PetscErrorCode VecNorm_Seq(Vec xin,NormType type,PetscReal *z) { const PetscScalar *xx; PetscErrorCode ierr; PetscInt n = xin->map->n; PetscBLASInt one = 1, bn; PetscFunctionBegin; ierr = PetscBLASIntCast(n,&bn);CHKERRQ(ierr); if (type == NORM_2 || type == NORM_FROBENIUS) { ierr = VecGetArrayRead(xin,&xx);CHKERRQ(ierr); #if defined(PETSC_USE_REAL___FP16) *z = BLASnrm2_(&bn,xx,&one); #else *z = PetscRealPart(BLASdot_(&bn,xx,&one,xx,&one)); *z = PetscSqrtReal(*z); #endif ierr = VecRestoreArrayRead(xin,&xx);CHKERRQ(ierr); ierr = PetscLogFlops(PetscMax(2.0*n-1,0.0));CHKERRQ(ierr); } else if (type == NORM_INFINITY) { PetscInt i; PetscReal max = 0.0,tmp; ierr = VecGetArrayRead(xin,&xx);CHKERRQ(ierr); for (i=0; i<n; i++) { if ((tmp = PetscAbsScalar(*xx)) > max) max = tmp; /* check special case of tmp == NaN */ if (tmp != tmp) {max = tmp; break;} xx++; } ierr = VecRestoreArrayRead(xin,&xx);CHKERRQ(ierr); *z = max; } else if (type == NORM_1) { #if defined(PETSC_USE_COMPLEX) PetscReal tmp = 0.0; PetscInt i; #endif ierr = VecGetArrayRead(xin,&xx);CHKERRQ(ierr); #if defined(PETSC_USE_COMPLEX) /* BLASasum() returns the nonstandard 1 norm of the 1 norm of the complex entries so we provide a custom loop instead */ for (i=0; i<n; i++) { tmp += PetscAbsScalar(xx[i]); } *z = tmp; #else PetscStackCallBLAS("BLASasum",*z = BLASasum_(&bn,xx,&one)); #endif ierr = VecRestoreArrayRead(xin,&xx);CHKERRQ(ierr); ierr = PetscLogFlops(PetscMax(n-1.0,0.0));CHKERRQ(ierr); } else if (type == NORM_1_AND_2) { ierr = VecNorm_Seq(xin,NORM_1,z);CHKERRQ(ierr); ierr = VecNorm_Seq(xin,NORM_2,z+1);CHKERRQ(ierr); } PetscFunctionReturn(0); }
/**************************************xyt.c***********************************/ static PetscErrorCode do_xyt_solve(xyt_ADT xyt_handle, PetscScalar *uc) { PetscInt off, len, *iptr; PetscInt level =xyt_handle->level; PetscInt n =xyt_handle->info->n; PetscInt m =xyt_handle->info->m; PetscInt *stages =xyt_handle->info->stages; PetscInt *xcol_indices=xyt_handle->info->xcol_indices; PetscInt *ycol_indices=xyt_handle->info->ycol_indices; PetscScalar *x_ptr, *y_ptr, *uu_ptr; PetscScalar *solve_uu=xyt_handle->info->solve_uu; PetscScalar *solve_w =xyt_handle->info->solve_w; PetscScalar *x =xyt_handle->info->x; PetscScalar *y =xyt_handle->info->y; PetscBLASInt i1 = 1,dlen; PetscErrorCode ierr; PetscFunctionBegin; uu_ptr=solve_uu; PCTFS_rvec_zero(uu_ptr,m); /* x = X.Y^T.b */ /* uu = Y^T.b */ for (y_ptr=y,iptr=ycol_indices; *iptr!=-1; y_ptr+=len) { off =*iptr++; len =*iptr++; ierr = PetscBLASIntCast(len,&dlen);CHKERRQ(ierr); PetscStackCall("BLASdot",*uu_ptr++ = BLASdot_(&dlen,uc+off,&i1,y_ptr,&i1)); } /* comunication of beta */ uu_ptr=solve_uu; if (level) PCTFS_ssgl_radd(uu_ptr, solve_w, level, stages); PCTFS_rvec_zero(uc,n); /* x = X.uu */ for (x_ptr=x,iptr=xcol_indices; *iptr!=-1; x_ptr+=len) { off =*iptr++; len =*iptr++; ierr = PetscBLASIntCast(len,&dlen);CHKERRQ(ierr); PetscStackCall("BLASaxpy",BLASaxpy_(&dlen,uu_ptr++,x_ptr,&i1,uc+off,&i1)); } PetscFunctionReturn(0); }
PetscErrorCode VecNorm_MPI(Vec xin,NormType type,PetscReal *z) { PetscReal sum,work = 0.0; const PetscScalar *xx; PetscErrorCode ierr; PetscInt n = xin->map->n; PetscBLASInt one = 1,bn; PetscFunctionBegin; ierr = PetscBLASIntCast(n,&bn);CHKERRQ(ierr); if (type == NORM_2 || type == NORM_FROBENIUS) { ierr = VecGetArrayRead(xin,&xx);CHKERRQ(ierr); work = PetscRealPart(BLASdot_(&bn,xx,&one,xx,&one)); ierr = VecRestoreArrayRead(xin,&xx);CHKERRQ(ierr); ierr = MPIU_Allreduce(&work,&sum,1,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)xin));CHKERRQ(ierr); *z = PetscSqrtReal(sum); ierr = PetscLogFlops(2.0*xin->map->n);CHKERRQ(ierr); } else if (type == NORM_1) { /* Find the local part */ ierr = VecNorm_Seq(xin,NORM_1,&work);CHKERRQ(ierr); /* Find the global max */ ierr = MPIU_Allreduce(&work,z,1,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)xin));CHKERRQ(ierr); } else if (type == NORM_INFINITY) { /* Find the local max */ ierr = VecNorm_Seq(xin,NORM_INFINITY,&work);CHKERRQ(ierr); /* Find the global max */ ierr = MPIU_Allreduce(&work,z,1,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)xin));CHKERRQ(ierr); } else if (type == NORM_1_AND_2) { PetscReal temp[2]; ierr = VecNorm_Seq(xin,NORM_1,temp);CHKERRQ(ierr); ierr = VecNorm_Seq(xin,NORM_2,temp+1);CHKERRQ(ierr); temp[1] = temp[1]*temp[1]; ierr = MPIU_Allreduce(temp,z,2,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)xin));CHKERRQ(ierr); z[1] = PetscSqrtReal(z[1]); } PetscFunctionReturn(0); }
/**************************************xyt.c***********************************/ static PetscInt xyt_generate(xyt_ADT xyt_handle) { PetscInt i,j,k,idx; PetscInt dim, col; PetscScalar *u, *uu, *v, *z, *w, alpha, alpha_w; PetscInt *segs; PetscInt op[] = {GL_ADD,0}; PetscInt off, len; PetscScalar *x_ptr, *y_ptr; PetscInt *iptr, flag; PetscInt start =0, end, work; PetscInt op2[] = {GL_MIN,0}; PCTFS_gs_ADT PCTFS_gs_handle; PetscInt *nsep, *lnsep, *fo; PetscInt a_n =xyt_handle->mvi->n; PetscInt a_m =xyt_handle->mvi->m; PetscInt *a_local2global=xyt_handle->mvi->local2global; PetscInt level; PetscInt n, m; PetscInt *xcol_sz, *xcol_indices, *stages; PetscScalar **xcol_vals, *x; PetscInt *ycol_sz, *ycol_indices; PetscScalar **ycol_vals, *y; PetscInt n_global; PetscInt xt_nnz =0, xt_max_nnz=0; PetscInt yt_nnz =0, yt_max_nnz=0; PetscInt xt_zero_nnz =0; PetscInt xt_zero_nnz_0=0; PetscInt yt_zero_nnz =0; PetscInt yt_zero_nnz_0=0; PetscBLASInt i1 = 1,dlen; PetscScalar dm1 = -1.0; PetscErrorCode ierr; n =xyt_handle->mvi->n; nsep =xyt_handle->info->nsep; lnsep =xyt_handle->info->lnsep; fo =xyt_handle->info->fo; end =lnsep[0]; level =xyt_handle->level; PCTFS_gs_handle=xyt_handle->mvi->PCTFS_gs_handle; /* is there a null space? */ /* LATER add in ability to detect null space by checking alpha */ for (i=0, j=0; i<=level; i++) j+=nsep[i]; m = j-xyt_handle->ns; if (m!=j) { ierr = PetscPrintf(PETSC_COMM_WORLD,"xyt_generate() :: null space exists %D %D %D\n",m,j,xyt_handle->ns);CHKERRQ(ierr); } ierr = PetscInfo2(0,"xyt_generate() :: X(%D,%D)\n",n,m);CHKERRQ(ierr); /* get and initialize storage for x local */ /* note that x local is nxm and stored by columns */ xcol_sz = (PetscInt*) malloc(m*sizeof(PetscInt)); xcol_indices = (PetscInt*) malloc((2*m+1)*sizeof(PetscInt)); xcol_vals = (PetscScalar**) malloc(m*sizeof(PetscScalar*)); for (i=j=0; i<m; i++, j+=2) { xcol_indices[j]=xcol_indices[j+1]=xcol_sz[i]=-1; xcol_vals[i] = NULL; } xcol_indices[j]=-1; /* get and initialize storage for y local */ /* note that y local is nxm and stored by columns */ ycol_sz = (PetscInt*) malloc(m*sizeof(PetscInt)); ycol_indices = (PetscInt*) malloc((2*m+1)*sizeof(PetscInt)); ycol_vals = (PetscScalar**) malloc(m*sizeof(PetscScalar*)); for (i=j=0; i<m; i++, j+=2) { ycol_indices[j]=ycol_indices[j+1]=ycol_sz[i]=-1; ycol_vals[i] = NULL; } ycol_indices[j]=-1; /* size of separators for each sub-hc working from bottom of tree to top */ /* this looks like nsep[]=segments */ stages = (PetscInt*) malloc((level+1)*sizeof(PetscInt)); segs = (PetscInt*) malloc((level+1)*sizeof(PetscInt)); PCTFS_ivec_zero(stages,level+1); PCTFS_ivec_copy(segs,nsep,level+1); for (i=0; i<level; i++) segs[i+1] += segs[i]; stages[0] = segs[0]; /* temporary vectors */ u = (PetscScalar*) malloc(n*sizeof(PetscScalar)); z = (PetscScalar*) malloc(n*sizeof(PetscScalar)); v = (PetscScalar*) malloc(a_m*sizeof(PetscScalar)); uu = (PetscScalar*) malloc(m*sizeof(PetscScalar)); w = (PetscScalar*) malloc(m*sizeof(PetscScalar)); /* extra nnz due to replication of vertices across separators */ for (i=1, j=0; i<=level; i++) j+=nsep[i]; /* storage for sparse x values */ n_global = xyt_handle->info->n_global; xt_max_nnz = yt_max_nnz = (PetscInt)(2.5*PetscPowReal(1.0*n_global,1.6667) + j*n/2)/PCTFS_num_nodes; x = (PetscScalar*) malloc(xt_max_nnz*sizeof(PetscScalar)); y = (PetscScalar*) malloc(yt_max_nnz*sizeof(PetscScalar)); /* LATER - can embed next sep to fire in gs */ /* time to make the donuts - generate X factor */ for (dim=i=j=0; i<m; i++) { /* time to move to the next level? */ while (i==segs[dim]) { if (dim==level) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"dim about to exceed level\n"); stages[dim++]=i; end +=lnsep[dim]; } stages[dim]=i; /* which column are we firing? */ /* i.e. set v_l */ /* use new seps and do global min across hc to determine which one to fire */ (start<end) ? (col=fo[start]) : (col=INT_MAX); PCTFS_giop_hc(&col,&work,1,op2,dim); /* shouldn't need this */ if (col==INT_MAX) { ierr = PetscInfo(0,"hey ... col==INT_MAX??\n");CHKERRQ(ierr); continue; } /* do I own it? I should */ PCTFS_rvec_zero(v,a_m); if (col==fo[start]) { start++; idx=PCTFS_ivec_linear_search(col, a_local2global, a_n); if (idx!=-1) { v[idx] = 1.0; j++; } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"NOT FOUND!\n"); } else { idx=PCTFS_ivec_linear_search(col, a_local2global, a_m); if (idx!=-1) v[idx] = 1.0; } /* perform u = A.v_l */ PCTFS_rvec_zero(u,n); do_matvec(xyt_handle->mvi,v,u); /* uu = X^T.u_l (local portion) */ /* technically only need to zero out first i entries */ /* later turn this into an XYT_solve call ? */ PCTFS_rvec_zero(uu,m); y_ptr=y; iptr = ycol_indices; for (k=0; k<i; k++) { off = *iptr++; len = *iptr++; ierr = PetscBLASIntCast(len,&dlen);CHKERRQ(ierr); PetscStackCall("BLASdot",uu[k] = BLASdot_(&dlen,u+off,&i1,y_ptr,&i1)); y_ptr+=len; } /* uu = X^T.u_l (comm portion) */ PCTFS_ssgl_radd (uu, w, dim, stages); /* z = X.uu */ PCTFS_rvec_zero(z,n); x_ptr=x; iptr = xcol_indices; for (k=0; k<i; k++) { off = *iptr++; len = *iptr++; ierr = PetscBLASIntCast(len,&dlen);CHKERRQ(ierr); PetscStackCall("BLASaxpy",BLASaxpy_(&dlen,&uu[k],x_ptr,&i1,z+off,&i1)); x_ptr+=len; } /* compute v_l = v_l - z */ PCTFS_rvec_zero(v+a_n,a_m-a_n); ierr = PetscBLASIntCast(n,&dlen);CHKERRQ(ierr); PetscStackCall("BLASaxpy",BLASaxpy_(&dlen,&dm1,z,&i1,v,&i1)); /* compute u_l = A.v_l */ if (a_n!=a_m) PCTFS_gs_gop_hc(PCTFS_gs_handle,v,"+\0",dim); PCTFS_rvec_zero(u,n); do_matvec(xyt_handle->mvi,v,u); /* compute sqrt(alpha) = sqrt(u_l^T.u_l) - local portion */ ierr = PetscBLASIntCast(n,&dlen);CHKERRQ(ierr); PetscStackCall("BLASdot",alpha = BLASdot_(&dlen,u,&i1,u,&i1)); /* compute sqrt(alpha) = sqrt(u_l^T.u_l) - comm portion */ PCTFS_grop_hc(&alpha, &alpha_w, 1, op, dim); alpha = (PetscScalar) PetscSqrtReal((PetscReal)alpha); /* check for small alpha */ /* LATER use this to detect and determine null space */ if (fabs(alpha)<1.0e-14) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_PLIB,"bad alpha! %g\n",alpha); /* compute v_l = v_l/sqrt(alpha) */ PCTFS_rvec_scale(v,1.0/alpha,n); PCTFS_rvec_scale(u,1.0/alpha,n); /* add newly generated column, v_l, to X */ flag = 1; off =len=0; for (k=0; k<n; k++) { if (v[k]!=0.0) { len=k; if (flag) {off=k; flag=0;} } } len -= (off-1); if (len>0) { if ((xt_nnz+len)>xt_max_nnz) { ierr = PetscInfo(0,"increasing space for X by 2x!\n");CHKERRQ(ierr); xt_max_nnz *= 2; x_ptr = (PetscScalar*) malloc(xt_max_nnz*sizeof(PetscScalar)); PCTFS_rvec_copy(x_ptr,x,xt_nnz); free(x); x = x_ptr; x_ptr+=xt_nnz; } xt_nnz += len; PCTFS_rvec_copy(x_ptr,v+off,len); /* keep track of number of zeros */ if (dim) { for (k=0; k<len; k++) { if (x_ptr[k]==0.0) xt_zero_nnz++; } } else { for (k=0; k<len; k++) { if (x_ptr[k]==0.0) xt_zero_nnz_0++; } } xcol_indices[2*i] = off; xcol_sz[i] = xcol_indices[2*i+1] = len; xcol_vals[i] = x_ptr; } else { xcol_indices[2*i] = 0; xcol_sz[i] = xcol_indices[2*i+1] = 0; xcol_vals[i] = x_ptr; } /* add newly generated column, u_l, to Y */ flag = 1; off =len=0; for (k=0; k<n; k++) { if (u[k]!=0.0) { len=k; if (flag) { off=k; flag=0; } } } len -= (off-1); if (len>0) { if ((yt_nnz+len)>yt_max_nnz) { ierr = PetscInfo(0,"increasing space for Y by 2x!\n");CHKERRQ(ierr); yt_max_nnz *= 2; y_ptr = (PetscScalar*) malloc(yt_max_nnz*sizeof(PetscScalar)); PCTFS_rvec_copy(y_ptr,y,yt_nnz); free(y); y = y_ptr; y_ptr+=yt_nnz; } yt_nnz += len; PCTFS_rvec_copy(y_ptr,u+off,len); /* keep track of number of zeros */ if (dim) { for (k=0; k<len; k++) { if (y_ptr[k]==0.0) yt_zero_nnz++; } } else { for (k=0; k<len; k++) { if (y_ptr[k]==0.0) yt_zero_nnz_0++; } } ycol_indices[2*i] = off; ycol_sz[i] = ycol_indices[2*i+1] = len; ycol_vals[i] = y_ptr; } else { ycol_indices[2*i] = 0; ycol_sz[i] = ycol_indices[2*i+1] = 0; ycol_vals[i] = y_ptr; } } /* close off stages for execution phase */ while (dim!=level) { stages[dim++]=i; ierr = PetscInfo2(0,"disconnected!!! dim(%D)!=level(%D)\n",dim,level);CHKERRQ(ierr); } stages[dim]=i; xyt_handle->info->n =xyt_handle->mvi->n; xyt_handle->info->m =m; xyt_handle->info->nnz =xt_nnz + yt_nnz; xyt_handle->info->max_nnz =xt_max_nnz + yt_max_nnz; xyt_handle->info->msg_buf_sz =stages[level]-stages[0]; xyt_handle->info->solve_uu = (PetscScalar*) malloc(m*sizeof(PetscScalar)); xyt_handle->info->solve_w = (PetscScalar*) malloc(m*sizeof(PetscScalar)); xyt_handle->info->x =x; xyt_handle->info->xcol_vals =xcol_vals; xyt_handle->info->xcol_sz =xcol_sz; xyt_handle->info->xcol_indices=xcol_indices; xyt_handle->info->stages =stages; xyt_handle->info->y =y; xyt_handle->info->ycol_vals =ycol_vals; xyt_handle->info->ycol_sz =ycol_sz; xyt_handle->info->ycol_indices=ycol_indices; free(segs); free(u); free(v); free(uu); free(z); free(w); return(0); }
static PetscErrorCode KSPSolve_BCGSL(KSP ksp) { KSP_BCGSL *bcgsl = (KSP_BCGSL*) ksp->data; PetscScalar alpha, beta, omega, sigma; PetscScalar rho0, rho1; PetscReal kappa0, kappaA, kappa1; PetscReal ghat; PetscReal zeta, zeta0, rnmax_computed, rnmax_true, nrm0; PetscBool bUpdateX; PetscInt maxit; PetscInt h, i, j, k, vi, ell; PetscBLASInt ldMZ,bierr; PetscScalar utb; PetscReal max_s, pinv_tol; PetscErrorCode ierr; PetscFunctionBegin; /* set up temporary vectors */ vi = 0; ell = bcgsl->ell; bcgsl->vB = ksp->work[vi]; vi++; bcgsl->vRt = ksp->work[vi]; vi++; bcgsl->vTm = ksp->work[vi]; vi++; bcgsl->vvR = ksp->work+vi; vi += ell+1; bcgsl->vvU = ksp->work+vi; vi += ell+1; bcgsl->vXr = ksp->work[vi]; vi++; ierr = PetscBLASIntCast(ell+1,&ldMZ);CHKERRQ(ierr); /* Prime the iterative solver */ ierr = KSPInitialResidual(ksp, VX, VTM, VB, VVR[0], ksp->vec_rhs);CHKERRQ(ierr); ierr = VecNorm(VVR[0], NORM_2, &zeta0);CHKERRQ(ierr); rnmax_computed = zeta0; rnmax_true = zeta0; ierr = (*ksp->converged)(ksp, 0, zeta0, &ksp->reason, ksp->cnvP);CHKERRQ(ierr); if (ksp->reason) { ierr = PetscObjectAMSTakeAccess((PetscObject)ksp);CHKERRQ(ierr); ksp->its = 0; ksp->rnorm = zeta0; ierr = PetscObjectAMSGrantAccess((PetscObject)ksp);CHKERRQ(ierr); PetscFunctionReturn(0); } ierr = VecSet(VVU[0],0.0);CHKERRQ(ierr); alpha = 0.; rho0 = omega = 1; if (bcgsl->delta>0.0) { ierr = VecCopy(VX, VXR);CHKERRQ(ierr); ierr = VecSet(VX,0.0);CHKERRQ(ierr); ierr = VecCopy(VVR[0], VB);CHKERRQ(ierr); } else { ierr = VecCopy(ksp->vec_rhs, VB);CHKERRQ(ierr); } /* Life goes on */ ierr = VecCopy(VVR[0], VRT);CHKERRQ(ierr); zeta = zeta0; ierr = KSPGetTolerances(ksp, NULL, NULL, NULL, &maxit);CHKERRQ(ierr); for (k=0; k<maxit; k += bcgsl->ell) { ksp->its = k; ksp->rnorm = zeta; ierr = KSPLogResidualHistory(ksp, zeta);CHKERRQ(ierr); ierr = KSPMonitor(ksp, ksp->its, zeta);CHKERRQ(ierr); ierr = (*ksp->converged)(ksp, k, zeta, &ksp->reason, ksp->cnvP);CHKERRQ(ierr); if (ksp->reason < 0) PetscFunctionReturn(0); else if (ksp->reason) break; /* BiCG part */ rho0 = -omega*rho0; nrm0 = zeta; for (j=0; j<bcgsl->ell; j++) { /* rho1 <- r_j' * r_tilde */ ierr = VecDot(VVR[j], VRT, &rho1);CHKERRQ(ierr); if (rho1 == 0.0) { ksp->reason = KSP_DIVERGED_BREAKDOWN_BICG; PetscFunctionReturn(0); } beta = alpha*(rho1/rho0); rho0 = rho1; for (i=0; i<=j; i++) { /* u_i <- r_i - beta*u_i */ ierr = VecAYPX(VVU[i], -beta, VVR[i]);CHKERRQ(ierr); } /* u_{j+1} <- inv(K)*A*u_j */ ierr = KSP_PCApplyBAorAB(ksp, VVU[j], VVU[j+1], VTM);CHKERRQ(ierr); ierr = VecDot(VVU[j+1], VRT, &sigma);CHKERRQ(ierr); if (sigma == 0.0) { ksp->reason = KSP_DIVERGED_BREAKDOWN_BICG; PetscFunctionReturn(0); } alpha = rho1/sigma; /* x <- x + alpha*u_0 */ ierr = VecAXPY(VX, alpha, VVU[0]);CHKERRQ(ierr); for (i=0; i<=j; i++) { /* r_i <- r_i - alpha*u_{i+1} */ ierr = VecAXPY(VVR[i], -alpha, VVU[i+1]);CHKERRQ(ierr); } /* r_{j+1} <- inv(K)*A*r_j */ ierr = KSP_PCApplyBAorAB(ksp, VVR[j], VVR[j+1], VTM);CHKERRQ(ierr); ierr = VecNorm(VVR[0], NORM_2, &nrm0);CHKERRQ(ierr); if (bcgsl->delta>0.0) { if (rnmax_computed<nrm0) rnmax_computed = nrm0; if (rnmax_true<nrm0) rnmax_true = nrm0; } /* NEW: check for early exit */ ierr = (*ksp->converged)(ksp, k+j, nrm0, &ksp->reason, ksp->cnvP);CHKERRQ(ierr); if (ksp->reason) { ierr = PetscObjectAMSTakeAccess((PetscObject)ksp);CHKERRQ(ierr); ksp->its = k+j; ksp->rnorm = nrm0; ierr = PetscObjectAMSGrantAccess((PetscObject)ksp);CHKERRQ(ierr); if (ksp->reason < 0) PetscFunctionReturn(0); } } /* Polynomial part */ for (i = 0; i <= bcgsl->ell; ++i) { ierr = VecMDot(VVR[i], i+1, VVR, &MZa[i*ldMZ]);CHKERRQ(ierr); } /* Symmetrize MZa */ for (i = 0; i <= bcgsl->ell; ++i) { for (j = i+1; j <= bcgsl->ell; ++j) { MZa[i*ldMZ+j] = MZa[j*ldMZ+i] = PetscConj(MZa[j*ldMZ+i]); } } /* Copy MZa to MZb */ ierr = PetscMemcpy(MZb,MZa,ldMZ*ldMZ*sizeof(PetscScalar));CHKERRQ(ierr); if (!bcgsl->bConvex || bcgsl->ell==1) { PetscBLASInt ione = 1,bell; ierr = PetscBLASIntCast(bcgsl->ell,&bell);CHKERRQ(ierr); AY0c[0] = -1; if (bcgsl->pinv) { #if defined(PETSC_MISSING_LAPACK_GESVD) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"GESVD - Lapack routine is unavailable."); #else # if defined(PETSC_USE_COMPLEX) PetscStackCall("LAPACKgesvd",LAPACKgesvd_("A","A",&bell,&bell,&MZa[1+ldMZ],&ldMZ,bcgsl->s,bcgsl->u,&bell,bcgsl->v,&bell,bcgsl->work,&bcgsl->lwork,bcgsl->realwork,&bierr)); # else PetscStackCall("LAPACKgesvd",LAPACKgesvd_("A","A",&bell,&bell,&MZa[1+ldMZ],&ldMZ,bcgsl->s,bcgsl->u,&bell,bcgsl->v,&bell,bcgsl->work,&bcgsl->lwork,&bierr)); # endif #endif if (bierr!=0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; PetscFunctionReturn(0); } /* Apply pseudo-inverse */ max_s = bcgsl->s[0]; for (i=1; i<bell; i++) { if (bcgsl->s[i] > max_s) { max_s = bcgsl->s[i]; } } /* tolerance is hardwired to bell*max(s)*PETSC_MACHINE_EPSILON */ pinv_tol = bell*max_s*PETSC_MACHINE_EPSILON; ierr = PetscMemzero(&AY0c[1],bell*sizeof(PetscScalar));CHKERRQ(ierr); for (i=0; i<bell; i++) { if (bcgsl->s[i] >= pinv_tol) { utb=0.; for (j=0; j<bell; j++) { utb += MZb[1+j]*bcgsl->u[i*bell+j]; } for (j=0; j<bell; j++) { AY0c[1+j] += utb/bcgsl->s[i]*bcgsl->v[j*bell+i]; } } } } else { #if defined(PETSC_MISSING_LAPACK_POTRF) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRF - Lapack routine is unavailable."); #else PetscStackCall("LAPACKpotrf",LAPACKpotrf_("Lower", &bell, &MZa[1+ldMZ], &ldMZ, &bierr)); #endif if (bierr!=0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; PetscFunctionReturn(0); } ierr = PetscMemcpy(&AY0c[1],&MZb[1],bcgsl->ell*sizeof(PetscScalar));CHKERRQ(ierr); PetscStackCall("LAPACKpotrs",LAPACKpotrs_("Lower", &bell, &ione, &MZa[1+ldMZ], &ldMZ, &AY0c[1], &ldMZ, &bierr)); } } else { PetscBLASInt ione = 1; PetscScalar aone = 1.0, azero = 0.0; PetscBLASInt neqs; ierr = PetscBLASIntCast(bcgsl->ell-1,&neqs);CHKERRQ(ierr); #if defined(PETSC_MISSING_LAPACK_POTRF) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRF - Lapack routine is unavailable."); #else PetscStackCall("LAPACKpotrf",LAPACKpotrf_("Lower", &neqs, &MZa[1+ldMZ], &ldMZ, &bierr)); #endif if (bierr!=0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; PetscFunctionReturn(0); } ierr = PetscMemcpy(&AY0c[1],&MZb[1],(bcgsl->ell-1)*sizeof(PetscScalar));CHKERRQ(ierr); PetscStackCall("LAPACKpotrs",LAPACKpotrs_("Lower", &neqs, &ione, &MZa[1+ldMZ], &ldMZ, &AY0c[1], &ldMZ, &bierr)); AY0c[0] = -1; AY0c[bcgsl->ell] = 0.; ierr = PetscMemcpy(&AYlc[1],&MZb[1+ldMZ*(bcgsl->ell)],(bcgsl->ell-1)*sizeof(PetscScalar));CHKERRQ(ierr); PetscStackCall("LAPACKpotrs",LAPACKpotrs_("Lower", &neqs, &ione, &MZa[1+ldMZ], &ldMZ, &AYlc[1], &ldMZ, &bierr)); AYlc[0] = 0.; AYlc[bcgsl->ell] = -1; PetscStackCall("BLASgemv",BLASgemv_("NoTr", &ldMZ, &ldMZ, &aone, MZb, &ldMZ, AY0c, &ione, &azero, AYtc, &ione)); kappa0 = PetscRealPart(BLASdot_(&ldMZ, AY0c, &ione, AYtc, &ione)); /* round-off can cause negative kappa's */ if (kappa0<0) kappa0 = -kappa0; kappa0 = PetscSqrtReal(kappa0); kappaA = PetscRealPart(BLASdot_(&ldMZ, AYlc, &ione, AYtc, &ione)); PetscStackCall("BLASgemv",BLASgemv_("noTr", &ldMZ, &ldMZ, &aone, MZb, &ldMZ, AYlc, &ione, &azero, AYtc, &ione)); kappa1 = PetscRealPart(BLASdot_(&ldMZ, AYlc, &ione, AYtc, &ione)); if (kappa1<0) kappa1 = -kappa1; kappa1 = PetscSqrtReal(kappa1); if (kappa0!=0.0 && kappa1!=0.0) { if (kappaA<0.7*kappa0*kappa1) { ghat = (kappaA<0.0) ? -0.7*kappa0/kappa1 : 0.7*kappa0/kappa1; } else { ghat = kappaA/(kappa1*kappa1); } for (i=0; i<=bcgsl->ell; i++) { AY0c[i] = AY0c[i] - ghat* AYlc[i]; } } } omega = AY0c[bcgsl->ell]; for (h=bcgsl->ell; h>0 && omega==0.0; h--) omega = AY0c[h]; if (omega==0.0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; PetscFunctionReturn(0); } ierr = VecMAXPY(VX, bcgsl->ell,AY0c+1, VVR);CHKERRQ(ierr); for (i=1; i<=bcgsl->ell; i++) AY0c[i] *= -1.0; ierr = VecMAXPY(VVU[0], bcgsl->ell,AY0c+1, VVU+1);CHKERRQ(ierr); ierr = VecMAXPY(VVR[0], bcgsl->ell,AY0c+1, VVR+1);CHKERRQ(ierr); for (i=1; i<=bcgsl->ell; i++) AY0c[i] *= -1.0; ierr = VecNorm(VVR[0], NORM_2, &zeta);CHKERRQ(ierr); /* Accurate Update */ if (bcgsl->delta>0.0) { if (rnmax_computed<zeta) rnmax_computed = zeta; if (rnmax_true<zeta) rnmax_true = zeta; bUpdateX = (PetscBool) (zeta<bcgsl->delta*zeta0 && zeta0<=rnmax_computed); if ((zeta<bcgsl->delta*rnmax_true && zeta0<=rnmax_true) || bUpdateX) { /* r0 <- b-inv(K)*A*X */ ierr = KSP_PCApplyBAorAB(ksp, VX, VVR[0], VTM);CHKERRQ(ierr); ierr = VecAYPX(VVR[0], -1.0, VB);CHKERRQ(ierr); rnmax_true = zeta; if (bUpdateX) { ierr = VecAXPY(VXR,1.0,VX);CHKERRQ(ierr); ierr = VecSet(VX,0.0);CHKERRQ(ierr); ierr = VecCopy(VVR[0], VB);CHKERRQ(ierr); rnmax_computed = zeta; } } } } if (bcgsl->delta>0.0) { ierr = VecAXPY(VX,1.0,VXR);CHKERRQ(ierr); } ierr = (*ksp->converged)(ksp, k, zeta, &ksp->reason, ksp->cnvP);CHKERRQ(ierr); if (!ksp->reason) ksp->reason = KSP_DIVERGED_ITS; PetscFunctionReturn(0); }
/* c *********** c c Subroutine dgqt c c Given an n by n symmetric matrix A, an n-vector b, and a c positive number delta, this subroutine determines a vector c x which approximately minimizes the quadratic function c c f(x) = (1/2)*x'*A*x + b'*x c c subject to the Euclidean norm constraint c c norm(x) <= delta. c c This subroutine computes an approximation x and a Lagrange c multiplier par such that either par is zero and c c norm(x) <= (1+rtol)*delta, c c or par is positive and c c abs(norm(x) - delta) <= rtol*delta. c c If xsol is the solution to the problem, the approximation x c satisfies c c f(x) <= ((1 - rtol)**2)*f(xsol) c c The subroutine statement is c c subroutine dgqt(n,a,lda,b,delta,rtol,atol,itmax, c par,f,x,info,z,wa1,wa2) c c where c c n is an integer variable. c On entry n is the order of A. c On exit n is unchanged. c c a is a double precision array of dimension (lda,n). c On entry the full upper triangle of a must contain the c full upper triangle of the symmetric matrix A. c On exit the array contains the matrix A. c c lda is an integer variable. c On entry lda is the leading dimension of the array a. c On exit lda is unchanged. c c b is an double precision array of dimension n. c On entry b specifies the linear term in the quadratic. c On exit b is unchanged. c c delta is a double precision variable. c On entry delta is a bound on the Euclidean norm of x. c On exit delta is unchanged. c c rtol is a double precision variable. c On entry rtol is the relative accuracy desired in the c solution. Convergence occurs if c c f(x) <= ((1 - rtol)**2)*f(xsol) c c On exit rtol is unchanged. c c atol is a double precision variable. c On entry atol is the absolute accuracy desired in the c solution. Convergence occurs when c c norm(x) <= (1 + rtol)*delta c c max(-f(x),-f(xsol)) <= atol c c On exit atol is unchanged. c c itmax is an integer variable. c On entry itmax specifies the maximum number of iterations. c On exit itmax is unchanged. c c par is a double precision variable. c On entry par is an initial estimate of the Lagrange c multiplier for the constraint norm(x) <= delta. c On exit par contains the final estimate of the multiplier. c c f is a double precision variable. c On entry f need not be specified. c On exit f is set to f(x) at the output x. c c x is a double precision array of dimension n. c On entry x need not be specified. c On exit x is set to the final estimate of the solution. c c info is an integer variable. c On entry info need not be specified. c On exit info is set as follows: c c info = 1 The function value f(x) has the relative c accuracy specified by rtol. c c info = 2 The function value f(x) has the absolute c accuracy specified by atol. c c info = 3 Rounding errors prevent further progress. c On exit x is the best available approximation. c c info = 4 Failure to converge after itmax iterations. c On exit x is the best available approximation. c c z is a double precision work array of dimension n. c c wa1 is a double precision work array of dimension n. c c wa2 is a double precision work array of dimension n. c c Subprograms called c c MINPACK-2 ...... destsv c c LAPACK ......... dpotrf c c Level 1 BLAS ... daxpy, dcopy, ddot, dnrm2, dscal c c Level 2 BLAS ... dtrmv, dtrsv c c MINPACK-2 Project. October 1993. c Argonne National Laboratory and University of Minnesota. c Brett M. Averick, Richard Carter, and Jorge J. More' c c *********** */ PetscErrorCode gqt(PetscInt n, PetscReal *a, PetscInt lda, PetscReal *b, PetscReal delta, PetscReal rtol, PetscReal atol, PetscInt itmax, PetscReal *retpar, PetscReal *retf, PetscReal *x, PetscInt *retinfo, PetscInt *retits, PetscReal *z, PetscReal *wa1, PetscReal *wa2) { PetscErrorCode ierr; PetscReal f=0.0,p001=0.001,p5=0.5,minusone=-1,delta2=delta*delta; PetscInt iter, j, rednc,info; PetscBLASInt indef; PetscBLASInt blas1=1, blasn=n, iblas, blaslda = lda,blasldap1=lda+1,blasinfo; PetscReal alpha, anorm, bnorm, parc, parf, parl, pars, par=*retpar,paru, prod, rxnorm, rznorm=0.0, temp, xnorm; PetscFunctionBegin; parf = 0.0; xnorm = 0.0; rxnorm = 0.0; rednc = 0; for (j=0; j<n; j++) { x[j] = 0.0; z[j] = 0.0; } /* Copy the diagonal and save A in its lower triangle */ PetscStackCallBLAS("BLAScopy",BLAScopy_(&blasn,a,&blasldap1, wa1, &blas1)); for (j=0;j<n-1;j++) { iblas = n - j - 1; PetscStackCallBLAS("BLAScopy",BLAScopy_(&iblas,&a[j + lda*(j+1)], &blaslda, &a[j+1 + lda*j], &blas1)); } /* Calculate the l1-norm of A, the Gershgorin row sums, and the l2-norm of b */ anorm = 0.0; for (j=0;j<n;j++) { wa2[j] = BLASasum_(&blasn, &a[0 + lda*j], &blas1); CHKMEMQ; anorm = PetscMax(anorm,wa2[j]); } for (j=0;j<n;j++) { wa2[j] = wa2[j] - PetscAbs(wa1[j]); } bnorm = BLASnrm2_(&blasn,b,&blas1); CHKMEMQ; /* Calculate a lower bound, pars, for the domain of the problem. Also calculate an upper bound, paru, and a lower bound, parl, for the Lagrange multiplier. */ pars = parl = paru = -anorm; for (j=0;j<n;j++) { pars = PetscMax(pars, -wa1[j]); parl = PetscMax(parl, wa1[j] + wa2[j]); paru = PetscMax(paru, -wa1[j] + wa2[j]); } parl = PetscMax(bnorm/delta - parl,pars); parl = PetscMax(0.0,parl); paru = PetscMax(0.0, bnorm/delta + paru); /* If the input par lies outside of the interval (parl, paru), set par to the closer endpoint. */ par = PetscMax(par,parl); par = PetscMin(par,paru); /* Special case: parl == paru */ paru = PetscMax(paru, (1.0 + rtol)*parl); /* Beginning of an iteration */ info = 0; for (iter=1;iter<=itmax;iter++) { /* Safeguard par */ if (par <= pars && paru > 0) { par = PetscMax(p001, PetscSqrtScalar(parl/paru)) * paru; } /* Copy the lower triangle of A into its upper triangle and compute A + par*I */ for (j=0;j<n-1;j++) { iblas = n - j - 1; PetscStackCallBLAS("BLAScopy",BLAScopy_(&iblas,&a[j+1 + j*lda], &blas1,&a[j + (j+1)*lda], &blaslda)); } for (j=0;j<n;j++) { a[j + j*lda] = wa1[j] + par; } /* Attempt the Cholesky factorization of A without referencing the lower triangular part. */ PetscStackCallBLAS("LAPACKpotrf",LAPACKpotrf_("U",&blasn,a,&blaslda,&indef)); /* Case 1: A + par*I is pos. def. */ if (indef == 0) { /* Compute an approximate solution x and save the last value of par with A + par*I pos. def. */ parf = par; PetscStackCallBLAS("BLAScopy",BLAScopy_(&blasn, b, &blas1, wa2, &blas1)); PetscStackCallBLAS("LAPACKtrtrs",LAPACKtrtrs_("U","T","N",&blasn,&blas1,a,&blaslda,wa2,&blasn,&blasinfo)); rxnorm = BLASnrm2_(&blasn, wa2, &blas1); PetscStackCallBLAS("LAPACKtrtrs",LAPACKtrtrs_("U","N","N",&blasn,&blas1,a,&blaslda,wa2,&blasn,&blasinfo)); PetscStackCallBLAS("BLAScopy",BLAScopy_(&blasn, wa2, &blas1, x, &blas1)); PetscStackCallBLAS("BLASscal",BLASscal_(&blasn, &minusone, x, &blas1)); xnorm = BLASnrm2_(&blasn, x, &blas1); CHKMEMQ; /* Test for convergence */ if (PetscAbs(xnorm - delta) <= rtol*delta || (par == 0 && xnorm <= (1.0+rtol)*delta)) { info = 1; } /* Compute a direction of negative curvature and use this information to improve pars. */ iblas=blasn*blasn; ierr = estsv(n,a,lda,&rznorm,z);CHKERRQ(ierr); CHKMEMQ; pars = PetscMax(pars, par-rznorm*rznorm); /* Compute a negative curvature solution of the form x + alpha*z, where norm(x+alpha*z)==delta */ rednc = 0; if (xnorm < delta) { /* Compute alpha */ prod = BLASdot_(&blasn, z, &blas1, x, &blas1) / delta; temp = (delta - xnorm)*((delta + xnorm)/delta); alpha = temp/(PetscAbs(prod) + PetscSqrtScalar(prod*prod + temp/delta)); if (prod >= 0) alpha = PetscAbs(alpha); else alpha =-PetscAbs(alpha); /* Test to decide if the negative curvature step produces a larger reduction than with z=0 */ rznorm = PetscAbs(alpha) * rznorm; if ((rznorm*rznorm + par*xnorm*xnorm)/(delta2) <= par) { rednc = 1; } /* Test for convergence */ if (p5 * rznorm*rznorm / delta2 <= rtol*(1.0-p5*rtol)*(par + rxnorm*rxnorm/delta2)) { info = 1; } else if (info == 0 && (p5*(par + rxnorm*rxnorm/delta2) <= atol/delta2)) { info = 2; } } /* Compute the Newton correction parc to par. */ if (xnorm == 0) { parc = -par; } else { PetscStackCallBLAS("BLAScopy",BLAScopy_(&blasn, x, &blas1, wa2, &blas1)); temp = 1.0/xnorm; PetscStackCallBLAS("BLASscal",BLASscal_(&blasn, &temp, wa2, &blas1)); PetscStackCallBLAS("LAPACKtrtrs",LAPACKtrtrs_("U","T","N",&blasn, &blas1, a, &blaslda, wa2, &blasn, &blasinfo)); temp = BLASnrm2_(&blasn, wa2, &blas1); parc = (xnorm - delta)/(delta*temp*temp); } /* update parl or paru */ if (xnorm > delta) { parl = PetscMax(parl, par); } else if (xnorm < delta) { paru = PetscMin(paru, par); } } else { /* Case 2: A + par*I is not pos. def. */ /* Use the rank information from the Cholesky decomposition to update par. */ if (indef > 1) { /* Restore column indef to A + par*I. */ iblas = indef - 1; PetscStackCallBLAS("BLAScopy",BLAScopy_(&iblas,&a[indef-1 + 0*lda],&blaslda,&a[0 + (indef-1)*lda],&blas1)); a[indef-1 + (indef-1)*lda] = wa1[indef-1] + par; /* compute parc. */ PetscStackCallBLAS("BLAScopy",BLAScopy_(&iblas,&a[0 + (indef-1)*lda], &blas1, wa2, &blas1)); PetscStackCallBLAS("LAPACKtrtrs",LAPACKtrtrs_("U","T","N",&iblas,&blas1,a,&blaslda,wa2,&blasn,&blasinfo)); PetscStackCallBLAS("BLAScopy",BLAScopy_(&iblas,wa2,&blas1,&a[0 + (indef-1)*lda],&blas1)); temp = BLASnrm2_(&iblas,&a[0 + (indef-1)*lda],&blas1); CHKMEMQ; a[indef-1 + (indef-1)*lda] -= temp*temp; PetscStackCallBLAS("LAPACKtrtr",LAPACKtrtrs_("U","N","N",&iblas,&blas1,a,&blaslda,wa2,&blasn,&blasinfo)); } wa2[indef-1] = -1.0; iblas = indef; temp = BLASnrm2_(&iblas,wa2,&blas1); parc = - a[indef-1 + (indef-1)*lda]/(temp*temp); pars = PetscMax(pars,par+parc); /* If necessary, increase paru slightly. This is needed because in some exceptional situations paru is the optimal value of par. */ paru = PetscMax(paru, (1.0+rtol)*pars); } /* Use pars to update parl */ parl = PetscMax(parl,pars); /* Test for converged. */ if (info == 0) { if (iter == itmax) info=4; if (paru <= (1.0+p5*rtol)*pars) info=3; if (paru == 0.0) info = 2; } /* If exiting, store the best approximation and restore the upper triangle of A. */ if (info != 0) { /* Compute the best current estimates for x and f. */ par = parf; f = -p5 * (rxnorm*rxnorm + par*xnorm*xnorm); if (rednc) { f = -p5 * (rxnorm*rxnorm + par*delta*delta - rznorm*rznorm); PetscStackCallBLAS("BLASaxpy",BLASaxpy_(&blasn, &alpha, z, &blas1, x, &blas1)); } /* Restore the upper triangle of A */ for (j = 0; j<n; j++) { iblas = n - j - 1; PetscStackCallBLAS("BLAScopy",BLAScopy_(&iblas,&a[j+1 + j*lda],&blas1, &a[j + (j+1)*lda],&blaslda)); } iblas = lda+1; PetscStackCallBLAS("BLAScopy",BLAScopy_(&blasn,wa1,&blas1,a,&iblas)); break; } par = PetscMax(parl,par+parc); } *retpar = par; *retf = f; *retinfo = info; *retits = iter; CHKMEMQ; PetscFunctionReturn(0); }
PetscErrorCode KSPAGMRESRodvec(KSP ksp, PetscInt nvec, PetscScalar *In, Vec Out) { KSP_AGMRES *agmres = (KSP_AGMRES*) ksp->data; MPI_Comm comm; PetscScalar *Qloc = agmres->Qloc; PetscScalar *sgn = agmres->sgn; PetscScalar *tloc = agmres->tloc; PetscMPIInt rank = agmres->rank; PetscMPIInt First = agmres->First, Last = agmres->Last; PetscMPIInt Iright = agmres->Iright, Ileft = agmres->Ileft; PetscScalar *y, *zloc; PetscErrorCode ierr; PetscInt nloc,tag,d, len, i, j; PetscInt dpt,pas; PetscReal c, s, rho, zp, zq, yd, tt; MPI_Status status; PetscFunctionBegin; ierr = PetscObjectGetComm((PetscObject)ksp,&comm);CHKERRQ(ierr); tag = 0x666; pas = 1; ierr = VecGetLocalSize(VEC_V(0), &nloc);CHKERRQ(ierr); ierr = PetscMalloc1(nvec, &y);CHKERRQ(ierr); ierr = PetscMemcpy(y, In, nvec*sizeof(PetscScalar));CHKERRQ(ierr); ierr = VecGetArray(Out, &zloc);CHKERRQ(ierr); if (rank == Last) { for (i = 0; i < nvec; i++) y[i] = sgn[i] * y[i]; } for (i = 0; i < nloc; i++) zloc[i] = 0.0; if (agmres->size == 1) PetscStackCallBLAS("BLAScopy",BLAScopy_(&nvec, y, &pas, &(zloc[0]), &pas)); else { for (d = nvec - 1; d >= 0; d--) { if (rank == First) { ierr = MPI_Recv(&(zloc[d]), 1, MPIU_SCALAR, Iright, tag, comm, &status);CHKERRQ(ierr); } else { for (j = nvec - 1; j >= d + 1; j--) { i = j - d; ierr = KSPAGMRESRoddecGivens(&c, &s, &(Qloc[j * nloc + i]), 0); zp = zloc[i-1]; zq = zloc[i]; zloc[i-1] = c * zp + s * zq; zloc[i] = -s * zp + c * zq; } ierr = KSPAGMRESRoddecGivens(&c, &s, &(Qloc[d * nloc]), 0); if (rank == Last) { zp = y[d]; zq = zloc[0]; y[d] = c * zp + s * zq; zloc[0] = -s * zp + c * zq; ierr = MPI_Send(&(y[d]), 1, MPIU_SCALAR, Ileft, tag, comm);CHKERRQ(ierr); } else { ierr = MPI_Recv(&yd, 1, MPIU_SCALAR, Iright, tag, comm, &status);CHKERRQ(ierr); zp = yd; zq = zloc[0]; yd = c * zp + s * zq; zloc[0] = -s * zp + c * zq; ierr = MPI_Send(&yd, 1, MPIU_SCALAR, Ileft, tag, comm);CHKERRQ(ierr); } } } } for (j = nvec - 1; j >= 0; j--) { dpt = j * nloc + j; if (tloc[j] != 0.0) { len = nloc - j; rho = Qloc[dpt]; Qloc[dpt] = 1.0; tt = tloc[j] * (BLASdot_(&len, &(Qloc[dpt]), &pas, &(zloc[j]), &pas)); PetscStackCallBLAS("BLASaxpy",BLASaxpy_(&len, &tt, &(Qloc[dpt]), &pas, &(zloc[j]), &pas)); Qloc[dpt] = rho; } } ierr = VecRestoreArray(Out, &zloc);CHKERRQ(ierr); ierr = PetscFree(y);CHKERRQ(ierr); PetscFunctionReturn(0); }
PetscErrorCode KSPAGMRESRoddec(KSP ksp, PetscInt nvec) { KSP_AGMRES *agmres = (KSP_AGMRES*) ksp->data; MPI_Comm comm; PetscScalar *Qloc = agmres->Qloc; PetscScalar *sgn = agmres->sgn; PetscScalar *tloc = agmres->tloc; PetscErrorCode ierr; PetscReal *wbufptr = agmres->wbufptr; PetscMPIInt rank = agmres->rank; PetscMPIInt First = agmres->First; PetscMPIInt Last = agmres->Last; PetscBLASInt nloc,pas,len; PetscInt d, i, j, k; PetscInt pos,tag; PetscReal c, s, rho, Ajj, val, tt, old; PetscScalar *col; MPI_Status status; PetscBLASInt N = MAXKSPSIZE + 1; PetscFunctionBegin; ierr = PetscObjectGetComm((PetscObject)ksp,&comm);CHKERRQ(ierr); tag = 0x666; ierr = PetscLogEventBegin(KSP_AGMRESRoddec,ksp,0,0,0);CHKERRQ(ierr); ierr = PetscMemzero(agmres->Rloc, N*N*sizeof(PetscScalar));CHKERRQ(ierr); /* check input arguments */ if (nvec < 1) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_ARG_OUTOFRANGE, "The number of input vectors shoud be positive"); ierr = VecGetLocalSize(VEC_V(0), &nloc);CHKERRQ(ierr); if (nvec > nloc) SETERRQ(PetscObjectComm((PetscObject)ksp), PETSC_ERR_ARG_WRONG, "In QR factorization, the number of local rows should be greater or equal to the number of columns"); pas = 1; k = 0; /* Copy the vectors of the basis */ for (j = 0; j < nvec; j++) { ierr = VecGetArray(VEC_V(j), &col);CHKERRQ(ierr); PetscStackCallBLAS("BLAScopy",BLAScopy_(&nloc, col, &pas, &Qloc[j*nloc], &pas)); ierr = VecRestoreArray(VEC_V(j), &col);CHKERRQ(ierr); } /* Each process performs a local QR on its own block */ for (j = 0; j < nvec; j++) { len = nloc - j; Ajj = Qloc[j*nloc+j]; rho = -PetscSign(Ajj) * BLASnrm2_(&len, &(Qloc[j*nloc+j]), &pas); if (rho == 0.0) tloc[j] = 0.0; else { tloc[j] = (Ajj - rho) / rho; len = len - 1; val = 1.0 / (Ajj - rho); PetscStackCallBLAS("BLASscal",BLASscal_(&len, &val, &(Qloc[j*nloc+j+1]), &pas)); Qloc[j*nloc+j] = 1.0; len = len + 1; for (k = j + 1; k < nvec; k++) { PetscStackCallBLAS("BLASdot",tt = tloc[j] * BLASdot_(&len, &(Qloc[j*nloc+j]), &pas, &(Qloc[k*nloc+j]), &pas)); PetscStackCallBLAS("BLASaxpy",BLASaxpy_(&len, &tt, &(Qloc[j*nloc+j]), &pas, &(Qloc[k*nloc+j]), &pas)); } Qloc[j*nloc+j] = rho; } } /*annihilate undesirable Rloc, diagonal by diagonal*/ for (d = 0; d < nvec; d++) { len = nvec - d; if (rank == First) { PetscStackCallBLAS("BLAScopy",BLAScopy_(&len, &(Qloc[d*nloc+d]), &nloc, &(wbufptr[d]), &pas)); ierr = MPI_Send(&(wbufptr[d]), len, MPIU_SCALAR, rank + 1, tag, comm);CHKERRQ(ierr); } else { ierr = MPI_Recv(&(wbufptr[d]), len, MPIU_SCALAR, rank - 1, tag, comm, &status);CHKERRQ(ierr); /*Elimination of Rloc(1,d)*/ c = wbufptr[d]; s = Qloc[d*nloc]; ierr = KSPAGMRESRoddecGivens(&c, &s, &rho, 1); /*Apply Givens Rotation*/ for (k = d; k < nvec; k++) { old = wbufptr[k]; wbufptr[k] = c * old - s * Qloc[k*nloc]; Qloc[k*nloc] = s * old + c * Qloc[k*nloc]; } Qloc[d*nloc] = rho; if (rank != Last) { ierr = MPI_Send(& (wbufptr[d]), len, MPIU_SCALAR, rank + 1, tag, comm);CHKERRQ(ierr); } /* zero-out the d-th diagonal of Rloc ...*/ for (j = d + 1; j < nvec; j++) { /* elimination of Rloc[i][j]*/ i = j - d; c = Qloc[j*nloc+i-1]; s = Qloc[j*nloc+i]; ierr = KSPAGMRESRoddecGivens(&c, &s, &rho, 1);CHKERRQ(ierr); for (k = j; k < nvec; k++) { old = Qloc[k*nloc+i-1]; Qloc[k*nloc+i-1] = c * old - s * Qloc[k*nloc+i]; Qloc[k*nloc+i] = s * old + c * Qloc[k*nloc+i]; } Qloc[j*nloc+i] = rho; } if (rank == Last) { PetscStackCallBLAS("BLAScopy",BLAScopy_(&len, &(wbufptr[d]), &pas, RLOC(d,d), &N)); for (k = d + 1; k < nvec; k++) *RLOC(k,d) = 0.0; } } } if (rank == Last) { for (d = 0; d < nvec; d++) { pos = nvec - d; sgn[d] = PetscSign(*RLOC(d,d)); PetscStackCallBLAS("BLASscal",BLASscal_(&pos, &(sgn[d]), RLOC(d,d), &N)); } } /*BroadCast Rloc to all other processes * NWD : should not be needed */ ierr = MPI_Bcast(agmres->Rloc,N*N,MPIU_SCALAR,Last,comm);CHKERRQ(ierr); ierr = PetscLogEventEnd(KSP_AGMRESRoddec,ksp,0,0,0);CHKERRQ(ierr); PetscFunctionReturn(0); }
static PetscErrorCode KSPSolve_BCGSL(KSP ksp) { KSP_BCGSL *bcgsl = (KSP_BCGSL *) ksp->data; PetscScalar alpha, beta, omega, sigma; PetscScalar rho0, rho1; PetscReal kappa0, kappaA, kappa1; PetscReal ghat, epsilon, abstol; PetscReal zeta, zeta0, rnmax_computed, rnmax_true, nrm0; PetscTruth bUpdateX; PetscTruth bBombed = PETSC_FALSE; PetscInt maxit; PetscInt h, i, j, k, vi, ell; PetscBLASInt ldMZ,bierr; PetscErrorCode ierr; PetscFunctionBegin; if (ksp->normtype == KSP_NORM_NATURAL) SETERRQ(PETSC_ERR_SUP,"Cannot use natural norm with KSPBCGSL"); if (ksp->normtype == KSP_NORM_PRECONDITIONED && ksp->pc_side != PC_LEFT) SETERRQ(PETSC_ERR_SUP,"Use -ksp_norm_type unpreconditioned for right preconditioning and KSPBCGSL"); if (ksp->normtype == KSP_NORM_UNPRECONDITIONED && ksp->pc_side != PC_RIGHT) SETERRQ(PETSC_ERR_SUP,"Use -ksp_norm_type preconditioned for left preconditioning and KSPBCGSL"); /* set up temporary vectors */ vi = 0; ell = bcgsl->ell; bcgsl->vB = ksp->work[vi]; vi++; bcgsl->vRt = ksp->work[vi]; vi++; bcgsl->vTm = ksp->work[vi]; vi++; bcgsl->vvR = ksp->work+vi; vi += ell+1; bcgsl->vvU = ksp->work+vi; vi += ell+1; bcgsl->vXr = ksp->work[vi]; vi++; ldMZ = PetscBLASIntCast(ell+1); /* Prime the iterative solver */ ierr = KSPInitialResidual(ksp, VX, VTM, VB, VVR[0], ksp->vec_rhs); CHKERRQ(ierr); ierr = VecNorm(VVR[0], NORM_2, &zeta0); CHKERRQ(ierr); rnmax_computed = zeta0; rnmax_true = zeta0; ierr = (*ksp->converged)(ksp, 0, zeta0, &ksp->reason, ksp->cnvP); CHKERRQ(ierr); if (ksp->reason) { ierr = PetscObjectTakeAccess(ksp); CHKERRQ(ierr); ksp->its = 0; ksp->rnorm = zeta0; ierr = PetscObjectGrantAccess(ksp); CHKERRQ(ierr); PetscFunctionReturn(0); } ierr = VecSet(VVU[0],0.0); CHKERRQ(ierr); alpha = 0.; rho0 = omega = 1; if (bcgsl->delta>0.0) { ierr = VecCopy(VX, VXR); CHKERRQ(ierr); ierr = VecSet(VX,0.0); CHKERRQ(ierr); ierr = VecCopy(VVR[0], VB); CHKERRQ(ierr); } else { ierr = VecCopy(ksp->vec_rhs, VB); CHKERRQ(ierr); } /* Life goes on */ ierr = VecCopy(VVR[0], VRT); CHKERRQ(ierr); zeta = zeta0; ierr = KSPGetTolerances(ksp, &epsilon, &abstol, PETSC_NULL, &maxit); CHKERRQ(ierr); for (k=0; k<maxit; k += bcgsl->ell) { ksp->its = k; ksp->rnorm = zeta; KSPLogResidualHistory(ksp, zeta); KSPMonitor(ksp, ksp->its, zeta); ierr = (*ksp->converged)(ksp, k, zeta, &ksp->reason, ksp->cnvP); CHKERRQ(ierr); if (ksp->reason) break; /* BiCG part */ rho0 = -omega*rho0; nrm0 = zeta; for (j=0; j<bcgsl->ell; j++) { /* rho1 <- r_j' * r_tilde */ ierr = VecDot(VVR[j], VRT, &rho1); CHKERRQ(ierr); if (rho1 == 0.0) { ksp->reason = KSP_DIVERGED_BREAKDOWN_BICG; bBombed = PETSC_TRUE; break; } beta = alpha*(rho1/rho0); rho0 = rho1; for (i=0; i<=j; i++) { /* u_i <- r_i - beta*u_i */ ierr = VecAYPX(VVU[i], -beta, VVR[i]); CHKERRQ(ierr); } /* u_{j+1} <- inv(K)*A*u_j */ ierr = KSP_PCApplyBAorAB(ksp, VVU[j], VVU[j+1], VTM); CHKERRQ(ierr); ierr = VecDot(VVU[j+1], VRT, &sigma); CHKERRQ(ierr); if (sigma == 0.0) { ksp->reason = KSP_DIVERGED_BREAKDOWN_BICG; bBombed = PETSC_TRUE; break; } alpha = rho1/sigma; /* x <- x + alpha*u_0 */ ierr = VecAXPY(VX, alpha, VVU[0]); CHKERRQ(ierr); for (i=0; i<=j; i++) { /* r_i <- r_i - alpha*u_{i+1} */ ierr = VecAXPY(VVR[i], -alpha, VVU[i+1]); CHKERRQ(ierr); } /* r_{j+1} <- inv(K)*A*r_j */ ierr = KSP_PCApplyBAorAB(ksp, VVR[j], VVR[j+1], VTM); CHKERRQ(ierr); ierr = VecNorm(VVR[0], NORM_2, &nrm0); CHKERRQ(ierr); if (bcgsl->delta>0.0) { if (rnmax_computed<nrm0) rnmax_computed = nrm0; if (rnmax_true<nrm0) rnmax_true = nrm0; } /* NEW: check for early exit */ ierr = (*ksp->converged)(ksp, k+j, nrm0, &ksp->reason, ksp->cnvP); CHKERRQ(ierr); if (ksp->reason) { ierr = PetscObjectTakeAccess(ksp); CHKERRQ(ierr); ksp->its = k+j; ksp->rnorm = nrm0; ierr = PetscObjectGrantAccess(ksp); CHKERRQ(ierr); break; } } if (bBombed==PETSC_TRUE) break; /* Polynomial part */ for(i = 0; i <= bcgsl->ell; ++i) { ierr = VecMDot(VVR[i], i+1, VVR, &MZa[i*ldMZ]); CHKERRQ(ierr); } /* Symmetrize MZa */ for(i = 0; i <= bcgsl->ell; ++i) { for(j = i+1; j <= bcgsl->ell; ++j) { MZa[i*ldMZ+j] = MZa[j*ldMZ+i] = PetscConj(MZa[j*ldMZ+i]); } } /* Copy MZa to MZb */ ierr = PetscMemcpy(MZb,MZa,ldMZ*ldMZ*sizeof(PetscScalar)); CHKERRQ(ierr); if (!bcgsl->bConvex || bcgsl->ell==1) { PetscBLASInt ione = 1,bell = PetscBLASIntCast(bcgsl->ell); AY0c[0] = -1; LAPACKpotrf_("Lower", &bell, &MZa[1+ldMZ], &ldMZ, &bierr); if (ierr!=0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; bBombed = PETSC_TRUE; break; } ierr = PetscMemcpy(&AY0c[1],&MZb[1],bcgsl->ell*sizeof(PetscScalar)); CHKERRQ(ierr); LAPACKpotrs_("Lower", &bell, &ione, &MZa[1+ldMZ], &ldMZ, &AY0c[1], &ldMZ, &bierr); } else { PetscBLASInt ione = 1; PetscScalar aone = 1.0, azero = 0.0; PetscBLASInt neqs = PetscBLASIntCast(bcgsl->ell-1); LAPACKpotrf_("Lower", &neqs, &MZa[1+ldMZ], &ldMZ, &bierr); if (ierr!=0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; bBombed = PETSC_TRUE; break; } ierr = PetscMemcpy(&AY0c[1],&MZb[1],(bcgsl->ell-1)*sizeof(PetscScalar)); CHKERRQ(ierr); LAPACKpotrs_("Lower", &neqs, &ione, &MZa[1+ldMZ], &ldMZ, &AY0c[1], &ldMZ, &bierr); AY0c[0] = -1; AY0c[bcgsl->ell] = 0.; ierr = PetscMemcpy(&AYlc[1],&MZb[1+ldMZ*(bcgsl->ell)],(bcgsl->ell-1)*sizeof(PetscScalar)); CHKERRQ(ierr); LAPACKpotrs_("Lower", &neqs, &ione, &MZa[1+ldMZ], &ldMZ, &AYlc[1], &ldMZ, &bierr); AYlc[0] = 0.; AYlc[bcgsl->ell] = -1; BLASgemv_("NoTr", &ldMZ, &ldMZ, &aone, MZb, &ldMZ, AY0c, &ione, &azero, AYtc, &ione); kappa0 = BLASdot_(&ldMZ, AY0c, &ione, AYtc, &ione); /* round-off can cause negative kappa's */ if (kappa0<0) kappa0 = -kappa0; kappa0 = sqrt(kappa0); kappaA = BLASdot_(&ldMZ, AYlc, &ione, AYtc, &ione); BLASgemv_("noTr", &ldMZ, &ldMZ, &aone, MZb, &ldMZ, AYlc, &ione, &azero, AYtc, &ione); kappa1 = BLASdot_(&ldMZ, AYlc, &ione, AYtc, &ione); if (kappa1<0) kappa1 = -kappa1; kappa1 = sqrt(kappa1); if (kappa0!=0.0 && kappa1!=0.0) { if (kappaA<0.7*kappa0*kappa1) { ghat = (kappaA<0.0) ? -0.7*kappa0/kappa1 : 0.7*kappa0/kappa1; } else { ghat = kappaA/(kappa1*kappa1); } for (i=0; i<=bcgsl->ell; i++) { AY0c[i] = AY0c[i] - ghat* AYlc[i]; } } } omega = AY0c[bcgsl->ell]; for (h=bcgsl->ell; h>0 && omega==0.0; h--) { omega = AY0c[h]; } if (omega==0.0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; break; } ierr = VecMAXPY(VX, bcgsl->ell,AY0c+1, VVR); CHKERRQ(ierr); for (i=1; i<=bcgsl->ell; i++) { AY0c[i] *= -1.0; } ierr = VecMAXPY(VVU[0], bcgsl->ell,AY0c+1, VVU+1); CHKERRQ(ierr); ierr = VecMAXPY(VVR[0], bcgsl->ell,AY0c+1, VVR+1); CHKERRQ(ierr); for (i=1; i<=bcgsl->ell; i++) { AY0c[i] *= -1.0; } ierr = VecNorm(VVR[0], NORM_2, &zeta); CHKERRQ(ierr); /* Accurate Update */ if (bcgsl->delta>0.0) { if (rnmax_computed<zeta) rnmax_computed = zeta; if (rnmax_true<zeta) rnmax_true = zeta; bUpdateX = (PetscTruth) (zeta<bcgsl->delta*zeta0 && zeta0<=rnmax_computed); if ((zeta<bcgsl->delta*rnmax_true && zeta0<=rnmax_true) || bUpdateX) { /* r0 <- b-inv(K)*A*X */ ierr = KSP_PCApplyBAorAB(ksp, VX, VVR[0], VTM); CHKERRQ(ierr); ierr = VecAYPX(VVR[0], -1.0, VB); CHKERRQ(ierr); rnmax_true = zeta; if (bUpdateX) { ierr = VecAXPY(VXR,1.0,VX); CHKERRQ(ierr); ierr = VecSet(VX,0.0); CHKERRQ(ierr); ierr = VecCopy(VVR[0], VB); CHKERRQ(ierr); rnmax_computed = zeta; } } } } if (bcgsl->delta>0.0) { ierr = VecAXPY(VX,1.0,VXR); CHKERRQ(ierr); } ierr = (*ksp->converged)(ksp, k, zeta, &ksp->reason, ksp->cnvP); CHKERRQ(ierr); if (!ksp->reason) ksp->reason = KSP_DIVERGED_ITS; PetscFunctionReturn(0); }