void test_svd(const std::string & fn, ScalarType EPS) { std::size_t sz1, sz2; //read matrix // sz1 = 2048, sz2 = 2048; // std::vector<ScalarType> in(sz1 * sz2); // random_fill(in); // read file std::fstream f(fn.c_str(), std::fstream::in); //read size of input matrix read_matrix_size(f, sz1, sz2); std::size_t to = std::min(sz1, sz2); viennacl::matrix<ScalarType> Ai(sz1, sz2), Aref(sz1, sz2), QL(sz1, sz1), QR(sz2, sz2); read_matrix_body(f, Ai); std::vector<ScalarType> sigma_ref(to); read_vector_body(f, sigma_ref); f.close(); // viennacl::fast_copy(&in[0], &in[0] + in.size(), Ai); Aref = Ai; viennacl::tools::timer timer; timer.start(); viennacl::linalg::svd(Ai, QL, QR); viennacl::backend::finish(); double time_spend = timer.get(); viennacl::matrix<ScalarType> result1(sz1, sz2), result2(sz1, sz2); result1 = viennacl::linalg::prod(QL, Ai); result2 = viennacl::linalg::prod(result1, trans(QR)); ScalarType sigma_diff = sigmas_compare(Ai, sigma_ref); ScalarType prods_diff = matrix_compare(result2, Aref); bool sigma_ok = (fabs(sigma_diff) < EPS) && (fabs(prods_diff) < std::sqrt(EPS)); //note: computing the product is not accurate down to 10^{-16}, so we allow for a higher tolerance here printf("%6s [%dx%d] %40s sigma_diff = %.6f; prod_diff = %.6f; time = %.6f\n", sigma_ok?"[[OK]]":"[FAIL]", (int)Aref.size1(), (int)Aref.size2(), fn.c_str(), sigma_diff, prods_diff, time_spend); if (!sigma_ok) exit(EXIT_FAILURE); }
int main(int argc, char *argv[]) { if(argc != 6 && argc != 7) { printf("usage: rrg N n s D seed (id_string)\n"); return 1; } time_t t1,t2,tI,tF; ITensor U,Dg,P,S; Index ei; // RRG structure parameters const int N = atoi(argv[1]); // should be n*(power of 2) const int n = atoi(argv[2]); // initial blocking size int w = n; // block size (scales with m) int ll = 0; // lambda block index int m = 0; // RG scale factor // AGSP and subspace parameters const double t = 0.3; // Trotter temperature const int M = 100; // num Trotter steps const int k = 1; // power of Trotter op (just use 1) const int s = atoi(argv[3]); // formal s param const int D = atoi(argv[4]); // formal D param // computational settings const bool doI = true; // diag restricted Hamiltonian iteratively? // setup random sampling std::random_device r; const int seed = atoi(argv[5]); fprintf(stderr,"seed is %d\n",seed); std::mt19937 gen(seed); std::uniform_real_distribution<double> udist(0.0,1.0); FILE *sxfl,*syfl,*szfl,*gsfl; char id[128],sxnm[256],synm[256],sznm[256],gsnm[256]; if(argc == 6) sprintf(id,"rrg-L%d-s%d-D%d",N,s,D); else sprintf(id,"%s",argv[6]); strcat(sxnm,id); strcat(sxnm,"-sx.dat"); strcat(synm,id); strcat(synm,"-sy.dat"); strcat(sznm,id); strcat(sznm,"-sz.dat"); strcat(gsnm,id); strcat(gsnm,"-gs.dat"); sxfl = fopen(sxnm,"a"); syfl = fopen(synm,"a"); szfl = fopen(sznm,"a"); gsfl = fopen(gsnm,"a"); // initialize Hilbert subspaces for each level m = 0,...,log(N/n) vector<SpinHalf> hsps; for(int x = n ; x <= N ; x *= 2) hsps.push_back(SpinHalf(x)); SpinHalf hs = hsps.back(); // generate product basis over m=0 Hilbert space auto p = int(pow(2,n)); vector<MPS> V1; for(int i = 0 ; i < p ; ++i) { InitState istate(hsps[0],"Dn"); for(int j = 1 ; j <= n ; ++j) if(i/(int)pow(2,j-1)%2) istate.set(j,"Up"); V1.push_back(MPS(istate)); } MPS bSpaceL(hsps[0]); MPS bSpaceR(hsps[0]); makeVS(V1,bSpaceL,LEFT); makeVS(V1,bSpaceR,RIGHT); // Hamiltonian parameters const double Gamma = 2.0; vector<double> J(2*(N-1)); fprintf(stdout,"# Hamiltonian terms Jx1,Jy1,Jx2,... (seed=%d)\n",seed); for(int i = 0 ; i < N-1 ; ++i) { J[2*i+0] = pow(udist(gen),Gamma); J[2*i+1] = pow(udist(gen),Gamma); fprintf(stdout,"%16.14f,%16.14f",J[2*i],J[2*i+1]); if(i != N-2) fprintf(stdout,","); } fprintf(stdout,"\n"); fflush(stdout); // initialize H for full system and extract block Hamiltonians AutoMPO autoH(hs); std::stringstream sts; auto out = std::cout.rdbuf(sts.rdbuf()); vector<vector<MPO> > Hs(hsps.size()); for(int i = 1 ; i < N ; ++i) { autoH += (J[2*(i-1)]-J[2*(i-1)+1]),"S+",i,"S+",i+1; autoH += (J[2*(i-1)]-J[2*(i-1)+1]),"S-",i,"S-",i+1; autoH += (J[2*(i-1)]+J[2*(i-1)+1]),"S+",i,"S-",i+1; autoH += (J[2*(i-1)]+J[2*(i-1)+1]),"S-",i,"S+",i+1; } auto H = toMPO<ITensor>(autoH,{"Exact",true}); std::cout.rdbuf(out); for(auto i : args(hsps)) extractBlocks(autoH,Hs[i],hsps[i]); vector<MPO> prodSz,prodSx,projSzUp,projSzDn,projSxUp,projSxDn; for(auto& it : hsps) { auto curSz = sysOp(it,"Sz",2.0).toMPO(); prodSz.push_back(curSz); auto curSx = sysOp(it,"Sx",2.0).toMPO(); prodSx.push_back(curSx); auto curSzUp = sysOp(it,"Id").toMPO(); curSzUp.plusEq(curSz); curSzUp /= 2.0; auto curSzDn = sysOp(it,"Id").toMPO(); curSzDn.plusEq(-1.0*curSz); curSzDn /= 2.0; auto curSxUp = sysOp(it,"Id").toMPO(); curSxUp.plusEq(curSx); curSxUp /= 2.0; auto curSxDn = sysOp(it,"Id").toMPO(); curSxDn.plusEq(-1.0*curSx); curSxDn /= 2.0; projSzUp.push_back(curSzUp); projSzDn.push_back(curSzDn); projSxUp.push_back(curSxUp); projSxDn.push_back(curSxDn); } // approximate the thermal operator exp(-H/t)^k using Trotter // and MPO multiplication; temperature of K is k/t time(&tI); MPO eH(hs); twoLocalTrotter(eH,t,M,autoH); auto K = eH; for(int i = 1 ; i < k ; ++i) { nmultMPO(eH,K,K,{"Cutoff",eps,"Maxm",MAXBD}); K.Aref(1) *= 1.0/norm(K.A(1)); } // INITIALIZATION: reduce dimension by sampling from initial basis, either // bSpaceL or bSpaceR depending on how the merge will work vector<MPS> Spre; for(ll = 0 ; ll < N/n ; ll++) { auto xs = ll % 2 ? 1 : n; // location of dangling Select index auto cur = ll % 2 ? bSpaceR : bSpaceL; Index si("ext",s,Select); // return orthonormal basis of evecs auto eigs = diagHermitian(-overlapT(cur,Hs[0][ll],cur),P,S,{"Maxm",s}); cur.Aref(xs) *= P*delta(commonIndex(P,S),si); regauge(cur,xs,{"Truncate",false}); Spre.push_back(cur); } time(&t2); fprintf(stderr,"initialization: %.f s\n",difftime(t2,tI)); // ITERATION: proceed through RRG hierarchy, increasing the scale m vector<MPS> Spost; for(m = 0 ; (int)Spre.size() > 1 ; ++m,w*=2) { fprintf(stderr,"Level %d (w = %d)\n",m,w); auto hs = hsps[m]; auto DD = D;//max(4,D/(int(log2(N/n)-m))); auto thr = 1e-8; Spost.clear(); // EXPAND STEP: for each block, expand dimension of subspace with AGSP operators for(ll = 0 ; ll < N/w ; ++ll) { MPO A(hs) , Hc = Hs[m][ll]; MPS pre = Spre[ll] , ret(hs); int xs = ll % 2 ? 1 : w; // STEP 1: extract filtering operators A from AGSP K time(&t1); restrictMPO(K,A,w*ll+1,DD,ll%2); time(&t2); fprintf(stderr,"trunc AGSP: %.f s\n",difftime(t2,t1)); // STEP 2: expand subspace using the mapping A:pre->ret time(&t1); ret = applyMPO(A,pre,ll%2,{"Cutoff",eps,"Maxm",MAXBD}); time(&t2); fprintf(stderr,"apply AGSP: %.f s\n",difftime(t2,t1)); // rotate into principal components of subspace, poxsibly reducing dimension // and stabilizing numerics, then store subspace in eigenbasis of block H time(&t1); diagHermitian(overlapT(ret,ret),U,Dg,{"Cutoff",thr}); time(&t2); ei = Index("ext",int(commonIndex(Dg,U)),Select); Dg.apply(invsqrt); ret.Aref(xs) *= dag(U)*Dg*delta(prime(commonIndex(Dg,U)),ei); fprintf(stderr,"rotate MPS: %.f s\n",difftime(t2,t1)); auto eigs = diagHermitian(-overlapT(ret,Hs[m][ll],ret),P,S); ret.Aref(xs) *= P*delta(commonIndex(P,S),ei); ret.Aref(xs) *= 1.0/sqrt(overlapT(ret,ret).real(ei(1),prime(ei)(1))); regauge(ret,xs,{"Cutoff",eps}); fprintf(stderr,"max m: %d\n",maxM(ret)); Spost.push_back(ret); } // MERGE/REDUCE STEP: construct tensor subspace, sample to reduce dimension Spre.clear(); for(ll = 0 ; ll < N/w ; ll+=2) { auto spL = Spost[ll]; // L subspace auto spR = Spost[ll+1]; // R subspace // STEP 1: find s lowest eigenpairs of restricted H time(&t1); auto tpH = tensorProdContract(spL,spR,Hs[m+1][ll/2]); tensorProdH<ITensor> resH(tpH); resH.diag(s,doI); P = resH.eigenvectors(); time(&t2); fprintf(stderr,"diag restricted H: %.f s\n",difftime(t2,t1)); // STEP 2: tensor viable sets on each side and reduce dimension MPS ret(hsps[m+1]); time(&t1); tensorProduct(spL,spR,ret,P,(ll/2)%2); time(&t2); fprintf(stderr,"tensor product (ll=%d): %.f s\n",ll,difftime(t2,t1)); Spre.push_back(ret); } } // EXIT: extract two lowest energy candidate states to determine gap auto res = Spre[0]; auto fi = Index("ext",s/2,Select); vector<MPS> resSz = {res,res}; // project to Sz sectors of the eigenspace diagHermitian(overlapT(res,prodSz[m],res),U,Dg); resSz[0].Aref(N) *= U*delta(commonIndex(U,Dg),fi); diagHermitian(overlapT(res,-1.0*prodSz[m],res),U,Dg); resSz[1].Aref(N) *= U*delta(commonIndex(U,Dg),fi); vector<MPS> evecs(2); for(int i : range(2)) { auto fc = resSz[i]; // diagonalize H within the Sz sectors auto eigs = diagHermitian(-overlapT(fc,H,fc),P,S); fc.Aref(N) *= (P*setElt(commonIndex(P,S)(1))); fc.orthogonalize({"Cutoff",epx,"Maxm",MAXBD}); fc.normalize(); if(i == 0) fprintf(stderr,"RRG gs energy: %17.14f\n",overlap(fc,H,fc)); evecs[i] = fc; } time(&t2); Real vz,vx; vz = overlap(evecs[0],prodSz[m],evecs[0]); vx = overlap(evecs[0],prodSx[m],evecs[0]); fprintf(stderr,"Vz,vx of 0 is: %17.14f,%17.14f\n",vz,vx); vz = overlap(evecs[1],prodSz[m],evecs[1]); vx = overlap(evecs[1],prodSx[m],evecs[1]); fprintf(stderr,"Vz,vx of 1 is: %17.14f,%17.14f\n",vz,vx); int x1_up = (vx > 0.0 ? 1 : 0); evecs[0] = exactApplyMPO(evecs[0],projSzUp[m],{"Cutoff",epx}); evecs[0] = exactApplyMPO(evecs[0],projSxUp[m],{"Cutoff",epx}); evecs[1] = exactApplyMPO(evecs[1],projSzDn[m],{"Cutoff",epx}); evecs[1] = exactApplyMPO(evecs[1],(x1_up?projSxUp[m]:projSxDn[m]),{"Cutoff",epx}); for(auto& it : evecs) it.normalize(); fprintf(stderr,"gs candidate energy: %17.14f\nRRG BD ",overlap(evecs[0],H,evecs[0])); for(const auto& it : evecs) fprintf(stderr,"%d ",maxM(it)); fprintf(stderr,"\telapsed: %.f s\n",difftime(t2,tI)); // CLEANUP: use DMRG to improve discovered evecs vector<Real> evals(2),e_prev(2); int max_iter = 30 , used_max = 0; Real flr = 1e-13 , over_conv = 1e-1 , gap = 1.0 , conv = over_conv*gap , max_conv = 1.0; for(int i = 0 ; i < (int)evecs.size() ; ++i) evals[i] = overlap(evecs[i],H,evecs[i]); for(int i = 0 ; (i < 2 || conv < max_conv) && i < max_iter ; ++i) { e_prev = evals; time(&t1); evals = dmrgMPO(H,evecs,8,{"Penalty",0.1,"Cutoff",epx}); time(&t2); gap = evals[1]-evals[0]; max_conv = 0.0; for(auto& j : range(2)) if(fabs(e_prev[j]-evals[j]) > max_conv) max_conv = e_prev[j]-evals[j]; fprintf(stderr,"DMRG BD "); for(const auto& it : evecs) fprintf(stderr,"%3d ",maxM(it)); fprintf(stderr,"\tgap: %e\tconv=%9.2e,%9.2e\telapsed: %.f s\n",gap, e_prev[0]-evals[0],e_prev[1]-evals[1],difftime(t2,t1)); conv = max(over_conv*gap,flr); if(i == max_iter) used_max = 1; } for(int i = 0 ; i < (int)evecs.size() ; ++i) { vz = overlap(evecs[i],prodSz[m],evecs[i]); vx = overlap(evecs[i],prodSx[m],evecs[i]); fprintf(stderr,"Vz,vx of %d is: %12.9f,%12.9f\n",i,vz,vx); } evecs[0] = exactApplyMPO(evecs[0],projSzUp[m],{"Cutoff",1e-16}); evecs[0] = exactApplyMPO(evecs[0],projSxUp[m],{"Cutoff",1e-16}); evecs[1] = exactApplyMPO(evecs[1],projSzDn[m],{"Cutoff",1e-16}); evecs[1] = exactApplyMPO(evecs[1],(x1_up?projSxUp[m]:projSxDn[m]),{"Cutoff",1e-16}); for(auto& it : evecs) it.normalize(); for(auto i : range(evecs.size())) evals[i] = overlap(evecs[i],H,evecs[i]); time(&tF); auto gsR = evecs[0]; auto ee = measEE(gsR,N/2); gap = evals[1]-evals[0]; fprintf(stderr,"gs: %17.14f gap: %15.9e ee: %10.8f\n",evals[0],gap,ee); fprintf(gsfl,"# GS data (L=%d s=%d D=%d seed=%d time=%.f)\n",N,s,D,seed,difftime(tF,tI)); if(used_max) fprintf(gsfl,"# WARNING max iterations reached\n"); fprintf(gsfl,"%17.14f\t%15.9e\t%10.8f\n",evals[0],gap,ee); // Compute two-point correlation functions in ground state via usual MPS method fprintf(sxfl,"# SxSx corr matrix (L=%d s=%d D=%d seed=%d)\n",N,s,D,seed); fprintf(syfl,"# SySy corr matrix (L=%d s=%d D=%d seed=%d)\n",N,s,D,seed); fprintf(szfl,"# SzSz corr matrix (L=%d s=%d D=%d seed=%d)\n",N,s,D,seed); for(int i = 1 ; i <= N ; ++i) { gsR.position(i,{"Cutoff",0.0}); auto SxA = hs.op("Sx",i); auto SyA = hs.op("Sy",i); auto SzA = hs.op("Sz",i); for(int j = 1 ; j <= N ; ++j) { if(j <= i) { fprintf(sxfl,"%15.12f\t",0.0); fprintf(syfl,"%15.12f\t",0.0); fprintf(szfl,"%15.12f\t",0.0); } else { auto SxB = hs.op("Sx",j); auto SyB = hs.op("Sy",j); auto SzB = hs.op("Sz",j); fprintf(sxfl,"%15.12f\t",measOp(gsR,SxA,i,SxB,j)); fprintf(syfl,"%15.12f\t",measOp(gsR,SyA,i,SyB,j)); fprintf(szfl,"%15.12f\t",measOp(gsR,SzA,i,SzB,j)); } } fprintf(sxfl,"\n"); fprintf(syfl,"\n"); fprintf(szfl,"\n"); } fclose(sxfl); fclose(syfl); fclose(szfl); fclose(gsfl); return 0; }