BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) /* Returns 'ret' such that * ret^2 == a (mod p), * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course * in Algebraic Computational Number Theory", algorithm 1.5.1). * 'p' must be prime! */ { BIGNUM *ret = in; int err = 1; int r; BIGNUM *A, *b, *q, *t, *x, *y; int e, i, j; if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { if (BN_abs_is_word(p, 2)) { if (ret == NULL) ret = BN_new(); if (ret == NULL) goto end; if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { if (ret != in) BN_free(ret); return NULL; } bn_check_top(ret); return ret; } BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); return(NULL); } if (BN_is_zero(a) || BN_is_one(a)) { if (ret == NULL) ret = BN_new(); if (ret == NULL) goto end; if (!BN_set_word(ret, BN_is_one(a))) { if (ret != in) BN_free(ret); return NULL; } bn_check_top(ret); return ret; } BN_CTX_start(ctx); A = BN_CTX_get(ctx); b = BN_CTX_get(ctx); q = BN_CTX_get(ctx); t = BN_CTX_get(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto end; if (ret == NULL) ret = BN_new(); if (ret == NULL) goto end; /* A = a mod p */ if (!BN_nnmod(A, a, p, ctx)) goto end; /* now write |p| - 1 as 2^e*q where q is odd */ e = 1; while (!BN_is_bit_set(p, e)) e++; /* we'll set q later (if needed) */ if (e == 1) { /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse * modulo (|p|-1)/2, and square roots can be computed * directly by modular exponentiation. * We have * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. */ if (!BN_rshift(q, p, 2)) goto end; q->neg = 0; if (!BN_add_word(q, 1)) goto end; if (!BN_mod_exp(ret, A, q, p, ctx)) goto end; err = 0; goto vrfy; } if (e == 2) { /* |p| == 5 (mod 8) * * In this case 2 is always a non-square since * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. * So if a really is a square, then 2*a is a non-square. * Thus for * b := (2*a)^((|p|-5)/8), * i := (2*a)*b^2 * we have * i^2 = (2*a)^((1 + (|p|-5)/4)*2) * = (2*a)^((p-1)/2) * = -1; * so if we set * x := a*b*(i-1), * then * x^2 = a^2 * b^2 * (i^2 - 2*i + 1) * = a^2 * b^2 * (-2*i) * = a*(-i)*(2*a*b^2) * = a*(-i)*i * = a. * * (This is due to A.O.L. Atkin, * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, * November 1992.) */ /* t := 2*a */ if (!BN_mod_lshift1_quick(t, A, p)) goto end; /* b := (2*a)^((|p|-5)/8) */ if (!BN_rshift(q, p, 3)) goto end; q->neg = 0; if (!BN_mod_exp(b, t, q, p, ctx)) goto end; /* y := b^2 */ if (!BN_mod_sqr(y, b, p, ctx)) goto end; /* t := (2*a)*b^2 - 1*/ if (!BN_mod_mul(t, t, y, p, ctx)) goto end; if (!BN_sub_word(t, 1)) goto end; /* x = a*b*t */ if (!BN_mod_mul(x, A, b, p, ctx)) goto end; if (!BN_mod_mul(x, x, t, p, ctx)) goto end; if (!BN_copy(ret, x)) goto end; err = 0; goto vrfy; } /* e > 2, so we really have to use the Tonelli/Shanks algorithm. * First, find some y that is not a square. */ if (!BN_copy(q, p)) goto end; /* use 'q' as temp */ q->neg = 0; i = 2; do { /* For efficiency, try small numbers first; * if this fails, try random numbers. */ if (i < 22) { if (!BN_set_word(y, i)) goto end; } else { if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end; if (BN_ucmp(y, p) >= 0) { if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end; } /* now 0 <= y < |p| */ if (BN_is_zero(y)) if (!BN_set_word(y, i)) goto end; } r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ if (r < -1) goto end; if (r == 0) { /* m divides p */ BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); goto end; } } while (r == 1 && ++i < 82); if (r != -1) { /* Many rounds and still no non-square -- this is more likely * a bug than just bad luck. * Even if p is not prime, we should have found some y * such that r == -1. */ BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS); goto end; } /* Here's our actual 'q': */ if (!BN_rshift(q, q, e)) goto end; /* Now that we have some non-square, we can find an element * of order 2^e by computing its q'th power. */ if (!BN_mod_exp(y, y, q, p, ctx)) goto end; if (BN_is_one(y)) { BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); goto end; } /* Now we know that (if p is indeed prime) there is an integer * k, 0 <= k < 2^e, such that * * a^q * y^k == 1 (mod p). * * As a^q is a square and y is not, k must be even. * q+1 is even, too, so there is an element * * X := a^((q+1)/2) * y^(k/2), * * and it satisfies * * X^2 = a^q * a * y^k * = a, * * so it is the square root that we are looking for. */ /* t := (q-1)/2 (note that q is odd) */ if (!BN_rshift1(t, q)) goto end; /* x := a^((q-1)/2) */ if (BN_is_zero(t)) /* special case: p = 2^e + 1 */ { if (!BN_nnmod(t, A, p, ctx)) goto end; if (BN_is_zero(t)) { /* special case: a == 0 (mod p) */ BN_zero(ret); err = 0; goto end; } else if (!BN_one(x)) goto end; } else { if (!BN_mod_exp(x, A, t, p, ctx)) goto end; if (BN_is_zero(x)) { /* special case: a == 0 (mod p) */ BN_zero(ret); err = 0; goto end; } } /* b := a*x^2 (= a^q) */ if (!BN_mod_sqr(b, x, p, ctx)) goto end; if (!BN_mod_mul(b, b, A, p, ctx)) goto end; /* x := a*x (= a^((q+1)/2)) */ if (!BN_mod_mul(x, x, A, p, ctx)) goto end; while (1) { /* Now b is a^q * y^k for some even k (0 <= k < 2^E * where E refers to the original value of e, which we * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). * * We have a*b = x^2, * y^2^(e-1) = -1, * b^2^(e-1) = 1. */ if (BN_is_one(b)) { if (!BN_copy(ret, x)) goto end; err = 0; goto vrfy; } /* find smallest i such that b^(2^i) = 1 */ i = 1; if (!BN_mod_sqr(t, b, p, ctx)) goto end; while (!BN_is_one(t)) { i++; if (i == e) { BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); goto end; } if (!BN_mod_mul(t, t, t, p, ctx)) goto end; } /* t := y^2^(e - i - 1) */ if (!BN_copy(t, y)) goto end; for (j = e - i - 1; j > 0; j--) { if (!BN_mod_sqr(t, t, p, ctx)) goto end; } if (!BN_mod_mul(y, t, t, p, ctx)) goto end; if (!BN_mod_mul(x, x, t, p, ctx)) goto end; if (!BN_mod_mul(b, b, y, p, ctx)) goto end; e = i; } vrfy: if (!err) { /* verify the result -- the input might have been not a square * (test added in 0.9.8) */ if (!BN_mod_sqr(x, ret, p, ctx)) err = 1; if (!err && 0 != BN_cmp(x, A)) { BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); err = 1; } } end: if (err) { if (ret != NULL && ret != in) { BN_clear_free(ret); } ret = NULL; } BN_CTX_end(ctx); bn_check_top(ret); return ret; }
int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x_, int y_bit, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *tmp1, *tmp2, *x, *y; int ret = 0; ERR_clear_error(); if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } y_bit = (y_bit != 0); BN_CTX_start(ctx); tmp1 = BN_CTX_get(ctx); tmp2 = BN_CTX_get(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) { goto err; } /* Recover y. We have a Weierstrass equation * y^2 = x^3 + a*x + b, * so y is one of the square roots of x^3 + a*x + b. */ /* tmp1 := x^3 */ if (!BN_nnmod(x, x_, &group->field, ctx)) { goto err; } if (group->meth->field_decode == 0) { /* field_{sqr,mul} work on standard representation */ if (!group->meth->field_sqr(group, tmp2, x_, ctx) || !group->meth->field_mul(group, tmp1, tmp2, x_, ctx)) { goto err; } } else { if (!BN_mod_sqr(tmp2, x_, &group->field, ctx) || !BN_mod_mul(tmp1, tmp2, x_, &group->field, ctx)) { goto err; } } /* tmp1 := tmp1 + a*x */ if (group->a_is_minus3) { if (!BN_mod_lshift1_quick(tmp2, x, &group->field) || !BN_mod_add_quick(tmp2, tmp2, x, &group->field) || !BN_mod_sub_quick(tmp1, tmp1, tmp2, &group->field)) { goto err; } } else { if (group->meth->field_decode) { if (!group->meth->field_decode(group, tmp2, &group->a, ctx) || !BN_mod_mul(tmp2, tmp2, x, &group->field, ctx)) { goto err; } } else { /* field_mul works on standard representation */ if (!group->meth->field_mul(group, tmp2, &group->a, x, ctx)) { goto err; } } if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) { goto err; } } /* tmp1 := tmp1 + b */ if (group->meth->field_decode) { if (!group->meth->field_decode(group, tmp2, &group->b, ctx) || !BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) { goto err; } } else { if (!BN_mod_add_quick(tmp1, tmp1, &group->b, &group->field)) { goto err; } } if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) { unsigned long err = ERR_peek_last_error(); if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) { ERR_clear_error(); OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, EC_R_INVALID_COMPRESSED_POINT); } else { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, ERR_R_BN_LIB); } goto err; } if (y_bit != BN_is_odd(y)) { if (BN_is_zero(y)) { int kron; kron = BN_kronecker(x, &group->field, ctx); if (kron == -2) { goto err; } if (kron == 1) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, EC_R_INVALID_COMPRESSION_BIT); } else { /* BN_mod_sqrt() should have cought this error (not a square) */ OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, EC_R_INVALID_COMPRESSED_POINT); } goto err; } if (!BN_usub(y, &group->field, y)) { goto err; } } if (y_bit != BN_is_odd(y)) { OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, ERR_R_INTERNAL_ERROR); goto err; } if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; }
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) { int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *n0, *n1, *n2, *n3; int ret = 0; if (EC_POINT_is_at_infinity(group, a)) { BN_zero(r->Z); r->Z_is_one = 0; return 1; } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); n0 = BN_CTX_get(ctx); n1 = BN_CTX_get(ctx); n2 = BN_CTX_get(ctx); n3 = BN_CTX_get(ctx); if (n3 == NULL) goto err; /* * Note that in this function we must not read components of 'a' once we * have written the corresponding components of 'r'. ('r' might the same * as 'a'.) */ /* n1 */ if (a->Z_is_one) { if (!field_sqr(group, n0, a->X, ctx)) goto err; if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; if (!BN_mod_add_quick(n1, n0, group->a, p)) goto err; /* n1 = 3 * X_a^2 + a_curve */ } else if (group->a_is_minus3) { if (!field_sqr(group, n1, a->Z, ctx)) goto err; if (!BN_mod_add_quick(n0, a->X, n1, p)) goto err; if (!BN_mod_sub_quick(n2, a->X, n1, p)) goto err; if (!field_mul(group, n1, n0, n2, ctx)) goto err; if (!BN_mod_lshift1_quick(n0, n1, p)) goto err; if (!BN_mod_add_quick(n1, n0, n1, p)) goto err; /*- * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) * = 3 * X_a^2 - 3 * Z_a^4 */ } else { if (!field_sqr(group, n0, a->X, ctx)) goto err; if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; if (!field_sqr(group, n1, a->Z, ctx)) goto err; if (!field_sqr(group, n1, n1, ctx)) goto err; if (!field_mul(group, n1, n1, group->a, ctx)) goto err; if (!BN_mod_add_quick(n1, n1, n0, p)) goto err; /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ } /* Z_r */ if (a->Z_is_one) { if (!BN_copy(n0, a->Y)) goto err; } else { if (!field_mul(group, n0, a->Y, a->Z, ctx)) goto err; } if (!BN_mod_lshift1_quick(r->Z, n0, p)) goto err; r->Z_is_one = 0; /* Z_r = 2 * Y_a * Z_a */ /* n2 */ if (!field_sqr(group, n3, a->Y, ctx)) goto err; if (!field_mul(group, n2, a->X, n3, ctx)) goto err; if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err; /* n2 = 4 * X_a * Y_a^2 */ /* X_r */ if (!BN_mod_lshift1_quick(n0, n2, p)) goto err; if (!field_sqr(group, r->X, n1, ctx)) goto err; if (!BN_mod_sub_quick(r->X, r->X, n0, p)) goto err; /* X_r = n1^2 - 2 * n2 */ /* n3 */ if (!field_sqr(group, n0, n3, ctx)) goto err; if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err; /* n3 = 8 * Y_a^4 */ /* Y_r */ if (!BN_mod_sub_quick(n0, n2, r->X, p)) goto err; if (!field_mul(group, n0, n1, n0, ctx)) goto err; if (!BN_mod_sub_quick(r->Y, n0, n3, p)) goto err; /* Y_r = n1 * (n2 - X_r) - n3 */ ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; }
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) { int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *rh, *tmp, *Z4, *Z6; int ret = -1; if (EC_POINT_is_at_infinity(group, point)) return 1; field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return -1; } BN_CTX_start(ctx); rh = BN_CTX_get(ctx); tmp = BN_CTX_get(ctx); Z4 = BN_CTX_get(ctx); Z6 = BN_CTX_get(ctx); if (Z6 == NULL) goto err; /*- * We have a curve defined by a Weierstrass equation * y^2 = x^3 + a*x + b. * The point to consider is given in Jacobian projective coordinates * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). * Substituting this and multiplying by Z^6 transforms the above equation into * Y^2 = X^3 + a*X*Z^4 + b*Z^6. * To test this, we add up the right-hand side in 'rh'. */ /* rh := X^2 */ if (!field_sqr(group, rh, point->X, ctx)) goto err; if (!point->Z_is_one) { if (!field_sqr(group, tmp, point->Z, ctx)) goto err; if (!field_sqr(group, Z4, tmp, ctx)) goto err; if (!field_mul(group, Z6, Z4, tmp, ctx)) goto err; /* rh := (rh + a*Z^4)*X */ if (group->a_is_minus3) { if (!BN_mod_lshift1_quick(tmp, Z4, p)) goto err; if (!BN_mod_add_quick(tmp, tmp, Z4, p)) goto err; if (!BN_mod_sub_quick(rh, rh, tmp, p)) goto err; if (!field_mul(group, rh, rh, point->X, ctx)) goto err; } else { if (!field_mul(group, tmp, Z4, group->a, ctx)) goto err; if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; if (!field_mul(group, rh, rh, point->X, ctx)) goto err; } /* rh := rh + b*Z^6 */ if (!field_mul(group, tmp, group->b, Z6, ctx)) goto err; if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; } else { /* point->Z_is_one */ /* rh := (rh + a)*X */ if (!BN_mod_add_quick(rh, rh, group->a, p)) goto err; if (!field_mul(group, rh, rh, point->X, ctx)) goto err; /* rh := rh + b */ if (!BN_mod_add_quick(rh, rh, group->b, p)) goto err; } /* 'lh' := Y^2 */ if (!field_sqr(group, tmp, point->Y, ctx)) goto err; ret = (0 == BN_ucmp(tmp, rh)); err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; }
int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; int ret = 0; if (a == b) return EC_POINT_dbl(group, r, a, ctx); if (EC_POINT_is_at_infinity(group, a)) return EC_POINT_copy(r, b); if (EC_POINT_is_at_infinity(group, b)) return EC_POINT_copy(r, a); field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); n0 = BN_CTX_get(ctx); n1 = BN_CTX_get(ctx); n2 = BN_CTX_get(ctx); n3 = BN_CTX_get(ctx); n4 = BN_CTX_get(ctx); n5 = BN_CTX_get(ctx); n6 = BN_CTX_get(ctx); if (n6 == NULL) goto end; /* * Note that in this function we must not read components of 'a' or 'b' * once we have written the corresponding components of 'r'. ('r' might * be one of 'a' or 'b'.) */ /* n1, n2 */ if (b->Z_is_one) { if (!BN_copy(n1, a->X)) goto end; if (!BN_copy(n2, a->Y)) goto end; /* n1 = X_a */ /* n2 = Y_a */ } else { if (!field_sqr(group, n0, b->Z, ctx)) goto end; if (!field_mul(group, n1, a->X, n0, ctx)) goto end; /* n1 = X_a * Z_b^2 */ if (!field_mul(group, n0, n0, b->Z, ctx)) goto end; if (!field_mul(group, n2, a->Y, n0, ctx)) goto end; /* n2 = Y_a * Z_b^3 */ } /* n3, n4 */ if (a->Z_is_one) { if (!BN_copy(n3, b->X)) goto end; if (!BN_copy(n4, b->Y)) goto end; /* n3 = X_b */ /* n4 = Y_b */ } else { if (!field_sqr(group, n0, a->Z, ctx)) goto end; if (!field_mul(group, n3, b->X, n0, ctx)) goto end; /* n3 = X_b * Z_a^2 */ if (!field_mul(group, n0, n0, a->Z, ctx)) goto end; if (!field_mul(group, n4, b->Y, n0, ctx)) goto end; /* n4 = Y_b * Z_a^3 */ } /* n5, n6 */ if (!BN_mod_sub_quick(n5, n1, n3, p)) goto end; if (!BN_mod_sub_quick(n6, n2, n4, p)) goto end; /* n5 = n1 - n3 */ /* n6 = n2 - n4 */ if (BN_is_zero(n5)) { if (BN_is_zero(n6)) { /* a is the same point as b */ BN_CTX_end(ctx); ret = EC_POINT_dbl(group, r, a, ctx); ctx = NULL; goto end; } else { /* a is the inverse of b */ BN_zero(r->Z); r->Z_is_one = 0; ret = 1; goto end; } } /* 'n7', 'n8' */ if (!BN_mod_add_quick(n1, n1, n3, p)) goto end; if (!BN_mod_add_quick(n2, n2, n4, p)) goto end; /* 'n7' = n1 + n3 */ /* 'n8' = n2 + n4 */ /* Z_r */ if (a->Z_is_one && b->Z_is_one) { if (!BN_copy(r->Z, n5)) goto end; } else { if (a->Z_is_one) { if (!BN_copy(n0, b->Z)) goto end; } else if (b->Z_is_one) { if (!BN_copy(n0, a->Z)) goto end; } else { if (!field_mul(group, n0, a->Z, b->Z, ctx)) goto end; } if (!field_mul(group, r->Z, n0, n5, ctx)) goto end; } r->Z_is_one = 0; /* Z_r = Z_a * Z_b * n5 */ /* X_r */ if (!field_sqr(group, n0, n6, ctx)) goto end; if (!field_sqr(group, n4, n5, ctx)) goto end; if (!field_mul(group, n3, n1, n4, ctx)) goto end; if (!BN_mod_sub_quick(r->X, n0, n3, p)) goto end; /* X_r = n6^2 - n5^2 * 'n7' */ /* 'n9' */ if (!BN_mod_lshift1_quick(n0, r->X, p)) goto end; if (!BN_mod_sub_quick(n0, n3, n0, p)) goto end; /* n9 = n5^2 * 'n7' - 2 * X_r */ /* Y_r */ if (!field_mul(group, n0, n0, n6, ctx)) goto end; if (!field_mul(group, n5, n4, n5, ctx)) goto end; /* now n5 is n5^3 */ if (!field_mul(group, n1, n2, n5, ctx)) goto end; if (!BN_mod_sub_quick(n0, n0, n1, p)) goto end; if (BN_is_odd(n0)) if (!BN_add(n0, n0, p)) goto end; /* now 0 <= n0 < 2*p, and n0 is even */ if (!BN_rshift1(r->Y, n0)) goto end; /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ ret = 1; end: if (ctx) /* otherwise we already called BN_CTX_end */ BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; }
/*- * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass * Elliptic Curves and Side-Channel Attacks", modified to work in projective * coordinates and return r in Jacobian projective coordinates. * * X4 = two*Y1*X2*Z3*Z2*Z1; * Y4 = two*b*Z3*SQR(Z2*Z1) + Z3*(a*Z2*Z1+X1*X2)*(X1*Z2+X2*Z1) - X3*SQR(X1*Z2-X2*Z1); * Z4 = two*Y1*Z3*SQR(Z2)*Z1; * * Z4 != 0 because: * - Z1==0 implies p is at infinity, which would have caused an early exit in * the caller; * - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch); * - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch); * - Y1==0 implies p has order 2, so either r or s are infinity and handled by * one of the BN_is_zero(...) branches. */ int ec_GFp_simple_ladder_post(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { int ret = 0; BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL; if (BN_is_zero(r->Z)) return EC_POINT_set_to_infinity(group, r); if (BN_is_zero(s->Z)) { /* (X,Y,Z) -> (XZ,YZ**2,Z) */ if (!group->meth->field_mul(group, r->X, p->X, p->Z, ctx) || !group->meth->field_sqr(group, r->Z, p->Z, ctx) || !group->meth->field_mul(group, r->Y, p->Y, r->Z, ctx) || !BN_copy(r->Z, p->Z) || !EC_POINT_invert(group, r, ctx)) return 0; return 1; } BN_CTX_start(ctx); t0 = BN_CTX_get(ctx); t1 = BN_CTX_get(ctx); t2 = BN_CTX_get(ctx); t3 = BN_CTX_get(ctx); t4 = BN_CTX_get(ctx); t5 = BN_CTX_get(ctx); t6 = BN_CTX_get(ctx); if (t6 == NULL || !BN_mod_lshift1_quick(t0, p->Y, group->field) || !group->meth->field_mul(group, t1, r->X, p->Z, ctx) || !group->meth->field_mul(group, t2, r->Z, s->Z, ctx) || !group->meth->field_mul(group, t2, t1, t2, ctx) || !group->meth->field_mul(group, t3, t2, t0, ctx) || !group->meth->field_mul(group, t2, r->Z, p->Z, ctx) || !group->meth->field_sqr(group, t4, t2, ctx) || !BN_mod_lshift1_quick(t5, group->b, group->field) || !group->meth->field_mul(group, t4, t4, t5, ctx) || !group->meth->field_mul(group, t6, t2, group->a, ctx) || !group->meth->field_mul(group, t5, r->X, p->X, ctx) || !BN_mod_add_quick(t5, t6, t5, group->field) || !group->meth->field_mul(group, t6, r->Z, p->X, ctx) || !BN_mod_add_quick(t2, t6, t1, group->field) || !group->meth->field_mul(group, t5, t5, t2, ctx) || !BN_mod_sub_quick(t6, t6, t1, group->field) || !group->meth->field_sqr(group, t6, t6, ctx) || !group->meth->field_mul(group, t6, t6, s->X, ctx) || !BN_mod_add_quick(t4, t5, t4, group->field) || !group->meth->field_mul(group, t4, t4, s->Z, ctx) || !BN_mod_sub_quick(t4, t4, t6, group->field) || !group->meth->field_sqr(group, t5, r->Z, ctx) || !group->meth->field_mul(group, r->Z, p->Z, s->Z, ctx) || !group->meth->field_mul(group, r->Z, t5, r->Z, ctx) || !group->meth->field_mul(group, r->Z, r->Z, t0, ctx) /* t3 := X, t4 := Y */ /* (X,Y,Z) -> (XZ,YZ**2,Z) */ || !group->meth->field_mul(group, r->X, t3, r->Z, ctx) || !group->meth->field_sqr(group, t3, r->Z, ctx) || !group->meth->field_mul(group, r->Y, t4, t3, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; }
/*- * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi * "A fast parallel elliptic curve multiplication resistant against side channel * attacks", as described at * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4 */ int ec_GFp_simple_ladder_step(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { int ret = 0; BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6, *t7 = NULL; BN_CTX_start(ctx); t0 = BN_CTX_get(ctx); t1 = BN_CTX_get(ctx); t2 = BN_CTX_get(ctx); t3 = BN_CTX_get(ctx); t4 = BN_CTX_get(ctx); t5 = BN_CTX_get(ctx); t6 = BN_CTX_get(ctx); t7 = BN_CTX_get(ctx); if (t7 == NULL || !group->meth->field_mul(group, t0, r->X, s->X, ctx) || !group->meth->field_mul(group, t1, r->Z, s->Z, ctx) || !group->meth->field_mul(group, t2, r->X, s->Z, ctx) || !group->meth->field_mul(group, t3, r->Z, s->X, ctx) || !group->meth->field_mul(group, t4, group->a, t1, ctx) || !BN_mod_add_quick(t0, t0, t4, group->field) || !BN_mod_add_quick(t4, t3, t2, group->field) || !group->meth->field_mul(group, t0, t4, t0, ctx) || !group->meth->field_sqr(group, t1, t1, ctx) || !BN_mod_lshift_quick(t7, group->b, 2, group->field) || !group->meth->field_mul(group, t1, t7, t1, ctx) || !BN_mod_lshift1_quick(t0, t0, group->field) || !BN_mod_add_quick(t0, t1, t0, group->field) || !BN_mod_sub_quick(t1, t2, t3, group->field) || !group->meth->field_sqr(group, t1, t1, ctx) || !group->meth->field_mul(group, t3, t1, p->X, ctx) || !group->meth->field_mul(group, t0, p->Z, t0, ctx) /* s->X coord output */ || !BN_mod_sub_quick(s->X, t0, t3, group->field) /* s->Z coord output */ || !group->meth->field_mul(group, s->Z, p->Z, t1, ctx) || !group->meth->field_sqr(group, t3, r->X, ctx) || !group->meth->field_sqr(group, t2, r->Z, ctx) || !group->meth->field_mul(group, t4, t2, group->a, ctx) || !BN_mod_add_quick(t5, r->X, r->Z, group->field) || !group->meth->field_sqr(group, t5, t5, ctx) || !BN_mod_sub_quick(t5, t5, t3, group->field) || !BN_mod_sub_quick(t5, t5, t2, group->field) || !BN_mod_sub_quick(t6, t3, t4, group->field) || !group->meth->field_sqr(group, t6, t6, ctx) || !group->meth->field_mul(group, t0, t2, t5, ctx) || !group->meth->field_mul(group, t0, t7, t0, ctx) /* r->X coord output */ || !BN_mod_sub_quick(r->X, t6, t0, group->field) || !BN_mod_add_quick(t6, t3, t4, group->field) || !group->meth->field_sqr(group, t3, t2, ctx) || !group->meth->field_mul(group, t7, t3, t7, ctx) || !group->meth->field_mul(group, t5, t5, t6, ctx) || !BN_mod_lshift1_quick(t5, t5, group->field) /* r->Z coord output */ || !BN_mod_add_quick(r->Z, t7, t5, group->field)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; }
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) { int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *n0, *n1, *n2, *n3; int ret = 0; if (EC_POINT_is_at_infinity(group, a)) { BN_zero(&r->Z); return 1; } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = &group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } BN_CTX_start(ctx); n0 = BN_CTX_get(ctx); n1 = BN_CTX_get(ctx); n2 = BN_CTX_get(ctx); n3 = BN_CTX_get(ctx); if (n3 == NULL) { goto err; } /* Note that in this function we must not read components of 'a' * once we have written the corresponding components of 'r'. * ('r' might the same as 'a'.) */ /* n1 */ if (BN_cmp(&a->Z, &group->one) == 0) { if (!field_sqr(group, n0, &a->X, ctx) || !BN_mod_lshift1_quick(n1, n0, p) || !BN_mod_add_quick(n0, n0, n1, p) || !BN_mod_add_quick(n1, n0, &group->a, p)) { goto err; } /* n1 = 3 * X_a^2 + a_curve */ } else { /* ring: This assumes a == -3. */ if (!field_sqr(group, n1, &a->Z, ctx) || !BN_mod_add_quick(n0, &a->X, n1, p) || !BN_mod_sub_quick(n2, &a->X, n1, p) || !field_mul(group, n1, n0, n2, ctx) || !BN_mod_lshift1_quick(n0, n1, p) || !BN_mod_add_quick(n1, n0, n1, p)) { goto err; } /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) * = 3 * X_a^2 - 3 * Z_a^4 */ } /* Z_r */ if (BN_cmp(&a->Z, &group->one) == 0) { if (!BN_copy(n0, &a->Y)) { goto err; } } else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) { goto err; } if (!BN_mod_lshift1_quick(&r->Z, n0, p)) { goto err; } /* Z_r = 2 * Y_a * Z_a */ /* n2 */ if (!field_sqr(group, n3, &a->Y, ctx) || !field_mul(group, n2, &a->X, n3, ctx) || !BN_mod_lshift_quick(n2, n2, 2, p)) { goto err; } /* n2 = 4 * X_a * Y_a^2 */ /* X_r */ if (!BN_mod_lshift1_quick(n0, n2, p) || !field_sqr(group, &r->X, n1, ctx) || !BN_mod_sub_quick(&r->X, &r->X, n0, p)) { goto err; } /* X_r = n1^2 - 2 * n2 */ /* n3 */ if (!field_sqr(group, n0, n3, ctx) || !BN_mod_lshift_quick(n3, n0, 3, p)) { goto err; } /* n3 = 8 * Y_a^4 */ /* Y_r */ if (!BN_mod_sub_quick(n0, n2, &r->X, p) || !field_mul(group, n0, n1, n0, ctx) || !BN_mod_sub_quick(&r->Y, n0, n3, p)) { goto err; } /* Y_r = n1 * (n2 - X_r) - n3 */ ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; }
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { // Compute a square root of |a| mod |p| using the Tonelli/Shanks algorithm // (cf. Henri Cohen, "A Course in Algebraic Computational Number Theory", // algorithm 1.5.1). |p| is assumed to be a prime. BIGNUM *ret = in; int err = 1; int r; BIGNUM *A, *b, *q, *t, *x, *y; int e, i, j; if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { if (BN_abs_is_word(p, 2)) { if (ret == NULL) { ret = BN_new(); } if (ret == NULL) { goto end; } if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { if (ret != in) { BN_free(ret); } return NULL; } return ret; } OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); return (NULL); } if (BN_is_zero(a) || BN_is_one(a)) { if (ret == NULL) { ret = BN_new(); } if (ret == NULL) { goto end; } if (!BN_set_word(ret, BN_is_one(a))) { if (ret != in) { BN_free(ret); } return NULL; } return ret; } BN_CTX_start(ctx); A = BN_CTX_get(ctx); b = BN_CTX_get(ctx); q = BN_CTX_get(ctx); t = BN_CTX_get(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) { goto end; } if (ret == NULL) { ret = BN_new(); } if (ret == NULL) { goto end; } // A = a mod p if (!BN_nnmod(A, a, p, ctx)) { goto end; } // now write |p| - 1 as 2^e*q where q is odd e = 1; while (!BN_is_bit_set(p, e)) { e++; } // we'll set q later (if needed) if (e == 1) { // The easy case: (|p|-1)/2 is odd, so 2 has an inverse // modulo (|p|-1)/2, and square roots can be computed // directly by modular exponentiation. // We have // 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), // so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. if (!BN_rshift(q, p, 2)) { goto end; } q->neg = 0; if (!BN_add_word(q, 1) || !BN_mod_exp_mont(ret, A, q, p, ctx, NULL)) { goto end; } err = 0; goto vrfy; } if (e == 2) { // |p| == 5 (mod 8) // // In this case 2 is always a non-square since // Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. // So if a really is a square, then 2*a is a non-square. // Thus for // b := (2*a)^((|p|-5)/8), // i := (2*a)*b^2 // we have // i^2 = (2*a)^((1 + (|p|-5)/4)*2) // = (2*a)^((p-1)/2) // = -1; // so if we set // x := a*b*(i-1), // then // x^2 = a^2 * b^2 * (i^2 - 2*i + 1) // = a^2 * b^2 * (-2*i) // = a*(-i)*(2*a*b^2) // = a*(-i)*i // = a. // // (This is due to A.O.L. Atkin, // <URL: //http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, // November 1992.) // t := 2*a if (!BN_mod_lshift1_quick(t, A, p)) { goto end; } // b := (2*a)^((|p|-5)/8) if (!BN_rshift(q, p, 3)) { goto end; } q->neg = 0; if (!BN_mod_exp_mont(b, t, q, p, ctx, NULL)) { goto end; } // y := b^2 if (!BN_mod_sqr(y, b, p, ctx)) { goto end; } // t := (2*a)*b^2 - 1 if (!BN_mod_mul(t, t, y, p, ctx) || !BN_sub_word(t, 1)) { goto end; } // x = a*b*t if (!BN_mod_mul(x, A, b, p, ctx) || !BN_mod_mul(x, x, t, p, ctx)) { goto end; } if (!BN_copy(ret, x)) { goto end; } err = 0; goto vrfy; } // e > 2, so we really have to use the Tonelli/Shanks algorithm. // First, find some y that is not a square. if (!BN_copy(q, p)) { goto end; // use 'q' as temp } q->neg = 0; i = 2; do { // For efficiency, try small numbers first; // if this fails, try random numbers. if (i < 22) { if (!BN_set_word(y, i)) { goto end; } } else { if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) { goto end; } if (BN_ucmp(y, p) >= 0) { if (!(p->neg ? BN_add : BN_sub)(y, y, p)) { goto end; } } // now 0 <= y < |p| if (BN_is_zero(y)) { if (!BN_set_word(y, i)) { goto end; } } } r = bn_jacobi(y, q, ctx); // here 'q' is |p| if (r < -1) { goto end; } if (r == 0) { // m divides p OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); goto end; } } while (r == 1 && ++i < 82); if (r != -1) { // Many rounds and still no non-square -- this is more likely // a bug than just bad luck. // Even if p is not prime, we should have found some y // such that r == -1. OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS); goto end; } // Here's our actual 'q': if (!BN_rshift(q, q, e)) { goto end; } // Now that we have some non-square, we can find an element // of order 2^e by computing its q'th power. if (!BN_mod_exp_mont(y, y, q, p, ctx, NULL)) { goto end; } if (BN_is_one(y)) { OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); goto end; } // Now we know that (if p is indeed prime) there is an integer // k, 0 <= k < 2^e, such that // // a^q * y^k == 1 (mod p). // // As a^q is a square and y is not, k must be even. // q+1 is even, too, so there is an element // // X := a^((q+1)/2) * y^(k/2), // // and it satisfies // // X^2 = a^q * a * y^k // = a, // // so it is the square root that we are looking for. // t := (q-1)/2 (note that q is odd) if (!BN_rshift1(t, q)) { goto end; } // x := a^((q-1)/2) if (BN_is_zero(t)) // special case: p = 2^e + 1 { if (!BN_nnmod(t, A, p, ctx)) { goto end; } if (BN_is_zero(t)) { // special case: a == 0 (mod p) BN_zero(ret); err = 0; goto end; } else if (!BN_one(x)) { goto end; } } else { if (!BN_mod_exp_mont(x, A, t, p, ctx, NULL)) { goto end; } if (BN_is_zero(x)) { // special case: a == 0 (mod p) BN_zero(ret); err = 0; goto end; } } // b := a*x^2 (= a^q) if (!BN_mod_sqr(b, x, p, ctx) || !BN_mod_mul(b, b, A, p, ctx)) { goto end; } // x := a*x (= a^((q+1)/2)) if (!BN_mod_mul(x, x, A, p, ctx)) { goto end; } while (1) { // Now b is a^q * y^k for some even k (0 <= k < 2^E // where E refers to the original value of e, which we // don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). // // We have a*b = x^2, // y^2^(e-1) = -1, // b^2^(e-1) = 1. if (BN_is_one(b)) { if (!BN_copy(ret, x)) { goto end; } err = 0; goto vrfy; } // find smallest i such that b^(2^i) = 1 i = 1; if (!BN_mod_sqr(t, b, p, ctx)) { goto end; } while (!BN_is_one(t)) { i++; if (i == e) { OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE); goto end; } if (!BN_mod_mul(t, t, t, p, ctx)) { goto end; } } // t := y^2^(e - i - 1) if (!BN_copy(t, y)) { goto end; } for (j = e - i - 1; j > 0; j--) { if (!BN_mod_sqr(t, t, p, ctx)) { goto end; } } if (!BN_mod_mul(y, t, t, p, ctx) || !BN_mod_mul(x, x, t, p, ctx) || !BN_mod_mul(b, b, y, p, ctx)) { goto end; } e = i; } vrfy: if (!err) { // verify the result -- the input might have been not a square // (test added in 0.9.8) if (!BN_mod_sqr(x, ret, p, ctx)) { err = 1; } if (!err && 0 != BN_cmp(x, A)) { OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE); err = 1; } } end: if (err) { if (ret != in) { BN_clear_free(ret); } ret = NULL; } BN_CTX_end(ctx); return ret; }