コード例 #1
0
void
AudioBlockPanMonoToStereo(const float aInput[WEBAUDIO_BLOCK_SIZE],
                          float aGainL, float aGainR,
                          float aOutputL[WEBAUDIO_BLOCK_SIZE],
                          float aOutputR[WEBAUDIO_BLOCK_SIZE])
{
  AudioBlockCopyChannelWithScale(aInput, aGainL, aOutputL);
  AudioBlockCopyChannelWithScale(aInput, aGainR, aOutputR);
}
コード例 #2
0
void
AudioNodeStream::AccumulateInputChunk(uint32_t aInputIndex,
                                      const AudioBlock& aChunk,
                                      AudioBlock* aBlock,
                                      nsTArray<float>* aDownmixBuffer)
{
  nsAutoTArray<const float*,GUESS_AUDIO_CHANNELS> channels;
  UpMixDownMixChunk(&aChunk, aBlock->ChannelCount(), channels, *aDownmixBuffer);

  for (uint32_t c = 0; c < channels.Length(); ++c) {
    const float* inputData = static_cast<const float*>(channels[c]);
    float* outputData = aBlock->ChannelFloatsForWrite(c);
    if (inputData) {
      if (aInputIndex == 0) {
        AudioBlockCopyChannelWithScale(inputData, aChunk.mVolume, outputData);
      } else {
        AudioBlockAddChannelWithScale(inputData, aChunk.mVolume, outputData);
      }
    } else {
      if (aInputIndex == 0) {
        PodZero(outputData, WEBAUDIO_BLOCK_SIZE);
      }
    }
  }
}
コード例 #3
0
  void ProcessBlock(AudioNodeStream* aStream,
                    GraphTime aFrom,
                    const AudioBlock& aInput,
                    AudioBlock* aOutput,
                    bool* aFinished) override
  {
    // This node is not connected to anything. Per spec, we don't fire the
    // onaudioprocess event. We also want to clear out the input and output
    // buffer queue, and output a null buffer.
    if (!mIsConnected) {
      aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
      mSharedBuffers->Reset();
      mInputWriteIndex = 0;
      return;
    }

    // The input buffer is allocated lazily when non-null input is received.
    if (!aInput.IsNull() && !mInputBuffer) {
      mInputBuffer = ThreadSharedFloatArrayBufferList::
        Create(mInputChannelCount, mBufferSize, fallible);
      if (mInputBuffer && mInputWriteIndex) {
        // Zero leading for null chunks that were skipped.
        for (uint32_t i = 0; i < mInputChannelCount; ++i) {
          float* channelData = mInputBuffer->GetDataForWrite(i);
          PodZero(channelData, mInputWriteIndex);
        }
      }
    }

    // First, record our input buffer, if its allocation succeeded.
    uint32_t inputChannelCount = mInputBuffer ? mInputBuffer->GetChannels() : 0;
    for (uint32_t i = 0; i < inputChannelCount; ++i) {
      float* writeData = mInputBuffer->GetDataForWrite(i) + mInputWriteIndex;
      if (aInput.IsNull()) {
        PodZero(writeData, aInput.GetDuration());
      } else {
        MOZ_ASSERT(aInput.GetDuration() == WEBAUDIO_BLOCK_SIZE, "sanity check");
        MOZ_ASSERT(aInput.ChannelCount() == inputChannelCount);
        AudioBlockCopyChannelWithScale(static_cast<const float*>(aInput.mChannelData[i]),
                                       aInput.mVolume, writeData);
      }
    }
    mInputWriteIndex += aInput.GetDuration();

    // Now, see if we have data to output
    // Note that we need to do this before sending the buffer to the main
    // thread so that our delay time is updated.
    *aOutput = mSharedBuffers->GetOutputBuffer();

    if (mInputWriteIndex >= mBufferSize) {
      SendBuffersToMainThread(aStream, aFrom);
      mInputWriteIndex -= mBufferSize;
    }
  }
コード例 #4
0
AudioChunk*
AudioNodeStream::ObtainInputBlock(AudioChunk* aTmpChunk)
{
  uint32_t inputCount = mInputs.Length();
  uint32_t outputChannelCount = 0;
  nsAutoTArray<AudioChunk*,250> inputChunks;
  for (uint32_t i = 0; i < inputCount; ++i) {
    MediaStream* s = mInputs[i]->GetSource();
    AudioNodeStream* a = static_cast<AudioNodeStream*>(s);
    MOZ_ASSERT(a == s->AsAudioNodeStream());
    if (a->IsFinishedOnGraphThread()) {
      continue;
    }
    AudioChunk* chunk = &a->mLastChunk;
    // XXX when we implement DelayNode, this will no longer be true and we'll
    // need to treat a null chunk (when the DelayNode hasn't had a chance
    // to produce data yet) as silence here.
    MOZ_ASSERT(chunk);
    if (chunk->IsNull()) {
      continue;
    }

    inputChunks.AppendElement(chunk);
    outputChannelCount =
      GetAudioChannelsSuperset(outputChannelCount, chunk->mChannelData.Length());
  }

  uint32_t inputChunkCount = inputChunks.Length();
  if (inputChunkCount == 0) {
    aTmpChunk->SetNull(WEBAUDIO_BLOCK_SIZE);
    return aTmpChunk;
  }

  if (inputChunkCount == 1) {
    return inputChunks[0];
  }

  AllocateAudioBlock(outputChannelCount, aTmpChunk);

  for (uint32_t i = 0; i < inputChunkCount; ++i) {
    AudioChunk* chunk = inputChunks[i];
    nsAutoTArray<const void*,GUESS_AUDIO_CHANNELS> channels;
    channels.AppendElements(chunk->mChannelData);
    if (channels.Length() < outputChannelCount) {
      AudioChannelsUpMix(&channels, outputChannelCount, nullptr);
      NS_ASSERTION(outputChannelCount == channels.Length(),
                   "We called GetAudioChannelsSuperset to avoid this");
    }

    for (uint32_t c = 0; c < channels.Length(); ++c) {
      const float* inputData = static_cast<const float*>(channels[c]);
      float* outputData = static_cast<float*>(const_cast<void*>(aTmpChunk->mChannelData[c]));
      if (inputData) {
        if (i == 0) {
          AudioBlockCopyChannelWithScale(inputData, chunk->mVolume, outputData);
        } else {
          AudioBlockAddChannelWithScale(inputData, chunk->mVolume, outputData);
        }
      } else {
        if (i == 0) {
          memset(outputData, 0, WEBAUDIO_BLOCK_SIZE*sizeof(float));
        }
      }
    }
  }

  return aTmpChunk;
}
コード例 #5
0
void
AudioNodeStream::ObtainInputBlock(AudioChunk& aTmpChunk, uint32_t aPortIndex)
{
  uint32_t inputCount = mInputs.Length();
  uint32_t outputChannelCount = 1;
  nsAutoTArray<AudioChunk*,250> inputChunks;
  for (uint32_t i = 0; i < inputCount; ++i) {
    if (aPortIndex != mInputs[i]->InputNumber()) {
      // This input is connected to a different port
      continue;
    }
    MediaStream* s = mInputs[i]->GetSource();
    AudioNodeStream* a = static_cast<AudioNodeStream*>(s);
    MOZ_ASSERT(a == s->AsAudioNodeStream());
    if (a->IsFinishedOnGraphThread() ||
        a->IsAudioParamStream()) {
      continue;
    }
    AudioChunk* chunk = &a->mLastChunks[mInputs[i]->OutputNumber()];
    MOZ_ASSERT(chunk);
    if (chunk->IsNull()) {
      continue;
    }

    inputChunks.AppendElement(chunk);
    outputChannelCount =
      GetAudioChannelsSuperset(outputChannelCount, chunk->mChannelData.Length());
  }

  switch (mChannelCountMode) {
  case ChannelCountMode::Explicit:
    // Disregard the output channel count that we've calculated, and just use
    // mNumberOfInputChannels.
    outputChannelCount = mNumberOfInputChannels;
    break;
  case ChannelCountMode::Clamped_max:
    // Clamp the computed output channel count to mNumberOfInputChannels.
    outputChannelCount = std::min(outputChannelCount, mNumberOfInputChannels);
    break;
  case ChannelCountMode::Max:
    // Nothing to do here, just shut up the compiler warning.
    break;
  }

  uint32_t inputChunkCount = inputChunks.Length();
  if (inputChunkCount == 0 ||
      (inputChunkCount == 1 && inputChunks[0]->mChannelData.Length() == 0)) {
    aTmpChunk.SetNull(WEBAUDIO_BLOCK_SIZE);
    return;
  }

  if (inputChunkCount == 1 &&
      inputChunks[0]->mChannelData.Length() == outputChannelCount) {
    aTmpChunk = *inputChunks[0];
    return;
  }

  AllocateAudioBlock(outputChannelCount, &aTmpChunk);
  float silenceChannel[WEBAUDIO_BLOCK_SIZE] = {0.f};
  // The static storage here should be 1KB, so it's fine
  nsAutoTArray<float, GUESS_AUDIO_CHANNELS*WEBAUDIO_BLOCK_SIZE> downmixBuffer;

  for (uint32_t i = 0; i < inputChunkCount; ++i) {
    AudioChunk* chunk = inputChunks[i];
    nsAutoTArray<const void*,GUESS_AUDIO_CHANNELS> channels;
    channels.AppendElements(chunk->mChannelData);
    if (channels.Length() < outputChannelCount) {
      if (mChannelInterpretation == ChannelInterpretation::Speakers) {
        AudioChannelsUpMix(&channels, outputChannelCount, nullptr);
        NS_ASSERTION(outputChannelCount == channels.Length(),
                     "We called GetAudioChannelsSuperset to avoid this");
      } else {
        // Fill up the remaining channels by zeros
        for (uint32_t j = channels.Length(); j < outputChannelCount; ++j) {
          channels.AppendElement(silenceChannel);
        }
      }
    } else if (channels.Length() > outputChannelCount) {
      if (mChannelInterpretation == ChannelInterpretation::Speakers) {
        nsAutoTArray<float*,GUESS_AUDIO_CHANNELS> outputChannels;
        outputChannels.SetLength(outputChannelCount);
        downmixBuffer.SetLength(outputChannelCount * WEBAUDIO_BLOCK_SIZE);
        for (uint32_t j = 0; j < outputChannelCount; ++j) {
          outputChannels[j] = &downmixBuffer[j * WEBAUDIO_BLOCK_SIZE];
        }

        AudioChannelsDownMix(channels, outputChannels.Elements(),
                             outputChannelCount, WEBAUDIO_BLOCK_SIZE);

        channels.SetLength(outputChannelCount);
        for (uint32_t j = 0; j < channels.Length(); ++j) {
          channels[j] = outputChannels[j];
        }
      } else {
        // Drop the remaining channels
        channels.RemoveElementsAt(outputChannelCount,
                                  channels.Length() - outputChannelCount);
      }
    }

    for (uint32_t c = 0; c < channels.Length(); ++c) {
      const float* inputData = static_cast<const float*>(channels[c]);
      float* outputData = static_cast<float*>(const_cast<void*>(aTmpChunk.mChannelData[c]));
      if (inputData) {
        if (i == 0) {
          AudioBlockCopyChannelWithScale(inputData, chunk->mVolume, outputData);
        } else {
          AudioBlockAddChannelWithScale(inputData, chunk->mVolume, outputData);
        }
      } else {
        if (i == 0) {
          memset(outputData, 0, WEBAUDIO_BLOCK_SIZE*sizeof(float));
        }
      }
    }
  }
}