ( pFanin == NULL )
                break;
            pFanin = Abc_ObjNotCond(pFanin, ((uPhase & (1<<i)) > 0) );
            Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin );
        }
        if ( i != (int)pCut->nLeaves )
        {
            p->nCutsBad++;
            continue;
        }
        p->nCutsGood++;

        {
            int Counter = 0;
            Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
                if ( Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) == 1 )
                    Counter++;
            if ( Counter > 2 )
                continue;
        }

clk2 = clock();
/*
        printf( "Considering: (" );
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
            printf( "%d ", Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) );
        printf( ")\n" );
*/
        // mark the fanin boundary 
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize++;

        // label MFFC with current ID
        Abc_NtkIncrementTravId( pNode->pNtk );
        nNodesSaved = Abc_NodeMffcLabelAig( pNode );
        // unmark the fanin boundary
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize--;
p->timeMffc += clock() - clk2;

        // evaluate the cut
clk2 = clock();
        pGraph = Rwr_CutEvaluate( p, pNode, pCut, p->vFaninsCur, nNodesSaved, Required, &GainCur, fPlaceEnable );
p->timeEval += clock() - clk2;

        // check if the cut is better than the current best one
        if ( pGraph != NULL && GainBest < GainCur )
        {
            // save this form
            nNodesSaveCur = nNodesSaved;
            GainBest  = GainCur;
            p->pGraph  = pGraph;
            p->fCompl = ((uPhase & (1<<4)) > 0);
            uTruthBest = 0xFFFF & *Cut_CutReadTruth(pCut);
            // collect fanins in the
            Vec_PtrClear( p->vFanins );
            Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
                Vec_PtrPush( p->vFanins, pFanin );
        }
    }
コード例 #19
0
Abc_Ntk_t * My_Command_Associative(Abc_Ntk_t * pNtk)
{// check abc.h and abcNtk.c(Abc_ntkDup, duplication) freeXXX
	//a new network to return
    printf("inside the My_Command_Associative\n");
	Abc_Ntk_t * new_pNtk;
	Abc_Obj_t * pObj;

	int i, j,k,m;
    int changed = 0;
	//check partial nodes satisfying a certain associative law
	Abc_NtkForEachObj( pNtk, pObj, i)
	{
        //printf("Node ID: %d \n", Abc_ObjId(pObj));
        //printf("FanInNum: %d \n",Abc_ObjFaninNum(pObj));

        if(changed <1 && Abc_ObjFaninNum(pObj) == 2 && !Abc_ObjFaninC0(pObj) && !Abc_ObjFaninC1(pObj) )
        {
            Abc_Obj_t * pFanin_0 = Abc_ObjFanin0(pObj);
            Abc_Obj_t * pFanin_1 = Abc_ObjFanin1(pObj);
            // (x*y)*z => x*(y*z)
            if(changed <1 && Abc_ObjFaninNum(pFanin_0) == 2 && !Abc_ObjFaninC0(pFanin_0) && !Abc_ObjFaninC1(pFanin_0) ) // (x*y)*z => x*(y*z)
            {
               printf("1st Condition, Node ID: %d\n",Abc_ObjId(pObj) );
               printf("Abc_ObjFaninNum(pFanin_0): Node ID: %d\n",Abc_ObjId(pFanin_0) );
               Abc_Obj_t * tempObj;
               Abc_Obj_t * pFanin_0_0 = Abc_ObjFanin0(pFanin_0);
               Abc_Obj_t * pFanin_0_1 = Abc_ObjFanin1(pFanin_0);

               Abc_Obj_t * NewParentNode = Abc_NtkDupObj(pNtk, pObj, 1);
               Abc_Obj_t * NewChildNode = Abc_NtkDupObj(pNtk, pFanin_0, 1);

               int FanoutNum = Abc_ObjFanoutNum(pObj);

               for (j=0; j<FanoutNum; j++)
               {
                tempObj = Abc_ObjFanout(pObj, j);
                Abc_ObjDeleteFanin( tempObj , pObj );
                Abc_ObjAddFanin( tempObj, NewParentNode);
               }
               printf("ParentNode Created and connected\n" );
               Abc_ObjAddFanin(NewParentNode,pFanin_0_0 );
               Abc_ObjAddFanin( NewParentNode, NewChildNode );
               Abc_ObjAddFanin( NewChildNode, pFanin_0_1);
               Abc_ObjAddFanin(NewChildNode,pFanin_1 );
               printf("ChildNode Created and connected\n" );

               printf("Abc_ObjFanoutNum(pFanin_0): %d\n",Abc_ObjFanoutNum(pFanin_0) );
               if(Abc_ObjFanoutNum(pFanin_0)>1)
               {
               		printf("pFanin_0 's FanOut > 1\n" );
               }
               else
               {
               	   Abc_ObjForEachFanin(pFanin_0,tempObj, k )
	               {
	                	Abc_ObjDeleteFanin(pFanin_0,tempObj);
	               }                 
	               Abc_NtkDeleteObj(pFanin_0);      	
               }
               Abc_ObjForEachFanin(pObj,tempObj, k )
               {
                	Abc_ObjDeleteFanin(pObj,tempObj);
               }